
I.J. Information Technology and Computer Science, 2017, 7, 69-76
Published Online July 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.07.08

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

An Efficient String Matching Technique for

Desktop Search to Detect Duplicate Files

Dr. S. Vijayarani
Assistant Professor, Department of Computer Science, Bharathiar University, Coimbatore, Tamilnadu, India

E-mail: vijimohan_2000@yahoo.com

Ms. M.Muthulakshmi
M.Phil. Research Scholar, Department of Computer Science Bharathiar University, Coimbatore, Tamilnadu, India

E-mail: abarajitha.uma@gmail.com

Abstract—Information retrieval is used to identify the

relevant documents in a document collection, which is

matching a user‟s query. It also refers to the automatic

retrieval of documents from the large document corpus.

The most important application of information retrieval

system is search engine like Google, which identify those

documents on the World Wide Web that are relevant to

user queries. In most situations, users may download the

files that are already downloaded and stored in their

computer. Then, there is a chance of multiple copies of

the files that are already stored in different drives and

folders on the system, which in turn reduces the

performance of the system and these files occupy a lot of

memory space. Analyzing the contents of the file and

finding their similarity is one of the major problems in

text mining and information retrieval. The main objective

of this research work is to analyze the file contents and

deletes the duplicate files in the system. In order to

perform this task, this research work proposes a new tool

named Duplicate File Detector Tool i.e. DFDT. DFDT

helps the user to search and delete duplicate files in the

system at a minimum time. It also helps to delete the

duplicate files not only with the same file category, but

also with different file categories. Boyer Moore Horspool

and Knuth Morris Pratt string searching algorithms are

existing algorithms and these algorithms are used to

compare the file contents for finding their similarity.

This work also proposes a new string matching algorithm

named as W2COM (Word to Word COMparison). From

the experimental results it is observed that the newly

proposed W2COM string matching algorithm

performance is better than Boyer Moore Horspool and

Knuth Morris Pratt algorithms.

Index Terms—Content Analysis, File similarity, String

matching, Boyer Moore Horspool, Knuth Morris Pratt,

W2COM.

I. INTRODUCTION

Information retrieval (IR) is discovered the documents

of an unstructured nature that satisfies information need

from within a large collection of documents. This system

normally searches in collections of unstructured or semi-

structured documents [23]. The need for an information

retrieval system occurs when a collection reaches a size

where customary cataloguing techniques can no longer

survive. The general applications of information retrieval

systems are digital libraries, media search, search engine

like desktop search, mobile search, and web search, etc.,

[24]. This work mainly focused on the desktop search,

which detects the duplicate files in the computer.

The main motivation behind this proposed work is that

there is a tremendous growth in the internet and the

sophisticated developments in the hardware technology

provide the users to download and store a lot of

information [10]. In most situations, users may download

the files, which are already downloaded and stored in the

computers. There is a possibility of duplicate files, which

are stored in different drives and folders on the system,

which reduces the system performance and occupies

extra memory space [6]. There are a number of tools

available to delete the duplicate files in the system. The

main disadvantage of these tools is that they only help to

delete the files with similar categories (doc to doc, pdf to

pdf, txt to txt, xls to xls).In file comparison, string

searching algorithms are used and it tries to find a

position where one or more than a few strings (also

called patterns) are found within a string or text [2] [16].

II. RELATED WORKS

From the literature, we come to know that many

algorithms are used for detecting patterns and string

matching. BRSS [Berry-Ravindran and Skip Search] is a

hybrid algorithm, proposed by Abdulwahab Ali et al. [3]

which performs character comparison effectively, hence

it is used for DNA searching, Protein sequence searching

and English text searching. Connection is a file system

search tool [Craig A.N, 8] which combines traditional

content-based search and context information gathered

from user activity. By tracing file system calls, the

connection can identify temporal relationships between

files and use them to expand and reorder traditional

content search results. This tool has improved both

average recall and average precision over a state-of-the-

art content-only search system. String searching

algorithms plays a major role to detect patterns in the text.

70 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

Ababneh Mohammad et al. [1] has proposed

occurrences algorithm and this algorithm finds all the

occurrences of the pattern in the text. Three important

steps of this algorithm is, pattern preprocessing, text

preprocessing and searching. Depending on the results of

the preprocessing, the searching process is performed.

