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Abstract—We model the dynamic of malaria transmission 

taking into account climatic factors and the migration 

between Douala and Yaoundé, Yaoundé and Ngaoundéré, 

three cities of Cameroon country. We show how 

variations of climatic factors such as temperature and 

relative humidity affect the malaria spread. We propose a 

meta-population model of the dynamic transmission of 

malaria that evolves in space and time and that takes into 

account temperature and relative humidity and the 

migration between Douala and Yaoundé, Yaoundé and 

Ngaoundéré. More, we integrate the variation of 

environmental factors as events also called mathematical 

impulsion that can disrupt the model evolution at any 

time. Our modelling has been done using the Discrete 

EVents System Specification (DEVS) formalism. Our 

implementation has been done on Virtual Laboratory 

Environment (VLE) that uses DEVS formalism and 

abstract simulators for coupling models by integrating the 

concept of DEVS. 

 

Index Terms—Modelling, Simulation, Compartmental 

models, DEVS, Meta-population model, VLE. 

 

I.  INTRODUCTION 

Malaria is one of the most important issues in almost 

all countries of the tropical area. Despite the efforts of 

various cross disciplines involved, malaria continues to 

be a major problem of public health. In Cameroon, a 

country located in the red zone climate with maximum 

suitability for malaria transmission, health statistics 

reveal that it is responsible for 35-40% of all deaths in 

health facilities: 50% of morbidity in children under 5 

years old, 40 to 45% of medical consultations and 30% 

of hospitalizations. Malaria is also the cause of 26% of 

absences in the workplace and 40% of household health 

expenditure [1]. Developing countries such as 

Cameroon are reduced to fight against vector through 

the use of insecticide-treated bed nets, which means if 

efficient, to limit the parasite load below critical 

thresholds in host, rapid detection of cases of sick to 

reduce contact infesting for vectors. The dynamic of 

transmission and seasonality of malaria remain research 

preoccupation not solved. If levels of malaria prevalence 

in urban areas are lower compared to rural areas, the 

population growth and the spatial heterogeneity of parts 

are such that the risk of malaria infection and 

consequences (disease, mortality), differs among 

epidemiological status and periods of the year. 

Considering spatial and climatic heterogeneity of the 

world in general and Cameroon specifically, take into 

account spatial and temporal variations is important for 

vector-borne diseases, where the underlying factors of 

epidemiology observed can be confused by some large 

heterogeneities in the host and vector densities across 

space and time, as in the case of malaria. In this context, 
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we will focus on the modeling of dynamic of malaria 

including spatial and temporal consideration between 

respectively Douala and Yaoundé (respectively Yaoundé 

and Ngaoundéré) cities and the influence of climatic 

factors (temperature influences the life cycle of the 

mosquito, relative humidity plays a role in the life of the 

mosquito and malaria transmission) on the spread of that 

disease. 

 

II.  SURVEY 

Knowledge of what we want to model is essential for 

an effective modelling. Modelling in epidemiology 

depends heavily on knowledge of biology. Malaria is 

transmitted by the female anopheles mosquito genus. In 

humans, the causative agent of malaria is a single-celled 

parasite called plasmodium. The understanding of 

mosquito transmission mechanism to the human has 

been highlighted in 1897 by Ronald Ross. Many years 

before the beginning of the nineteenth century, the 

medical com- munity has long focused on treating 

patients, not on mosquitoes. The assumption being that 

it was impossible to completely eradicate mosquitoes in 

a given area, so there will be always mosquitoes. 

Ronald Ross in ”Prevention of malaria” [2] states that 

eradication of malaria is possible in an area. Ross 

proposed a model in which he calculated the number of 

new infections per month as a product of factors; he 

deduced that there is a critical density of mosquitoes. In 

1952, George MacDonald, based on the work of Ross, 

introduced the concept of reproduction. The basic 

reproductive number (R0) of malaria is defined as the 

number of infection distributed in a community resulting 

from the presence within it of a single primary infected. 

In epidemiology, models predict the dynamics of the 

epidemic inside populations from knowledge at the 

individual level between epidemiological factors, the 

long-term behaviour of the dynamic early invasion, or the 

impact of vaccination on the spread of infection [3]. 

[ 4 ] consider the world as a network where individuals 

are nodes with sensor. They proposed a Susceptible-

Exposed-Infectious-Quarantine-Recovered-Susceptible 

with Vaccination (SEIRS-V) model that describes the 

spatial and temporal dynamic of worm spread. The 

spread of an infectious agent within a population is a 

dynamic phenomenon: the numbers of healthy and 

diseased individuals change over time, depending on the 

contacts during which the agent passes from an infected 

individual to a healthy individual immunized, infecting 

turn. This kind of phenomenon can be studied by 

modelling by differential equations and determining their 

behaviour through numerical solution of these equations 

[3], we call them compartmental models. Heterogeneities 

and structure of the space where a disease evolves is very 

important in understanding how epidemics spread [5]. 

