
I.J. Information Technology and Computer Science, 2017, 9, 45-52
Published Online September 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.09.04

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

An Experimental Analysis on Performance and

Energy Saving in Mobile Cloud Computing

Sindhu K
Department of ISE, BMS College of Engineering, Bangalore, India

E-mail: Sind19@gmail.com

Dr. H.S.Guruprasad
Department of ISE, BMS College of Engineering, Bangalore, India

E-mail: drhsguru@gmail.com

Received: 02 June 2017; Accepted: 10 August 2017; Published: 08 September 2017

Abstract—Mobile Cloud Computing is a combination of

mobile, cloud and wireless network where data storage

and processing happens outside the mobile device. The

storage capacity, processing power and battery life can be

improved by moving resource intensive applications onto

the cloud. In this paper, the performance of the mobile

device is measured by using four different sorting

techniques. Two different strategies were used for

execution. In the first strategy, the input, execution and

the output happens on the mobile device. In the other

strategy, the input and output happens on the mobile

device while the execution of the sorting techniques is

offloaded to the server. The parameters considered for

measurement are the execution time and mobile device’s

energy consumption. The results show that offloading the

task to the server reduces the execution time and energy

consumption on the mobile device.

Index Terms—Mobile cloud computing, android, mobile,

performance, energy consumption, offloading, server.

I. INTRODUCTION

With rapid growth of smart phone users, scaling up the

capability of smart phones has become a major concern.

Mobile devices still lack in resources like low battery

power, storage and processing. To overcome these

challenges the resource intensive tasks of mobile can be

moved to resource rich environment which is external to

the mobile. There are many challenges to be addressed in

Mobile cloud computing like availability, efficient and

dynamic offloading, low bandwidth, heterogeneity,

security and data portability.

Mobile cloud computing is a model for transparent

elastic augmentation of mobile device’s capability using

wireless access to cloud storage and computing resources.

With the world moving mobile in most of the practical

aspects, Mobile cloud computing would facilitate the

mobile users with varied services to make the maximum

benefit of cloud computing.

Mobile cloud computing enables mobile users to store

and process the data in cloud thereby deterring the need

to have a powerful device configuration as all resource-

intensive computing can be performed in the cloud.

In this paper, a study on the execution time and energy

consumption of the mobile device is carried out when the

entire program is executed on the mobile device and

server separately. Four different sorting techniques were

used for the study. It was observed that when processing

huge amount of data, it is better to offload the processing

task to resource rich environment rather than the mobile,

thus execution happens at a faster rate and energy

consumption of the mobile device is also reduced.

The remainder of the paper is organized as follows. In

Section 2, a discussion on the related work in Mobile

cloud computing is done. Section 3 gives a detailed

discussion of proposed approach. Results are provided in

Section 4 followed by conclusion in Section 5.

II. RELATED WORK

Smart phones are gaining huge popularity because of

their support for various applications such as image

processing, video processing, natural language processing,

gaming and e-commerce. Mobile cloud computing caters

to such applications by offloading the computation

intensive task on the cloud to enhance the performance of

resource constrained mobile devices. The offloading of

application component [29] is done mainly in two ways;

it can be either static or dynamic. In static offloading, the

components of the applications to be offloaded are

predetermined. In dynamic offloading, the decision to

offload is taken based on various parameters like mobile

device resources, bandwidth, latency and availability of

cloud resources.

In recent years, many cloud-based mobile application

models are proposed by various researchers. The recent

frameworks by various researchers have been discussed

in the following section.

S. Abolfazli et al [1] has investigated the impact on the

performance of smart phone by considering three

different strategies for execution native, proximate and

distant cloud. The study indicates that the transmission

volume and number of intermediatary hops have

46 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

considerable impact on resource intensive mobile

applications’ performance. Two cloud setups were used

for the experiment, one located close by to the

experimental test bed and other far away from the test

bed. The execution time and mobile energy consumption

were the parameters considered for the evaluation. M.

Shiraz et al [2] proposed a simple active service

migration framework using light weight mechanism for

computational offloading to cloud. The framework uses

coarse granularity level for computational offloading and

compares the performance with traditional computation

offloading which uses finer granularity. Offline and

Online mode of execution of the task were carried out. In

the offline mode, the application was executed on mobile

and in online mode the intensive components of the

application were sent to the cloud. Xia et al [3] tried to

improve the applications’ execution time on smart phone

and save energy for smart phones by offloading the

computation of application from mobile phone to cloud.