Another string matching algorithm, named ACM

proposed by JormaTarhio et al. [15]. This algorithm

required minimum memory requirement for performing

string matching process. Bo hong et al. [6] proposed a

new method DDE for identifying and coalescing

identical data blocks in Storage Tank, a SAN file system.

This design employs a combination of content hashing,

copy-on-write and lazy updates to achieve its functional

and performance goals.

DDE executes primarily as a background process.

Gregory et al. [9] they have reported on the results of

extracting useful information from text notes captured

within a Customer Relationship Management (CRM)

system to segment and thus target groups of customers

likely to respond to cross-selling campaigns. These notes

often contain text that is indicative of customer intentions.

The results indicate that the notes are meaningful in

classifying customers who are likely to respond to

purchase multiple communication devices. A Naïve

Bayes classifier outperformed a Support Vector Machine

classifier for this task. When combined with structured

information, the classifier performed only marginally

better.

Anthony Scimeet al. [4] in data analysis, when data

are unattainable, it is common to select a closely related

attribute as a proxy. But sometimes a substitution of one

attribute for another is not sufficient to satisfy the needs

of the analysis. In these cases, a classification model

based on one dataset can be investigated as a possible

proxy for another closely related domain's dataset. If the

model's structure is sufficient to classify data from the

related domain, the model can be used as a proxy tree.

Such a proxy tree also provides an alternative

characterization of the related domain. They present a

methodology for evaluating datasets, as proxies along

with three cases that demonstrate the methodology and

the three types of results.

The remaining section of this work is organized as

follows; Section 3 illustrates the review of literature.

Section 4 describes the objective of the problem and

contribution. Experimental results are discussed in

section 5 and conclusions are given in section 6.

III. PROBLEM OBJECTIVE AND CONTRIBUTION

The main objective of this research work is to analyze

the file contents and deletes the duplicate files in the

system by finding the similarity between files. In order to

find the duplicate files, files can be compared using

string searching algorithms. Boyer Moore Horspool and

Knuth Morris Pratt algorithms are used in this research

work. The new algorithm W2COM is proposed for

comparing files and finds duplicate files. The efficiency

of these algorithms is verified by three performance

factors; execution time, memory requirement and

relevancy accuracy.

Fig.1. System Architecture

Data set

In order to find the memory utilization, the real dataset

is taken from the system using FileList Tool. FileList is a

command line utility providing a list of files of the

selected path in the CSV format. This dataset consists of

25393 instances and 4 attributes, namely file name, file

size, extension and path of the file. The different types of

files used in this research are pdf, doc, docx, xls and jpg

and these files are used for file comparison.

File comparison

In this phase, two types of file searching are used. First

one is general search and the second one is an exact

search. On general search, files are compared based on

its file properties. In the exact search method, word by

word comparison is done based on file contents. In this

search, three algorithms are used. Boyer Moore Horspool

and Knuth Pratt algorithms are existing algorithms and

W2COM is the newly proposed algorithm. These

algorithms are used to find and delete duplicate files and

also discover the relevance between files.

A. General search

Attribute based search algorithm

Attribute based search algorithm is used to search the

duplicate files very fast. This search technique is used to

search the duplicate files based on their properties. For

file comparison, the file name, file size, page count,

number of lines, number of words and keywords are

property attributes. In image comparison, the image

name, image size, height of the image, the width of the

image and the number of pixels are considered as

property attributes [19]. For comparing excel files, the

file name and file size are considered as file properties.

Two performance measures are used in this general

search method; they are memory and execution time. It is

one of the quick search techniques used for finding and

removing the duplicate files. Relevancy can based on the

similarity of the file properties such as file name, file size,

line count, and so on.

 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files 71

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

Input: Classified System Files

Output: Duplicate files in the system

Method:

1. Collect the classified system files as input.

2. For File Comparison //(either document, pdf or txt)

2.1 Check the file names

2.2If (filenames does not match) then Goto Step 5 else

2.3 Compare the file size

2.4If (file size does not match) then Goto Step 5 else

2.5 Verify the page count, number of words and line

count.