Humans and mosquitoes here are organized in well-

defined units such as families, villages, cities, countries or 

regions that constitute what we call patches. Based on the 

model of Ross-MacDonald, Tsanou [6] provides a meta-

population model of many patches, and shows that there 

is a threshold below which the disease disappears and 

above which the disease remains within the meta-

population. In the Tsanou model, demography is 

neglected (populations sizes are assumed constant), 

epidemiological parameters are the same for all patches. 

More, Tsanou does not take into account climatic factors 

while Lourenco [7], through a study on the dengue 

disease, shows that spatial-temporal variations are 

sufficient to destabilize the balance of a system. Almost 

all insects have a moisture tolerance and temperature 

beyond which it becomes impossible for them to survive. 

Mosquitoes do not escape this rule. [8] compared to a 

given temperature, the survival of female anopheles 

pharoensis at 20◦, 26◦, 30◦C and a slight difference in 

terms of longevity in conditions of relative humidity taken 

between 50% and 90%. Whereas the probability of 

survival was independent of age, [9] measured the 

longevity of Anopheles gambiae s.s by considering the 

relative humidity at 40%, 60%, 80% and 100%, and a 

temperature between 5◦C and 40◦C. There is a slight 

difference in survival with a relative humidity between 

60% and 100%. Furthermore, molecular biology 

techniques applied to Anopheles gambiae s.s tested with 

relative humidity at 42% [10] and 30% [11] have shown 

that mosquitoes held without food or water survived an 

average of 15.6 hours at 30% relative humidity compared 

to 26.2 hours at 70% relative humidity [11]. [12] with a 

study in sub-saharian Africa region, show that mortality 

of mosquitoes, especially Anophele gambia s.s , depends 

on temperature and the mosquito age at different stages 

(Egg, Larvae, Pupa, Adult). [13] through a study in 

Eastern Africa, have showed that there is a strong and 

significant cross-coherence between malaria cases and 

average rainfall and vegetation. Recent studies on 

desiccation mosquitoes showed an extremely low relative 

humidity (<10%) is fatal to mosquitoes who spend a few 

hours [14]. Several studies show that the Anopheles 

gambiae s.s and Anopheles arabiensis female survive a 

whole day for a relative humidity below 10% [15] or 

less than 20% [16]. Only a few mosquitoes survive 

beyond 30 hours at a relative humidity below 10%. It 

thus appears that a relative humidity greater than 60%, 

Anopheles gambiae is not significantly affected, but a 

relative humidity below 10% is fatal to the Anopheles 

gambiae [14]. There are, however, very little 

information for a relative humidity between 10% and 

40%. The commonly used survival equation is the 

equation of Marterns [17] defined 

by
2

1
( ) exp( )

4.4 1.31 0.03
p T

T T




  
, where T is the mean 

daily temperature in Celsius degrees. This function  provides 

maximum durability for a temperature between 20-25◦C 

and severe mortality for temperatures below 10◦C and 

above 35◦C [18]. 

For taking into account climatic factors, some models 

have been developed. [18] proposed a SIRS-type model 

using a deterministic approach. Their model was built on 

the MacDonald equations, specifying states for infected-

not-contagious and contagious children. Human part of 

the cycle was modelled by SIGRS, where S is defined 
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as the proportion of susceptible children, the state I 

represents the proportion of infected but not contagious 

children, G is the production of contagious children and 

R is the proportion of children resistant to infection. 

The transition from state S to state I depends on 

vectorial and climatic factors. Vectorial part was 

modelled with a two-state model: the state of 

Susceptible anopheles (S) and the state of Contagious 

anopheles (I). They showed that the transmission 

increases (respectively decreases) when the vegetation 

index increases (respectively decreases). Nevertheless, 

[18] has neglected the natality and mortality rates. In 

their model, climatic factors involve at the infection 

level (contact Human-Vector), not at the complete 

mosquito life cycle with/without contact between 

Human and Vector. More, they don’t take into account 

migration; their model is not meta-population. 

A.  Plasmodium species and malaria vector in Cameroon 

The surveys published in recent years by the Cameroon 

National Program against Malaria presented the 

Plasmodium falciparum parasite species as the most 

common in Cameroon, followed by Plasmodium malariae 

and Plasmodium ovale. In Cameroon, a country with one 

of the richest faunas anopheles in Africa, and it houses 48 

species of Anopheles from the work of [19]. Among these, 

the sporozoites of Plasmodium have been identified in 13 

of them. These are Anopheles gambiae ss, the anopholes 

funes- tus ss, the moucheti Anopheles, Anopheles 

arabiensis, Anopheles nili, Anopheles hancocki, the 

paludis Anopheles, Anopheles marshallli, Anopheles 

coustani, the Anopheles ovengensis, Anopheles 

pharonensis, wellcomei Anopheles, Anopheles ziemani. 