The framework is a semiautomatic offloading system

since the application is manually modified to run on

cloud and an offloading proxy is used to send and receive

information from cloud. The decision to offload or not is

based on two parameters; the delay tolerance threshold

given by the user and the power consumption to execute

the application. S. Abolfazli et al [4] proposed a market

oriented architecture to publish, discover and host service

on nearby mobile which reduces long WAN latency when

distant cloud is used and it creates a business prospect to

mobile owners. The framework consists of four modules,

the service governor responsible for monitoring and

managing all the critical tasks, service developer for

development of services to be provided to the requester,

mobile host is responsible for executing the service

request and would be paid by the service governor and

finally the service requester. This architecture is aimed at

moving towards greener computing by utilizing the

unutilized resources of close by mobile devices. Liu et al

[5] investigated a Dynamic Programming Offloading

Algorithm for finding which functions of the application

program should be offloaded to cloud to save the energy

of mobile device and reduce the execution time of the

application. The framework consists of a solver module

which decides which method of an application should be

offloaded to cloud and which shouldn’t be offloaded by

maintaining a dynamic programming table. The solver

module takes the decision based on the input from device

profiler and application analyzer which decides the cost

to run the method on the mobile device. The solver

module also gets the input from constraint analyzer which

identifies the methods which cannot be offloaded and

other module called network analyzer which gives the

transition cost of a method based on characteristics of

network and the data to be sent by the method. Xiang et

al [6] investigated a new method where multiple mobile

application code offloading requests are send in bundles.

Usually after offloading the request to the cloud the Wi-

Fi interface on the mobile will be in high state for a short

duration before switching over to low power state

referred as tail time. The authors bundle the requests

together to reduce the tail time which in turn reduces the

energy consumption. Two online algorithms, one

deterministic and other randomized dynamically decide

when to grant requests. The work proves a substantial

amount of energy savings.

Kaya et al [7] investigated Inversion of Control

offloading technique. The objects are created using

offloading factory instead of using the new keyword. A

remote object and a local proxy for each object are

created if the object needs to be offloaded. If the objects

from the cloud and mobile needs to communicate then

proxies are created at both mobile and cloud end, hence

communication happens. If any objects on the mobile are

needed at the cloud, proxies of those objects are created

at the cloud. Each object is identified by an object Id and

the mapping is maintained in a table. Wu et al [8]

considers the tradeoff analysis of performance

improvement and energy saving by considering the

execution time into three intervals namely never offload,

tradeoff and always offload. When an application needs

to be executed, a decision is made to choose the cloud

server based on the priority given to the execution time or

energy consumption. The proposed adaptive offloading

model can improve performance when application is

executed faster on cloud then on mobile device taking

into consideration Network bandwidth, amount of data to

be transmitted and execution time on server. Fekete et al

[9] proposes an offloading technique which optimizes the

code in development time i.e. weak part of the software is

identified and offloaded for external execution. Based on

method score, it is decided that the methods which have

highest score are offloaded to the cloud.

Bolla et al [10] proposes an Application State Proxy

(ASP) that stops applications on mobile and maintains

their presence on any other network device because most

of the applications on mobile phones are internet based

which generally send and receive messages over Wi-Fi,

3G or 4G data connection. These applications utilize the

mobile resources phenomenally. So only when an event

occurs i.e. if there is a need for the application, the ASP

returns the application control back to mobile. Silva et al

[11] presents a framework to enhance the performance of

applications in mobile by load partition and offloading.

Face recognition application was first executed on mobile

phone and using power tutor tool the mobile device

energy consumption was measured. Then the application

was executed on cloudlets and the virtual machines were

increased from one to four and it was seen that there was

considerable speedup and energy saving.