2.6 Identify the duplicate files and delete the file.

2.7 Go to step 5

3. For Image Comparison

3.1 Check the name of the image

3.2 If there is no match, then goto5 step else

3.3 Check if the image size, height, width, number of pixels

of the image are same then

3.4 Identify the duplicate images and delete the image

3.5 Else go to step 5

4. For excel files

4.1 check if the file name is same than

4.2 verify its file size than

4.3 Consider, it is a duplicate and delete

4.4 Else

5. Move to the next file

Algorithm 1 - Attribute based search algorithm

B. Exact Search

Boyer Moore Horspool Algorithm

The Boyer Moore Horspool algorithm or Horspool‟s

algorithm is an algorithm for searching substring in large

strings. This algorithm was published by Nigel

Horspool in 1980. It is a generalization of the Boyer–

Moore algorithm which is associated with Knuth–

Morris–Pratt algorithm [15]. The algorithm deals space

of time in order to attain an average-case complexity of

O(N) on random text and O(MN) in the worst case,

where the pattern length is M and the search string length

is N [21].

In the Boyer-Moore- Horspool algorithm, it compares

the text character ti with the last character pm of the

pattern. If they match, then it compares the preceding

characters of the text with the corresponding characters

in the pattern sequentially right to left, until to detect

either an occurrence of the pattern or a mismatch on a

text character. Suppose, irrespective of the match is

occurring, it slides the pattern according to the next

occurrence of the character ti in the pattern. [7] [17]. The

number of positions to be moved is determined by the

value of skip (ti).

Computation of the skip table in the Boyer-Moore

Horspool algorithm has a subtle difference with the

original skip table definition proposed in the Boyer-

Moore algorithm. In the Boyer- Moore algorithm, the

value of skip (pm) is always 0. In the Horspool version,

skip (pm) = m if pm is unique within the pattern (i.e., the

character pm does not appear in any other location in the

pattern); otherwise skip (pm) = m-k, where pm-k is the

penultimate (rightmost) appearance of the character pm in

the pattern [17][23].

Boyer Moore Horspool Algorithm

1. Initialize pattern length m|p|;

2. Initialize the text length n |t|;

3. Compute skip table GENERATE-SKIP-TABLE(∑,p);

a. Set pattern length m|p|;

b. Initialize skip table skip (σ) = m for all symbols a σ ∑;

c. Initialize pattern index j  1;

d. For jth character Pj in the pattern, set skip (pj) m-j;

e. Increment pattern index jj+1;

f. If j<m-1 then go to step 4;

g. Stop.

4. Initialize text pointer i0;

5. Initialize pattern pointer jm;

6. While j>0 and ti+j= pj

Do move pattern pointer to left jj-1;

7. If j=0 then

Print “pattern occurs at text index” i+1;

8. Shift the text pointer ii + skip(ti+m);

9. If i ≤ n – m then

Go to step 5 to continue matching process.

10. Terminate

Algorithm 2 - Boyer Moore Horspool

Knuth Morris Pratt Algorithm

The Knuth–Morris–Pratt proposed a linear time string

searching algorithm (or KMP algorithm) by analysis of

the naïve algorithm. The algorithm was perceived in

1974 by Donald Knuth and Vaughan Pratt, and

independently by James H. Morris and they published it

jointly in 1977.The implementation of Knuth-Morris-

Pratt algorithm is well-organized because it reduces the

total number of comparisons of the pattern against the

input string.

A matching time of O(n) is accomplished by avoiding

comparisons with elements of „S‟ that have formerly

been involved in the comparison with some element of

the pattern „p‟ to be matched. i.e., backtracking on the

string „S‟ certainly not occurs.

At a high level, the KMP algorithm is related to the

naive algorithm; it considers shifts so as from 1 to n−m,

and it defines if the pattern matches at that shift. [20] The

difference is that the KMP algorithm uses information

gathered from partial matches of the pattern and text to

permit shifts that are guaranteed not to result in a match.

Components of KMP algorithm

1. The prefix function, Π

The prefix function, Π for a pattern summarizes

knowledge concerning, however the pattern

matches against the shifts of itself. This

information may be accustomed avoid useless

shifts of the pattern “p”. It also indicates how

much of the last comparison can be reused if it

fails. In other words, this qualifies avoiding

backtracking on the string “S”.