Anopheles gambiae ss and Anopheles arabensis are the 

main infected species found in Cameroon. The more 

one leaves the forest for the savannah and the Sahel, the 

more effective Anopheles gambiae s.s decreases and that 

of arabensis increases and vice versa. 

Table 1. Spatial distribution of anopheles in the complex ecological 

facies of Cameroon [20]. 

Facies 
Anophele 

gambiae s.s 

Anophele 

arabensis 
Total 

Forest 796 (99,7%) 2 (0,3%) 798 

Savannah 146 (25,0%) 439 (75,0%) 585 

Sahel 14 (4,5%) 299 (95,5%) 313 

Total 956 (56,4%) 740 (43,6%) 1696 

 

As we note, the mosquito density varies with region 

(Forest, Savannah and Sahel) in Cameroon. These three 

identified geographical areas with different weather and 

climatic conditions, point to the fact that rainfall, 

temperature and/or humidity influence the mosquito type 

and density. 

B.  Influence of Climatic factors 

We focus here on Douala and Yaoundé, two cities 

located in the Forest area of Cameroon, but with some 

different climatic variables. Fig. 1 and Fig. 2 show 

average temperature, rainfall and humidity of Douala and 

Yaoundé cities. 

 

 
Fig.1. Temperature, rainfall and relative humidity of Douala city. 

Source: www.climatemps.com 

 
Fig.2. Temperature, rainfall and relative humidity of Yaoundé city. 

Source: www.climatemps.com 

Table 2 shows the quantities of anopheles breeding 

sites in Douala and Yaoundé cities depending the 

seasons (rainy and dry). This is the result of a study 

conducted from October 2009 to December 2010 by [21]. 

We mark that Douala and Yaoundé cities, although 

belonging to the same ecological facies (Forest), 

demonstrate a significant difference in term of number 

of breeding sites during the rainy season October to 

November (416 for Douala and 201 for Yaoundé) and 

reproduction of sites with Anopheles (102 for Douala 

against 58 for Yaoundé́) during the same period. This 

difference can be explained by the high humidity in 

Douala during that period (about 85) compared to 

Yaoundé (about 70), while temperatures of the two cities 

is approximately similar over that period, as presented in 

Fig. 1 and Fig. 2. 

 

 
 

http://www.climatemps.com/
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Table 2. Characteristics of breeding sites sampled in Douala and Yaoundé from October 2009 to December 2010. 

Douala  and  Yaoundé  sea- 

sons 

Number of 

breeding sites 

Breeding   site   housing 

the Anopheles 

Breeding  site  housing  the 

Anopheles and Culex 

Douala - Rainy season 

(October-November 2009) 
416 102 (24,5%) 12 (3%) 

Douala - Dry season 

(February-March 2010) 
100 29 (29%) 24 (24%) 

Douala - Rainy season (May- 

June 2010) 
126 79 (63%) 28(22.2%) 

Douala - Dry season (August- 

September 2010) 
146 95 (65%) 27 (18.5%) 

Douala - Dry season (Decem- 

ber 2010) 
68 33 (48.5%) 18 (47.4%) 

Yaoundé - Rainy season 

(October-November 2009) 
201 58 (28.9%) 18 (9%) 

Yaoundé - Dry season 

(February-March 2010) 
115 40 (34.8%) 34 (29.6%) 

Yaoundé - Rainy season 

(May-June 2010) 
173 81 (46.8%) 26 (15%) 

Yaoundé - Dry season 

(August-September 2010) 
117 40 (34%) 13 (11.1%) 

Yaoundé  -  Dry  season  (De- 

cember 2010) 
84 38 (45.2%) 14 (42.4%) 

 

Concerning Ngaoundéré, the city is located in the 

transition area between Forest and Savannah area of 

Cameroon and the vegetation is of the sudano-guinea type 

[22]. 

 

III.  OUR MODELLING 

Inspired by the model developed by [23] who work on 

diseases with direct transmission between individuals of 

the same nature, we model malaria where transmission 

between humans is done via a vector (mosquito). 

Moreover, our model considers meta- population between 

respectively Douala and Yaoundé (Yaoundé and 

Ngaoundéré) cities that evolves different epidemiological 

faces in the city (SEIR model for Douala, SEIRS model 

for Yaoundé and SEIS for Ngaoundéré). Moreover, we 

consider births and also take into account the climatic and 

meteorological factors using the survival function 

proposed by [24] (inspired by the Martens equation 

presented above) defined as: 

 

)
**T

-1
e(RH)p(T,

012
2  


T

, where 

 












0.0255-RH*10*1.09-RH*10*4 =  

6.61RH*0.0515RH*10*2.32- =  

6.61-RH*0.158-RH*0.00113 =  

3-26-
2

24-
1

2
0







 

 

p is the probability of survival and the mortality rate is 

giving by − ln(p(T, RH)) [25]. 