Elgendy et al [12] proposes a framework where the

decision to offload the application to cloud or not is based

on real time decision metrics which are total execution

time, energy consumption, memory, remaining battery

and security. When the application is first executed on the

mobile, the application will also send the jar file which

contains all remote services on cloud so that when

application is again executed it doesn’t transfer anything

on cloud. The application when executed for the first time

generates profile files containing data on memory used,

network bandwidth to be used in subsequent execution

 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing 47

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

and processing time. Angin et al [13] proposes an

autonomous agent based dynamic computation offloading

model where the application is partitioned into

autonomous agent based modules and sent to the cloud

and native application module are executed on mobile

statically. The framework consists of an execution

manager which resides on mobile and responsible for

deciding whether the module of an application should be

migrated to cloud or not. The execution manger checks

with the directory service manager to get the updated list

of available cloud hosts for offloading the application

module. High reliability is guaranteed by reestablishment

of communication between mobile and cloud incase the

connection fails. The execution time is calculated by

executing the application on mobile, completely

offloading on cloud and offloading only few methods of

the application on cloud. The experiment is also carried

out by using single thread and multithread executions and

varying the instance types of EC2. Troung et al [14]

presents an offloading model where a mobile user can use

many mobile cloudlets and process parallely all

independent tasks. The decision to offload or not is taken

by the mobile user based on computation, communication

and penalty cost. S. Abolfazli et al [15] proposes a

framework by considering a network of adjacent service

based mobile cloudlets for remote execution instead of

far away clouds. The framework consists of three main

building blocks, the Mobile Service consumer which is

the mobile device, Mobile service provider are the

adjacent mobile cloudlets who needs to register with the

Trusted Service Governor, which is the third block

responsible for supervising and monitoring augmentation

entities. A mobile device which requires the service

should contact the service execution handler responsible

for listening to the requests. The request to execute the

task is given to the mobile cloudlet which is located close

to the mobile consumer. The architecture also takes care

of reliability by caching the data and reestablishing the

connection.

In the proposed work, static offloading technique was

used wherein the computation intensive task of sorting

the numbers is offloaded on the server. A comparative

study is done on the performance of the mobile device by

executing four sorting techniques on the mobile device

and the server.

III. PROPOSED APPROACH

In the proposed approach, four different sorting

techniques are considered i.e. Quick sort, Merge sort,

Insertion sort and Selection sort. These sorting techniques

were experimented on two different execution strategies.

In the first execution strategy, the input, execution and

the output of the sorting techniques were done on the

mobile device. In the second execution strategy, reading

the input from the user and the displaying the output were

on the mobile end, while the execution of sorting

techniques was done on Server. For each sorting

technique, the range of input numbers was varied from

5000 to 50000 in steps of 5000. The execution procedure

for each input value was repeated 20 times to maintain

consistency of the measured data. The total time taken to

execute and energy consumed was measured and the

average was considered. The time taken to execute was

measured for four sorting techniques by varying the input

range using both strategies. Energy consumed by the

mobile was measured for the four sorting techniques for

both execution strategies using power tutor [16]

considering only the processor energy usage. The

procedure followed for executing the program on the

mobile device and on the server, is as given below:

Method 1: Executing the program on the mobile.

The program was written on Android SDK and

executed on the mobile by prompting the user to enter the

input value. Once the input is obtained from the user,

random numbers were generated on the mobile. Then the

sorting function was invoked and sorted numbers were

displayed on the mobile device. The time taken to

execute the program and the energy consumed were

measured. The same experiment was repeated 20 times

for each input and the average value was considered for

comparison. The algorithm is given below:

Algorithm

Step 1: Read the input from the user (N Value).

Step 2: Generate N random numbers and store on

mobile.

Step 3: Call the appropriate sorting technique function.

Step 4: Display the result on mobile.

Step_5: Calculate the time taken to execute the

program using System.currentTimeMillis() and energy

consumed by using Power tutor.

A user interface was designed prompting the user to

enter the input range and then display the sorted output

on the mobile device. At the start of execution of the

program, the input range was requested from the end-user

and based on the input range entered; random numbers

were generated and stored on mobile device. Based on

the sorting technique that need to be executed, the

function to perform the sort was invoked and once the

sorting was done, the sorted array was displayed on the

mobile. The total time taken to execute the program was

calculated from the start of entering the input value to the

end of displaying the result on the screen. Using Power

tutor the energy consumed from the beginning of the

program till the end was measured. The same procedure

is repeated 20 times for the given input range and then the

average of both the time taken to execute and energy

consumed is considered. The same experiment is repeated

for all input ranges of the selected sorting techniques.