2. The KMP Matcher With string “S”, the pattern “p”

and prefix function “Π” as inputs, the prevalence

of “p” in “S” is found and the algorithm returns

the variety of shifts of “p” after which the

existence is found.

3. Running - time analysis: The period of time for

computing the prefix function is Θ (m) and period

of time of matching function is Θ (n). The total of

O(n + m) run time [7].

http://en.wikipedia.org/wiki/Nigel_Horspool
http://en.wikipedia.org/wiki/Nigel_Horspool
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
http://en.wikipedia.org/wiki/Boyer%E2%80%93Moore_string_search_algorithm
http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
http://en.wikipedia.org/wiki/Knuth%E2%80%93Morris%E2%80%93Pratt_algorithm
http://en.wikipedia.org/wiki/Average-case_complexity
http://en.wikipedia.org/wiki/Worst_case

72 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

Knuth-Morris-Pratt (p. t, Next)

1. Initialize the pattern length j1;

2. Initialize the text length k1;

3. Set length of the pattern m|p|;

4. Set length of the text n |t|;

5. While j>0 and pj≠ tido

Shift pattern pointer (jNext (j));

6. Advance text pointer ii+1

7. Advance pattern pointer jj+1;

8. If j>m then

Print “pattern occurs at text index” i-m

Else shift pattern pointer jNext (j);

9. If i ≤ n and j ≤ m then

Gotostep 5 to continue pattern matching

Else stop

Algorithm 3 - Knuth Morris Pratt

The computational complexity of Knuth Morris-Pratt

algorithm is O (n) in both the worst and average cases for

the pattern matching phase. By analyzing the matching

algorithm, it can be shown that the assignment j  Next

(j) in step 5 never exceeds the total execution of the

increment operation ii+1in step 6. The pattern is

therefore shifted to the right for a total of almost n times,

and hence the computation complexity of the matching

phase is O(n). Similarly, it shows that the processing

time for initialization of the Next table is of the same

order O(m). [13] As a result, the worst case is overall

computational complexity of the algorithm is O(m+n).

C. Proposed Algorithm

W2COM Algorithm

This search technique is used to search the duplicate

files based on file content. The algorithm used for this

search is W2COM. It not only compares the content with

same extension but also with different extension. In the

existing algorithms, Boyer Moore Horspool algorithm

works with small alphabet & large patterns and the

Knuth-Morris-Pratt algorithm works only with the small

alphabet & pattern. In the proposed technique, the

algorithm works with the large alphabets & large patterns.

Input: Classified System files CSF

Output: 1) Search Successful or Unsuccessful 2) Similarity

Measures

Method:

1. Input the Classified system files as a token, CSF=<T1,

T2…Tn>;

2. Store the file content as a digests, TFe ← File content;

3. Generate TFe by using sliding window algorithm. Set

Window length W=I where i= 1 to n;

4. Identify the sentence separator (, .) and store the

sentence as S.

5. Compute the length of the sentence S l=S.Length ();

6. Compare the length between files if l1≠l2 then go to

Step 1

7. Remove the blank space from S;

8. Compute fingerprint for the words using MD5

algorithm;

8.1. Append Padded Bits

8.2. Append Length

8.3. Initialize Message Digest Buffer.

8.4. Process message in 16- word blocks.

8.5. Output

9. Set range for fingerprint as (0, 2k-1)

10. Calculate the similarity between tokens;

| TFe(W,S) (Token A)| ∩ TFe(W,S) (Token B)| / |

TFe(W,S)(Token A)| Ụ TFe(W,S) (Token B)|

11. Process Terminated

Algorithm 4 - W2COM Algorithm

Generate Next Table
1. Initialize the pattern pointer j 1;

2. Initialize overlap length of the pattern k 0;

3. Initialize Next table, Next (1) 0

4. While (k>0 and pj≠ pk) do k  Next(k);

5. Increment pattern pointer j j+1;

6. Increment overlap length k k+1;

7. If(pj= pk) then Next(j) Next(k) else Next(j) k;

8. If(j<m) then go to step 4;

9. Stop.

Algorithm 5 – Next Table Generation

First, the files are collected from the system and the

original dataset are created. After that, system files can

be initialized as a token T1, T2 … Tn. Using the sliding

window algorithm, generate TFe (Transformed Feature

element) and set window length w=i where i = 1 to n.