 

We assume that there is no cross-infection and that 

infectious humans do not travel (they are quarantined). 

We also assume that only humans move between patches 

(voluntary moving of mosquitoes in space is limited over 

the patches considered are remote) and the mortality rate 

of these travellers in a city is the same as that of the 

residents of the host city. 

Let NHi (respectively NVi) be the total human 

population (respectively vectors) patch i. We also denote 

by ϕij SHi the Susceptible residents of patch i that are 

travelling in the patch. ϕij EHi is the infected residents of 

patch i who are travelling in the patch j, ϕij RHi the 

Recovered and Immunized residents of patch i that are 

moving in the patch j, SVi represents the Susceptible 

mosquitoes residents in the patch, EVi the Infected 

mosquitoes residents in the patch, and IVi the Infectious 

mosquitoes residents in the patch i. 
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Table 3. Parameters and description. 

Parameters Description 

n number of patches 

ϕij ≥ 0, proportion of migration of humans from the patch i to the  patch  j 

dHi natural mortality rate of humans of the patch i 

dV i natural mortality rate of mosquitoes of the patch i 

βi 
Proportion  of contact  inside  the patch  i   between Susceptible humans and infectious mosquitoes. ki is the average 

number of such contacts. bi = kiβi 

ωi 
Proportion  of contact  inside the patch i  between  Infectious  humans  and Susceptible  mosquitoes. fi is the average  

number    of          such  contacts 

δHi rate of Infected humans that become Infectious inside the patch  i 

ρHi rate of Infectious humans that become Susceptible inside  the patch i 

δVi rate of Infected mosquitoes that become Infectious inside  the  patch  i 

αHi recovery rate of Infectious humans inside the patch i 

γHi death-rate of Infectious humans due to the disease 

µHi human birth rate in the patch i 

µVi mosquito birth rate in the patch i 

εHi recovery rate of recovered humans (eventually immunised) become Susceptible later 

pi(T, RH) survival probability for a mosquito  inside the patch i with a temperature T and a relative humidity RH 

 

A.  SEIR model: Case of Douala 

Malaria transmission there is continuous throughout 

the year [20], we model Douala city by a SEIR model. 

We distinguish three cases: Model without climatic 

factors, Model taking into account climatic factors only 

during human-mosquito contact, Model taking into 

account climatic factors throughout all the mosquito 

evolution cycle (S → E → I). With the notation presented 

earlier, our modelling of humans present in Douala (i 

denotes Douala and j Yaoundé) model is as follows: 

A.1  Model without climatic factors 
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A.2  Model taking into account climatic factors only 

during human-mosquito contact 
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A.3  Model taking into account climatic factors 

throughout all the mosquito life cycle 
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Remark III.1 An immunized human in his home-

city can lose his immunity in the city that hosts him. So, 

if we con- sider a migration from  a city A (modelled by 

SEIR) to another city B (modelled by SEIRS), individual R 

coming from A may lose his  immunity in B and become S. 

B.  SEIRS model: Case of  Yaoundé 

Malaria transmission is continuous [20]. 

B.1  model without climatic factors 
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C.  SEIS model: Case of  Ngaoundéré 

Malaria is seasonal, about 6 months per year [20], we 

model the transmission in Ngaoundéré by a SEIS model. 

C.1  model without climatic factors 
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Fig.3. Representation of Douala (at the right) and Yaoundé (at the 

middle) and Ngaoundéré (at the left) compartments. 

D.  DEVS formalism 

The meta-population models of previous works that 

we have presented do not take into account the spatial 

and temporal heterogeneity of patches considered. 

Nevertheless, consideration of this important factor for 

modelling the dynamic transmission can lead to different 

models depending on the city considered. This would 

imply that there could be in a city, several migrations that 

come from several cities with different modelling. In 

this case, it would be important to make what we call 

the model coupling, which is far ignored by previous 

works on modelling the dynamic of malaria transmission. 

The geographical areas in which people live may be 

considered remote and scattered from each other (case of 

Douala and Yaoundé cities, which are not border), the 

space is the considered to be discreet. To take into 

account the models coupling, space discretization, and 

also integrate the variation of environmental factors (call 

events) that can disrupt the model evolution at any time, 

we rely on DEVS (Discrete Event System Specification) 

formalism, developed by [26]. There are two layers 

DEVS formalism: atomic DEVS and coupled DEVS. 

The structure of an atomic DEVS model is: 

 

DEVS atomic= aconext tSYX ,,,,,,, int   where  
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Fig.4. Representation of atomic model by DEVS. 