Method 2: Executing the program on the Server.

The user interface was developed on Android SDK and

the user was prompted to enter the input value. Once the

input is obtained from the user, the value was sent to the

server. A program written in PHP on the server generates

the random numbers. The sorting function on the server

sorts these random numbers. The sorted numbers were

48 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

sent from server to the mobile device and displayed. The

time taken to execute the program and the energy

consumption is measured. The same experiment was

repeated 20 times for each input and the average was

taken. The algorithm is as given below:

Algorithm (Mobile Part)

Step 1: Internet permission to be added to Android

manifest.

Step 2: Read the input from the user (N Value).

Step 3: HttpURLconnection object need to be created

to send and receive data over internet.

Step 4: Send the input value to the server by setting the

request method to POST and sending the URL address

and input N.

Step 5: On receiving the response code HTTP_OK,

invoke the server program to perform the sort by passing

the URL address of the sort program located on the server.

Step 6: Read the result from the server using

InputStreamReader and display on the mobile.

Initially, internet permission needs to be added to the

Android manifest xml file because the communication

happens between mobile device and the server. Once the

input is read, the corresponding server program is

invoked and the input value N is sent to the server. After

the connection is established, the sorting program is

invoked by using HttpURLconnection object. Finally, the

sorted output is received from the server and displayed on

the mobile device.

Algorithm (Server Part)

Step 1: The input value (N) send from the mobile is

obtained and stored on the database of the server.

Step 2: Generate N random numbers and store on the

server

Step 3: Call the function to perform appropriate sort.

Step 4: Return the stored data to the mobile for display.

The time taken to execute the program was calculated

using System.currentTimeMillis() from the time the input

value is entered by the user till the results are displayed

on the mobile. (i.e. time taken by the mobile and server).

Energy consumed by the mobile is calculated using

Power tutor.

On the server-end, two programs were written. First

program to read the input value received from the mobile

device and store in the database. In the second program,

when the sort button is selected on the mobile, the input

value was read from the database and the random

numbers were generated on the server. The appropriate

sorting technique was invoked to sort the random

numbers and the results are displayed on the mobile. The

total time taken to execute the program was calculated by

considering the time taken to read the input and transfer

the data from mobile device to the server, time taken to

process the task on the server and time taken to transfer

the result back from server to mobile and displaying the

output. The mobile energy consumed for the same was

calculated. The experiment is repeated 20 times for a

given input and the average is considered for comparison.

All four sorting techniques were executed the same way.

Only displaying the output and reading the input value

was done on the mobile, the entire random number

generation and sorting was done on the server end.

Devices used for Experimental Setup were:

Client - Smart phone Sony Xperia M C1904 featuring

dual core processor with 1 GHz speed and 1 GB RAM.

Battery Capacity 1750 mAh Li-lon

Server - Intel(R) Core(TM) i3 CPU M 370 @ 2.40

GHz 4GB RAM 64-bit Operating System, x64 based

processor.

IV. RESULTS AND DISCUSSIONS

Figure 1 shows the comparison of time taken to

execute the Quick sort program on the mobile and the

server. Figure 2 shows the comparison of mobile energy

consumption when Quick sort program is executed on the

mobile and the server. It can be observed that for

numbers below 10000, the performance on the mobile

device is better compared to execution on the server. As

the input increases, the performance of the sorting

technique takes a longer duration and consumes more

energy when executed on mobile compared to execution

on the server.

Fig.1. Quick Sort Execution Time

Fig.2. Quick Sort Energy Consumption

 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing 49

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

Figure 3 shows the comparison of time taken to

execute the Merge sort program on the mobile and the

server. Figure 4 shows the comparison of mobile energy

consumption when Merge sort program is executed on

the mobile and the server. For numbers below 10000, the

total execution time and energy consumed is less when

executed on mobile device. With increase in input size

the execution on the server-end yields better result.

Fig.3. Merge Sort Execution Time

Fig.4. Merge Sort Energy Consumption

Figure 5 shows the comparison of time taken to

execute the Insertion sort program on the mobile and the

server. Figure 6 shows the comparison of mobile energy

consumption when Insertion sort program is executed on

the mobile and the server. It is observed when the

Insertion sort program is executed on server, time taken

to execute and energy consumption is very less compared

to execution on mobile.