Here the whole content cannot be considered; instead it

identifies the sentence separator (.̧).Then find out the

length of the sentence, if the length of the sentence is

equal, then continue the comparison, otherwise another

file is considered. The fingerprint of a token in a file is a

set of digests that describes the file contents. The set of

digests is referred to as the Transformed Feature element

(TFe) of a file. The individual digests are called the

Feature Element (FEs). The Transformed Feature

Element of a file is TFe (Pe). Fingerprint represents the

hashing value of the string. At each step, the algorithm

computes a fingerprint using MD5 of W consecutive

tokens (A token could be either a single word or

character and use character based token that fall within

the window). Each fingerprint is in the range (0, 2k-1)

where k is a configuration parameter.

Deleting the Duplicate Files

The details of the duplicate files, which are found in

different drives and folders, are displayed based on the

relevant accuracy of the files. DFD tool will display a

selection list showing the “duplicate found” message.

The similarity must be considered separately for each file.

Based on the user decision, the DFD tool deletes the

duplicate files.

IV. PERFORMANCE EVALUATION

In order to perform the analysis, there are three

performance measures are used; execution time, memory

utilization and the accuracy of the algorithm. For file

comparison, the existing and proposed algorithms are

implemented in JAVA and the system configuration is

Intel Core i3 processor running at 2.4GHz, 4 GB RAM,

64 bit Window 7 Ultimate.

Search Time

Search time refers the amount of time taken to

 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files 73

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

searching the duplicate files in the system. It is estimated

by counting the number of elementary operations

performed by the particular algorithm, where an

elementary operation takes a fixed amount of time to

perform.

Memory Utilization

Memory utilization measures the total amount of

memory space occupied by the system. Space

complexity refers the total memory space taken by the

algorithm with respect to the size of the input. It includes

both auxiliary space and space used by input.

A. Memory Utilization of Searching Algorithms

The following table shows the memory utilization of

searching algorithms namely Knuth Morris Pratt, Boyer

Moore Horspool and w2com algorithms. From the

experimental results, it is observed that W2COM

algorithm gives the best results than other two algorithms.

Table 1. Memory Utilization

Algorithm Memory (In Kb)

Knuth Morris Pratt 154378

Boyer Moore Horspool 239876

W2com 71903

Fig.2. Memory Utilization

From the above graph (Fig.2), it is analyzed that the

W2COM algorithm attains lower memory space when

compared to other string searching algorithms.

B. Execution Time Performance of Searching

Algorithms

The following table shows the execution time

performance for single file of searching algorithms

namely Knuth Morris Pratt, Boyer Moore Horspool and

W2COM algorithms. From the experimental results, it is

observed that W2COM algorithm performs well than

other two algorithms.

Table 2. Execution Time

Algorithm Time (in ms)

Knuth-Morris-Pratt Algorithm 1220573

Boyer Moore Horspool Algorithm 1054122

W2COM 879158

Fig.3. Execution Time

Figure 3 shows the search time required for searching

single file by Boyer Moore Horspool, Knuth Morris Pratt

and W2COM techniques. From the results, it is observed

that the W2COM technique has required minimum

search time than other two techniques.

Table 3. Accuracy Measures for String Searching Algorithms (using

sample files)

Description
File

Name

Boyer

Moore

Horspool

Knuth

Morris

Pratt

W2COM

Relevanc

y (%)

Relevanc

y (%)

Relevancy

(%)

Same

Content

with Same

Extension

data.doc 100 100 100

mining.

doc
100 100 100

text.doc 100 100 100

Same

Content

with

different

extension

data.pdf 98 99 100

file1.txt 97 98 100

textmini

ng.docx
98 99 100

Different

Content

with

different

extension

tm.pdf 85 89 92

ijircce.d

oc
74 85 90

compari

son.txt
90 91 94

Fig.4. Relevancy Accuracy

Duplicate File Detector Tool – Snapshots

Here the Duplicate File Detector Tool snapshots are

given. The quick search results are given fromFigure 5 to

Figure 12. In Exact search, the same file with same

extension results are given from Figure 13 to Figure 16

and the same file with different extension results are

given from Figure 17 to Figure 20.