A coupled model is defined as: 

 

DEVS coupled= ICEOCEICCYX ,,,,,  where  

 

mod mod

mod

mod

X is the set of input ports

Y theset of output ports

C thelist of els that comprise thecoupled el

EIC the set of input links that connect the coupled el

EOC the set of output links that connect components of coupled el

IC the set of links that connect components together












 

 

 
Fig.5. Representation of coupled model by DEVS. 

The external transition represents the system responses 

to external events and the internal transition, the 

autonomous developments. The advance time is the time 

during which the model is in state S (not disruption by 

external events). 

E.  VLE framework 

VLE is the framework that we used to implement and 

simulate our model. VLE is based on DEVS concept and 

can integrate most different programming languages into 

one single multi-model. So, VLE is oriented towards the 

integration of heterogeneous formalisms. It is written in 

C++ programming language. The VLE architecture is 

defined as follow: 

 
Fig.6. Representation of the VLE framework Application Programming 

Interface (API). Clear grey boxes are plug-in or components developed 

by users to extends VLE API (simulations plug-in, etc.) and white 

boxes are external libraries coming from the open sources projects to 

increase the portability (glibmm, boost, etc.) or extends VLE [27]. 

GVLE is a graphical user interface. It provides tools 

to visually construct a hierarchy of coupled models. A 

modelling plug-in can be used to define and to modify the 

behaviour of atomic models displaying a text editor where 

DEVS functions can be coded. Moreover, GVLE enables 

the definition of experimental frames. 

EOV, the Eyes Of VLE, is a graphical application 

which displays the values of states during simulation. 

EOV is a set of visualization plug-ins. A particular plug-

in defines the type of visualization like coloured gridded 

surfaces or curves for instance. 

VLE is the core of the environment. The four other 

applications depend on VLE (that is why the name of this 

application is the same as the general framework). VLE 

implements the DEVS abstracts simulators and the 

extensions cited in the previous section. To perform 

simulations, VLE records the experimental frame 

generated by GVLE and then dynamically loads 

simulation and visualization components of EOV and 

finally connect them to the DEVS-Bus. The Simulation 

plugins simulates the behaviours of the DEVS atomic 

models and VLE coordinates the simulation.  

AVLE (Analysis for VLE) is a graphical interface 

binding the experimental frame defined by GVLE and the 

R statistical tool [28]. 

RVLE (R for VLE) is a R-Package to build 

experimental frames, to launch the simulation and to get 

the results of the simulation within the R environment. 
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VLE has two particular types of port in addition to 

input and output ports in DEVS models: the 

initialization and state ports. Initialization ports receive 

initial values of parameters. State ports are connected to 

one or several measure objects which receive the state 

values under observation. After that, the measure object 

sent values to a specialized component [27]. VLE 

implements the abstract simulators of DEVS extensions. 

All atomic models inherit the Dynamics class to build 

simulation component. Dynamic’s functions that can be 

overloaded by the user are: 

 

Time init(); 

void internalTransition(const Time& time); //represents the 

internal transition function defined by DEVS formalism 

void externalTransition(const ExternalEventList& events); 
//represents the external transition function defined by DEVS 

Time timeAdvance() const; //this is the advance time defined by 

DEVS 

void output(const Time& time, EventList& out) const; 
//this is the output function defined by DEVS 

void finish(); 

We also have confluent transition defined as: 

 

type confluentTransitions(const Time& time, const 

ExternalEventList& e) const; 

 

That last one is called when events occur at the same 

time. It can be defined to choose the order of treatment for 

events between internal and external event. Is the conflict 

function defined by DEVS formalism. 

F.  Perturbation of the model by unforeseen weather 

(events) 

Considering weather changes that may occur over time, 

we introduce in our model what we call events, which can 

be considered as weather disturbances during the year. So 

at time t, we can introduce a disturbance that corresponds 

to the values of temperature and relative humidity at the 

time t. The architecture of our new model becomes as 

shown in Fig. 7. 

 

 

Fig.7. Architecture of our model with perturbation taken into account. 