From the graphs, it can be observed that Insertion sort

takes more execution time compared to Quick sort and

Merge sort. Insertion sort is faster when the array size is

small, but as the size increases the execution time for

sorting also increases. When the input is varied from

5000 to 15000 for insertion sort, there is no significant

difference in executing on the mobile or server. When the

input is increased beyond 15000, increase in performance

can be observed when executed on server compared to

execution on mobile. Energy consumption of mobile is

very less when Insertion sort program is executed on

server compared to execution on mobile.

Fig.5. Insertion Sort Execution Time

Fig.6. Insertion Sort Energy Consumption

Fig.7. Selection Sort Execution Time

Figure 7 shows the comparison of time taken to

execute the Selection sort program on the mobile and the

server. Figure 8 shows the comparison of mobile energy

consumption when Selection sort program is executed on

the mobile and the server. From Figure 7 it can be

observed that there is no much significant difference in

50 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

time taken to execute when selection sort is executed on

mobile or server for numbers below 25,000.

As the input data size increases, the time taken to

execute the Selection sort program on server is faster than

execution on mobile. The mobile energy consumption,

when the Selection sort program was executed on the

mobile is less when compared to execution on the server

for numbers below 5000. As the input size increases, the

mobile energy consumption when executed on mobile

device increases gradually when compared to execution

on server.

Fig.8. Selection Sort Energy Consumption

Figure 9 gives the comparison of execution time of all

the four sorting techniques when executed on the mobile.

Figure 10 gives the comparison of execution time of all

the four sorting techniques when executed on the server.

It can be clearly seen from the graphs that execution

happens at a faster rate when executed on server. It is also

observed that the execution time of Quick sort and Merge

sort falls almost in the same band and Insertion sort and

Selection sort fall on a common band.

Fig.9. Execution Time comparison when executed on Mobile

Figure 11 gives the comparison of mobile energy

consumption of all the four sorting techniques when

executed on the mobile. Figure 12 gives the comparison

of mobile energy consumption of all the four sorting

techniques when executed on the server. It can be clearly

seen from the graphs that all the four sorting techniques

consume very less mobile energy when execution

happens on server compared to execution on mobile. It is

also observed that the mobile energy consumption of

Quick sort and Merge sort falls almost in the same band

and Insertion sort and Selection sort fall on a common

band.

Fig.10. Execution Time comparison when executed on Server

Fig.11. Energy Consumption comparison when executed on Mobile

Fig.12. Energy Consumption comparison when executed on Server

It is observed that applications with less computation

perform better on mobile device as it does not involve

any communication overhead. However, resource or

computation intensive applications would perform better

 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing 51

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

when offloaded onto the resource rich servers rather than

executing on the mobile device. As the computation

intensity increases, the application might crash when

executed on the mobile device due to resource constraints

so it is better to offload on the server.

V. CONCLUSION

In this paper, a comparison study was done by

executing the four sorting techniques on the mobile

device and the server. It was found that the performance

of the mobile device increases phenomenally when all the

four sorting techniques are executed on the server

compared to the execution on the mobile as computation

intensity increases. Also, it was observed that as input

size increases, a huge difference in performance is seen

when the tasks are offloaded to the server. Energy

consumption of the mobile is less when the sorting

techniques are executed on the server compared to the

execution on the mobile. The future research work

includes a decision making algorithmic approach to

decide the execution of a task on the mobile or server and

measure the performance based on various parameters.

REFERENCES

[1] S. Abolfazli, Z. Sanaei, M. Alizadeh, A. Gani, and F. Xia,

―An experimental analysis on cloud-based mobile

augmentation in mobile cloud computing,‖ IEEE

Transactions on ConsumerElectronics, vol. 60, no. 1, pp.

146–154, 2014.

[2] M Shiraz, A Gani, "A lightweight active service migration

framework for computational offloading in mobile cloud

computing‖, The Journal of Supercomputing, 2014 -

Springer

[3] Xia, Feng, Fangwei Ding, Jie Li, Xiangjie Kong,

Laurence T.Yang, and Jianhua Ma. "Phone2Cloud:

Exploiting computation offloading for energy saving on

smartphones in mobile cloud computing." Information

Systems Frontiers 16, no. 1 (2014): 95-111.