74 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

General Search

Fig.5. General Search-Home Page

Fig.6. General Search-Folder or File Selection

Fig.7. General Search with same extension

Fig.8. General Search- File Comparison

Fig.9. General Search – Finding Duplicate Files

Fig.10. General Search

Fig.11. General Search- Deleting Duplicate Files

Fig.12. General Search – Final Result

Exact Search - Same File with Same Extension

Fig.13. Exact Search- Same File with Same Extension

Fig.14. Exact Search- Same File with Same Extension

Fig.15. Exact Search- Same File with Same Extension

Fig.16. Exact Search-Same File with Different Extension

 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files 75

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

Fig.17. Exact Search-Same File with Different Extension

Fig.18. Exact Search- Same File with Different Extension

Fig.19. Exact Search- Same File with Different Extension

V. CONCLUSION AND FUTURE WORK

Information retrieval (IR) is the activity of obtaining

the information resources, which is relevant to a user‟s

need from a collection of information resources. This

search can be based on full text or other content based

indexing. In this research work, two different string

searching algorithms namely Boyer Moore Horspool

algorithm and Knuth Morris Pratt algorithm have been

discussed and their performance measures shows that,

Knuth Morris Pratt algorithm performed better than other

algorithm. New string searching algorithm namely

W2COM has been proposed which efficiently performed

the task. By analyzing the experimental results, it is clear

that the W2COM technique needs minimum search time

for searching the duplicate files. In terms of memory

utilization, it takes less amount of memory space when

compared to other algorithms.

Recently, various number of duplicate file finder tools

are available but the main disadvantage of these tools are,

they check the file content with same categories. DFD

tool helps the user to search and delete duplicate files in

the system at minimum time. It also helps to delete the

duplicate files not only with the same categories but also

with different categories. In future, indexing technique

can be applied to the DFD tool for searching the

duplicate files faster.

REFERENCE

[1] Ababneh Mohammad, OqeiliSaleh and Rawan A Abdeen,

Occurrences Algorithm for String Searching Based on

Brute-Force Algorithm, Journal of Computer Science,

2(1): 82-85, 2006.

[2] Ankur Singh Bist, Pattern Matching Algorithms for

Computer Virus Detection, International Journal of

Engineering Sciences & Research Technology, Singh

2(1), P.No.28-29, 2013.

[3] Abdulwahab Ali Al-Mazroi and Nur‟aini Abdul Rashid,

A Fast Hybrid Algorithm for the Exact String Matching

Problem, American Journal of Engineering and Applied

Sciences 4 (1): 102-107, 2011.

[4] Anthony Scime, NilaySaiya, Gregg R. Murray and

Steven J. Jurek, “Classification Trees as Proxies”,

International Journal of Business Analytics (IJBAN),

volume 2, issue 2.

[5] Bin Wang, Zhiwei Li, Mingjing Li and Wei-Ying Ma,

Large-Scale Duplicate Detection for Web Image Search,

Multimedia and Expo, IEEE International Conference,

353-356, 2006

[6] Bo Hong and DemynPlantenberg, Duplicate Data

Elimination in a SAN File System, In Proceedings of the

21st IEEE / 12th NASA Goddard Conference on Mass

Storage Systems and Technologies, 2004.

[7] Christian Charras, Thierry Lecroq and Joseph Daniel, A

Very fast string searching algorithm for small alphabets

and long patterns, Combinational Pattern Matching, 9th

Annual Symposium, CPM 98 Piscataway, New Jersey,

USA, 2005.

[8] Craig A. N. Soules, Gregory R. Ganger, Connections:

Using Context to Enhance File Search, ACM SIGOPS

Operating Systems Review - SOSP '05,Volume 39, Issue

5, 2005.

[9] Gregory Ramsey and Sanjay BapnaText mining to

identify customers likely to respond to cross-selling

campaigns: reading notes from your

customers, International Journal of Business Analytics

(IJBAN), volume 3, issue 2

[10] George Forman, KaveEshghi andJaapSuermondt,

Efficient Detection of Large-Scale Redundancy in

Enterprise File Systems, ACM SIGOPS Operating

Systems, Volume 43 Issue 1, 84-91 2009.