Using VLE environment, our dynamics functions used 

for disturbing our model are defined as: 

 
Time init(const vd::Time&) 

{ mstate = BEFORE PERTURBATION; 

return sendTime;} 

Time timeAdvance() const 

{ switch(mstate){ 

case BEFORE PERTURBATION: return sendTime; break; case 

DURING PERTURBATION: return 0; break; 

case AFTER PERTURBATION: return vd::infinity; break; default: 

return 0; } } 

void internalTransition(const vd::Time&) { switch(mstate){ 

 case BEFORE PERTURBATION: { if(nbBags == 0){ mstate= AFTER 

PERTURBATION;} 

else {mstate = DURING PERTURBATION;} break; } 

case DURING PERTURBATION: { 

currentBag++;  

if(currentBag == bBags) {mstate = AFTER PERTURBATION;} 

 

 

else { mstate = DURING PERTURBATION; } break; } 

case AFTER PERTURBATION: {mstate = AFTER PERTURBATION; 

break; }} } 

void output(const vd::Time&, vd::ExternalEventList&) const 

{ switch(mstate){ 

case BEFORE PERTURBATION: { 

if(nbBags == 0){ 

vd::ExternalEvent* ee = new vd::ExternalEvent(”p”); 

ee-¿putAttributes(message); output.push back(ee); } break;} 

case DURING PERTURBATION: { 

if(currentBag == nbBags){ 

vd::ExternalEvent* ee = new vd::ExternalEvent(”p”); ee-

¿putAttributes(message); 

output.push back(ee); } break; } 

case AFTER PERTURBATION: { break; }} } 

void externalTransition(const vd::ExternalEventList&, const 

vd::Time&) 

{throw vu::ArgError(vle::fmt(( ”[%1%] Model that does not handle 

external events ”)) % getModelName()); } 
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message represents the value of temperature or relative 

humidity to send; sendtime is the time to send the 

message and nbBags (default = 0) is the number of bags 

to wait at sendTime before sending the message. 

 

IV.  SIMULATION 

As mosquitoes are usually active at night, we consider 

minimum daily temperatures and maximum daily relative 

humidity for the years 2013 and 2014; we summarize the 

monthly averages in Table 4. 

Table 4. Annual temperatures (minimum) and relative humidities (maximum) for Douala, Yaoundé and Ngaoundéré for the years 2013 and 2014. 

Source: www.wunderground.com 

Climatic factors January February March April May June 

Temperature 25(2013) 24(2013) 24(2013) 24(2013) 24(2013) 23(2013) 

(min) of Douala 24(2014) 24(2014) 23(2014) 24(2014) 24(2014) 23(2014) 

Relative humidity 99(2013) 98(2013) 98(2013) 98(2013) 99(2013) 100(2013) 

(max) of Douala 99(2014) 97(2014) 97(2014) 98(2014) 99(2014) 99(2014) 

Temperature 21(2013) 21(2013) 20(2013) 20(2013) 20(2013) 20(2013) 

(min) of Yaoundé 20(2014) 20(2014) 21(2014) 20(2014) 20(2014) 21(2014) 

Relative humidity 94(2013) 93(2013) 94(2013) 94(2013) 95(2013) 94(2013) 

(max) of Yaoundé 95(2014) 95(2014) 94(2014) 95(2014) 97(2014) 96(2014) 

Temperature 14(2013) 17(2013) 20(2013) 20(2013) 19(2013) 19(2013) 

(min) of 
10(2014) 12(2014) 16(2014) 19(2014) 18(2014) 18(2014) 

Ngaoundéré 

Relativehu- 58(2013) 45(2013) 76(2013) 87(2013) 93(2013) 94(2013) 

midity (max)  of 
71(2014) 65(2014) 77(2014) 94(2014) 99(2014) 98(2014) 

Ngaoundéré 

Climatic factors July August September October November December 

Temperature 24(2013) 23(2013) 23(2013) 23(2013) 23(2013) 21(2013) 

(min) of Douala 23(2014) 22(2014) 23(2014) 23(2014) 24(2014) 24(2014) 

Relative humidity 100(2013) 99(2013) 100(2013) 100(2013) 99(2013) 100(2013) 

(max) of Douala 100(2014) 100(2014) 100(2014) 100(2014) 100(2014) 99(2014) 

Temperature 20(2013) 20(2013) 20(2013) 20(2013) 20(2013) 19(2013) 

(min) of Yaoundé 20(2014) 20(2014) 20(2014) 20(2014) 20(2014) 20(2014) 

Relative humidity 94(2013) 94(2013) 94(2013) 96(2013) 96(2013) 95(2013) 

(max) of Yaoundé 95(2014) 94(2014) 97(2014) 97(2014) 98(2014) 96(2014) 

Temperature 17(2013) 17(2013) 17(2013) 17(2013) 14(2013) 13(2013) 

(min) of 
18(2014) 18(2014) 17(2014) 17(2014) 14(2014) 11(2014) 

Ngaoundéré 

Relative hu- 96(2013) 98(2013) 98(2013) 94(2013) 88(2013) 82(2013) 

midity  (max)  of 
99(2014) 100(2014) 100(2014) 99(2014) 90(2014) 78(2014) 

Ngaoundéré 

 

A.  Migration between Douala and Yaoundé, Yaoundé and 

Ngaoundéré 

According to the report on the General Census of 

Population and Housing in Cameroon, published in 

2010 [29], NHdla = 1 907 479,  NHyde  = 1 817 524 and 

NHndere  =  262 747.  We consider data of rail ”intercity” 

trains between Douala and Yaoundé for the year 2014. 