[4] Abolfazli, Saeid, Zohreh Sanaei, Muhammad Shiraz, and

Abdullah Gani. "MOMCC: market-oriented architecture

for mobile cloud computing based on service oriented

architecture." In Communications in China Workshops

(ICCC), 2012 1st IEEE International Conference on, pp.

8-13. IEEE, 2012.

[5] Liu, Yanchen, and Myung J. Lee. "An effective dynamic

programming offloading algorithm in mobile cloud

computing system." 2014 IEEE Wireless Communications

and Networking Conference (WCNC). IEEE, 2014.

[6] Xiang, Liyao, Shiwen Ye, Yuan Feng, Baochun Li, and

Bo Li. "Ready, set, go: Coalesced offloading from mobile

devices to the cloud." In IEEE INFOCOM 2014-IEEE

Conference on Computer Communications, pp. 2373-

2381. IEEE, 2014.

[7] Kaya, Mahir, Altan Koçyigit, and P. Erhan Eren. "A

Mobile Computing Framework Based on Adaptive Mobile

Code Offloading." 2014 40th EUROMICRO Conference

on Software Engineering and Advanced Applications.

IEEE, 2014.

[8] Wu, Huaming, Qiushi Wang, and Katinka Wolter.

"Tradeoff between performance improvement and energy

saving in mobile cloud offloading systems." 2013 IEEE

International Conference on Communications Workshops

(ICC). IEEE, 2013.

[9] Fekete, Krisztian, Adam Pelle, and Kristof Csorba.

"Energy efficient code optimization in mobile

environment." 2014 IEEE 36th International

Telecommunications Energy Conference (INTELEC).

IEEE, 2014.

[10] Bolla, Raffaele, Rafiullah Khan, Xavier Parra, and Matteo

Repetto. "Improving Smartphones Battery Life by

Reducing Energy Waste of Background Applications."

In 2014 Eighth International Conference on Next

Generation Mobile Apps, Services and Technologies, pp.

123-130. IEEE, 2014.

[11] Silva, Francisco Airton, Paulo Maciel, and Rubens Matos.

"SmartRank: a smart scheduling tool for mobile cloud

computing." The Journal of Supercomputing 71.8 (2015):

2985-3008.

[12] Elgendy, Mostafa A., Ahmed Shawish, and Mahmoud I.

Moussa. "MCACC: New approach for augmenting the

computing capabilities of mobile devices with Cloud

Computing." Science and Information Conference (SAI),

2014. IEEE, 2014.

[13] Angin, Pelin, Bharat Bhargava, and Zhongjun Jin. "A

Self-Cloning Agents Based Model for High-Performance

Mobile-Cloud Computing." 2015 IEEE 8th International

Conference on Cloud Computing. IEEE, 2015.

[14] Truong-Huu, Tram, Chen-Khong Tham, and Dusit Niyato.

"To Offload or to Wait: An Opportunistic Offloading

Algorithm for Parallel Tasks in a Mobile Cloud." Cloud

Computing Technology and Science (CloudCom), 2014

IEEE 6th International Conference on. IEEE, 2014.

[15] Abolfazli, Saeid, Zohreh Sanaei, Abdullah Gani, Feng Xia,

and Wei-Ming Lin. "RMCC: Restful Mobile Cloud

Computing Framework for Exploiting Adjacent Service-

Based Mobile Cloudlets." In Cloud Computing

Technology and Science (CloudCom), 2014 IEEE 6th

International Conference on, pp. 793-798. IEEE, 2014.

[16] http://ziyang.eecs.umich.edu/projects/powertutor/

[17] Abolfazli, Saeid, Abdullah Gani, and Min Chen. "HMCC:

A Hybrid Mobile Cloud Computing Framework

Exploiting Heterogeneous Resources." Mobile Cloud

Computing, Services, and Engineering (MobileCloud),

2015 3rd IEEE International Conference on. IEEE, 2015.

[18] Othman, Mazliza, Abdul Nasir Khan, Shahbaz Akhtar

Abid, and Sajjad Ahmad Madani. "MobiByte: an

application development model for mobile cloud

computing." Journal of Grid Computing 13, no. 4 (2015):

605-628.