[11] Harish B S, S Manjunath and D S Guru, Text Document

Classification: An Approach Based on

Indexing,International Journal of Data Mining &

Knowledge Management Process (IJDKP) Vol.2, No.1,

43-62, 2012.

[12] HemlataSahu, ShaliniShrma, SeemaGondhalakar, A Brief

Overview on Data Mining Survey, International Journal

of Computer Technology and Electronics Engineering,

Volume 1, Issue 3, 114-121, 2000.

[13] Ian H. Witten and Eibe Frank, Data Mining Tools and

Techniques practical Machine Learning, 2011 (Book).

[14] JormaTarhio and EskoUkkonen, Approximate Boyer-

Moore String Matching, SIAM Journal on Computing,

Volume 22 Issue 2, 243 – 260, 1993.

[15] MilošRadovanović, andMirjanaIvanović, Text Mining:

Approaches and Applications, Volume. 38, No. 3, 227-

234, 2008.

[16] Olivier Danvy, Henning Korsholm Rohde, On Obtaining

the Boyer-Moore String-Matching Algorithm by Partial

Evaluation, Journal of Information Processing Letters,

Volume 99 Issue 4, 158-162, 2005.

[17] Robert S. Boyer and J. Strother Moore, A fast string

Searching Algorithm, Communication of the ACM,

Volume 20 Issue 10, 762-772, 1977.

[18] Simon Wahlström, Evaluation of String Searching

Algorithms, 2004.

[19] SriharshaOddiraju, BOYER-MOORE, December 16,

http://www.igi-global.com/journal/international-journal-business-analytics-ijban/67141
http://www.igi-global.com/journal/international-journal-business-analytics-ijban/67141
http://www.igi-global.com/journal/international-journal-business-analytics-ijban/67141

76 An Efficient String Matching Technique for Desktop Search to Detect Duplicate Files

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 7, 69-76

2011.

[20] StephaneDucasse, Matthias Rieger& Serge Demeyer, A

Language Independent Approach for Detecting

Duplicated Code, Proceeding IEEE International

Conference on Software Maintenance, 109 – 118, 1999.

[21] Thierry Lecroq, A variation on the Boyer-Moore

algorithm, Journal of Theoretical Computer Science,

Volume 92 Issue 1, 119-144, 1992.

[22] Vijayarani S, and Muthulakshmi M, Comparative Study

on Classification Meta Algorithms, International Journal

of Innovative Research in Computer and Communication

Engineering, Vol. 1, Issue 8,1768-1772, 2013.

[23] Vishal Jain, Mayank Singh, Ontology Based Information

Retrieval in Semantic Web: A Survey, International

Journal of Information Technology and Computer

Science(IJITCS), vol.5, no.10, pp.62-69, 2013. DOI:

10.5815/ijitcs.2013.10.06

[24] Divya K.S., Dr. R. Subha, Dr. S. Palaniswami, Similar

Words Identification Using Naive and TF-IDF

Method,International Journal of Information Technology

and Computer Science(IJITCS), 2014, 11, 42-47, DOI:

10.5815/ijitcs.2014.11.06

Authors’ Profiles

Dr. S.Vijayarani, MCA., M.Phil., Ph.D.,

working as Assistant Professor in the

Department of Computer Science, School of

Computer Science and Engineering,

Bharathiar University, Coimbatore,

Tamilnadu, India. Her fields of research

interest are Privacy Preserving Data mining,

Text Mining, Web Mining, Image Mining,

DataStreams, Information Retrieval and Big Data. She has

authored a book and published more than 80 papers in the

international journals and conferences.

Ms. M. Muthulakshmi M.Sc has

completed M.Phil in Computer Science in

the Department of Computer Science,

Bharathiar University, Coimbatore. Her

fields of interest are Data Mining, Text

Mining and Semantic web mining. She has

published papers in International journals

and conferences.

How to cite this paper: S. Vijayarani, Ms.

M.Muthulakshmi,"An Efficient String Matching Technique for

Desktop Search to Detect Duplicate Files", International

Journal of Information Technology and Computer

Science(IJITCS), Vol.9, No.7, pp.69-76, 2017. DOI:

10.5815/ijitcs.2017.07.08