Data collected after a survey we conducted in the 

Cameroon railways (Camrail) have reported an average 

of 496 passengers per day from Yaoundé to Douala, and 

an average of 519 passengers per day from Douala to 

Yaoundé. Concerning the trip between Yaoundé and 

Ngaoundéré, we have an average of 788 passengers per 

day from Yaoundé to Ngaoundéré and an average of 860 

passengers per day from Ngaoundéré to Yaoundé. We 

also collected data from travel agencies by bus 

(Touristique voyage, Garanti Express, Buca voyage, 

Finexs voyage) and they show an average of 2,800 

passengers per day from Douala to Yaoundé and an 

average of 2,700 passagers per day from Yaoundé to 

Douala. 

 

So, %18.00018.0
1817524

31962700496





ydeH
DlaYde

N
 ;  

 

%17.00017.0
1907479

33192800519





dlaH
YdeDla

N
 ;  

 

%043.000043.0
1817524

788788


ydeH
NdereYde

N
  

and %33.00033.0
262747

860860


ndereH
YdeNdere

N
 .  
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Table 5. Yaoundé. 

Parameters µ
Hyde µ

V yde d
Hyde d

V yde b
Hyde ε

Hyde ω
yde f

yde δ
Hyde δ

V yde αHyde γ
Hyde 

Values 0.031 0.130 0.009 0.033 0.044 0.002 0.11 0.01 0.09 0.091 0.100 3.01% 

References [30] [31] [32] [33] [34] [31] [35] [34] [31] [31] [31] [20] 

Table 6. Douala. 

Parameters µ
Hdla µ

Vdla d
Hdla d

Vdla b
Hdla Ω

dla f
dla δ

Hdla δ
Vdla α

Hdla γ
Hdla 

Values 0.031 0.130 0.012 0.033 3.94 0.35 0.022 0.09 0.083 0.1 3.01% 

References [30] [31] [32] [33] [36] [35] [36] [31] [31] [31] [20] 

Table 7. Ngaoundéré. 

Parameters µ
Hnd µ

V nd d
Hnd d

V nd b
Hnd ω

nd f
nd δ

Hnd δ
V nd ρ

Hnd γ
Hnd 

Values 0.025 0.13 0.021 0.033 0.63 0.11 0.01 0.1 0.091 0.008 3.01% 

References [37] [31] [37] [33] [22] [35] [22] [31] [31] [31] [20] 

 

B.  Analysis 

We firstly compare evolution of infected and 

infectious Humans with the consideration of climatic 

factors only during Human-Mosquito contact against the 

consideration of climatic factors throughout the mosquito 

life cycle. 

As we can mark (Fig. 8, Fig. 9, Fig. 10, Fig. 11, Fig. 

12 and Fig. 13), there is a difference when we take into 

account climatic factors (temperature and relative 

humidity) only during human-mosquito contact to a 

consideration of these climatic factors throughout the 

mosquito life cycle. Specifically, for Douala city, when we 

take into account climatic factors (temperature and 

relative humidity) only during human-mosquito contact, 

the number of infected humans passed under 10 000 

after 96 days and stabilizes at 0 (zero) after about 574 

days and the number of infectious humans passed under 

10 000 after 99 days and stabilizes at 0 (zero) after about 

571 days. However, when we take into account climatic 

factors throughout the mosquito life cycle, we find that 

the number of people stabilizes around 65 000 after 321 

days and the number of infectious humans stabilizes 

under 522 000 after 333 days. 

Concerning Yaoundé  city, the consideration of climatic 

factors (temperature and relative humidity) throughout the 

mosquito life cycle highlights a number of humans 

infected under 20 000 after 63 days and stabilizes around 

13 000 after 117 days, while the number of infectious 

human passed under 20,000 after 64 days and stabilizes 

around 10 000 after 363 days. However, take into 

account climatic factors only during human-mosquito 

contact shows a number of infected humans passed 

under 10 000 after 41 days and stabilizes at 0 after 347 

days, while the number of infectious humans passed under 

10 000 after 55 days and stabilizes at 0 after 348 days. 

For Ngaoundéré city, the consideration of climatic 

factors (temperature and relative humidity) throughout 

the mosquito life cycle highlights a number of humans 

infected Oscillating between the values under 36,000 after 

 

 

 

5 days with minima of 9 840 (respectively 9,709) at the 

58th day (respectively 403th day) and maxima of 35 089 

(respectively 32 959) at 279th day (respectively 652th day). 