[19] Salama, Ahmed S. "A swarm intelligence based model for

mobile cloud computing." International Journal of

Information Technology and Computer Science

(IJITCS) 7, no. 2 (2015): 28.

[20] Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu.

"Honeybee: A programming framework for mobile crowd

computing." International Conference on Mobile and

Ubiquitous Systems: Computing, Networking, and

Services. Springer Berlin Heidelberg, 2012.

[21] Fernando, Niroshinie, Seng W. Loke, and Wenny Rahayu.

"Mobile cloud computing: A survey." Future Generation

Computer Systems 29, no. 1 (2013): 84-106.

[22] Adamuthe, Amol C., Vikram D. Salunkhe, Seema H. Patil,

and Gopakumaran T. Thampi. "Cloud Computing–A

market Perspective and Research

Directions." International Journal of Information

Technology and Computer Science (IJITCS) 7, no. 10

(2015): 42.

[23] Yang, Seungjun, Donghyun Kwon, Hayoon Yi, Yeongpil

Cho, Yongin Kwon, and Yunheung Paek. "Techniques to

https://scholar.google.co.in/citations?user=ndguESsAAAAJ&hl=en&oi=sra
https://scholar.google.co.in/citations?user=5iDbwdsAAAAJ&hl=en&oi=sra

52 An Experimental Analysis on Performance and Energy Saving in Mobile Cloud Computing

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 9, 45-52

minimize state transfer costs for dynamic execution

offloading in mobile cloud computing." IEEE

Transactions on Mobile Computing 13, no. 11 (2014):

2648-2660.

[24] Chen, Chien-An, Myounggyu Won, Radu Stoleru, and

Geoffrey G. Xie. "Energy-efficient fault-tolerant data

storage and processing in mobile cloud."IEEE

Transactions on cloud computing 3, no. 1 (2015): 28-41.

[25] Xiang, Xudong, Chuang Lin, and Xin Chen. "EcoPlan:

energy-efficient downlink and uplink data transmission in

mobile cloud computing." Wireless Networks 21, no. 2

(2015): 453-466.

[26] Suneel, K. S., and H. S. Guruprasad. "An Approach for

Server Consolidation in a Priority Based Cloud

Architecture." BVICAM's International Journal of

Information Technology 8, no. 1 (2016).

[27] Sanaei, Zohreh, Saeid Abolfazli, Abdullah Gani, and

Rajkumar Buyya. "Heterogeneity in mobile cloud

computing: taxonomy and open challenges." IEEE

Communications Surveys & Tutorials 16, no. 1 (2014):

369-392.

[28] Najmeh Moghadasi, Mostafa Ghobaei Arani, Mahboubeh

Shamsi,"A Novel Approach for Reduce Energy

Consumption in Mobile Cloud Computing", International

Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.11, pp.62-73, 2015.

[29] urRehman Khan Atta, Mazliza Othman, Sajjad Ahmad

Madani, and SameeUllah Khan. "A Survey of Mobile

Cloud Computing Application Models.", IEEE

Communications Surveys & Tutorials, Vol. 16, No. 1,

2014.

Authors’ Profiles

Sindhu K is currently working as an

Assistant Professor in Department of

Information Science and Engineering at

BMS College of Engineering, Bangalore,

India. She received her M.Tech in

Computer Network Engineering from

Visvesvaraya Technological University.

She is currently pursuing her Ph.D. at

Visvesvaraya Technological University.

Her research interest includes cloud computing, mobile cloud

computing and mobile based application development.

H S Guruprasad holds Ph.D. in Computer

Science. He is working as Professor in the

Department of Information Science and

Engineering at BMS College of

Engineering, Bangalore, India. He has over

two decades of experience in teaching field.

His research interests include Networks

and Communication, Cloud Computing

and Internet of Things.

How to cite this paper: Sindhu K, H.S.Guruprasad, "An

Experimental Analysis on Performance and Energy Saving in

Mobile Cloud Computing", International Journal of Information

Technology and Computer Science(IJITCS), Vol.9, No.9, pp.

45-52, 2017. DOI: 10.5815/ijitcs.2017.09.04