The number of humans infectious Oscillates between the 

values under 115 000 with minima of 39 326 

(respectively 41 299) at the 100th day (respectively 438th 

day) and maxima of 59 711 (respectively 114 986 and 

106,866) at the 29th day (respectively 291th day and 668th 

day). However, take into account climatic factors only 

during human-mosquito contact shows a number of 

infected humans passed under 5 000 after 24 days and 

stabilizes at 0 after 247 days, while the number of 

infectious humans passed under 5 000 after 100 days and 

stabilizes at 0 after 400 days. 

The second point of our analysis is to compare the 

impact of climatic factors (temperature and relative 

humidity) in the context of human’s migration. We have 

two cases: without taking into account climatic factors 

and taking into account climatic factors throughout the 

mosquito life cycle. 
 

 
Fig.8. Comparison of evolution of infected Humans in Douala with the 

consideration of climatic factors only during Human- Mosquito contact 

against the consideration of climatic factors throughout the mosquito 

life cycle.
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Fig.9. Comparison of evolution of infectious Humans in Douala with 

the consideration of climatic factors only during Human-Mosquito 

contact against the consideration of climatic factors throughout the 

mosquito life cycle. 

 
Fig.10. Comparison of evolution of infected Humans in Yaounde  ́with 

the consideration of climatic factors only during Human-Mosquito 

contact against the consideration of climatic factors throughout the 

mosquito life cycle. 

 
Fig.11. Comparison of evolution of infectious Humans in Yaoundé 

with the consideration of climatic factors only during Human-Mosquito 

contact against the consideration of climatic factors throughout the 

mosquito life cycle. 

 
Fig.12. Comparison of evolution of infected Humans in Ngaoundéré 

with the consideration of climatic factors only during Human-Mosquito 

contact against the consideration of climatic factors throughout the 

mosquito life cycle. 

 
Fig.13. Comparison of evolution of infectious Humans in Ngaoundéré 

with the consideration of climatic factors only during Human-Mosquito 

contact against the consideration of climatic factors throughout the 

mosquito life cycle. 

 
Fig.14. Comparison of evolution of infected Humans in Douala without 

taking into account climatic factors and taking into account climatic 

factors throughout the mosquito life cycle.
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Fig.15. Comparison of evolution of infectious Humans in Douala 

without taking into account climatic factors and taking into account 

climatic factors throughout the mosquito life cycle. 

 
Fig.16. Comparison of evolution of infected Humans in Yaoundé 

without taking into account climatic factors and taking into account 

climatic factors throughout the mosquito life cycle. 

 
Fig.17. Comparison of evolution of infectious Humans in Yaoundé 

without taking into account climatic factors and taking into account 

climatic factors throughout the mosquito life cycle. 

 
Fig.18. Comparison of evolution of infected Humans in Ngaoundéré 

without taking into account climatic factors and taking into account 

climatic factors throughout the mosquito life cycle. 

 
Fig.19. Comparison of evolution of infectious Humans in Ngaoundéré 

without taking into account climatic factors and taking into account 

climatic factors throughout the mosquito life cycle. 

We can observe (Fig. 15, Fig. 13, Fig. 16, Fig. 17, Fig. 

18 and Fig. 19) that the non-consideration of climatic 

factors in Douala city shows that the number of infected 

humans passed under 20 000 after 74 days and stabilizes 

at 0 (zero) after about 605 days and the number of 

infectious humans passed under 20 000 after 78 days and 

stabilizes at 0 (zero) after about 601 days. The inclusion 

of that climatic factors in Douala city shows a number 

of infected humans stabilizes around 65 000 after 321 

days and the number of infectious humans stabilizes 

under 522 000 after 333 days. 

Concerning Yaoundé city, the non-consideration of 

climatic factors in Douala city shows that the number of 

infected humans passed under 10 000 after 41 days and 

stabilizes at 0 after 368 days, while the number of 

infectious humans passed under 10 000 after 55 days 

and stabilizes at 0 after 366 days. The inclusion of that 

climatic factors shows a number of infected humans 

under 20 000 after 63 days and stabilizes around 13 000 

after 117 days, while the number of infectious human 

passed under 20 000 after 64 days and stabilizes around 

10 000 after 363 days. 
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For Ngaoundéré city, the inclusion of that climatic 

factors highlights a number of humans infected 

Oscillating between the values under 36 000 after 5 days 

with minima of 9 840 (respectively 9 709) at the 58th day 

(respectively 403th day) and maxima of 35 089 

(respectively 32 959) at 279th day (respectively 652th 

day). The number of humans infectious Oscillates 

between the values under 115,000 with minima of 39 326 

(respectively 41 299) at the 100th day (respectively 438th 

day) and maxima of 59 711 (respectively 114 986 and 

106 866) at the 29th day (respectively 291th day and 668th 

day). The non-consideration of climatic factors shows 

that the number of infected humans passed under 5 000 

after 24 days and stabilizes at 0 after 249 days, while 

the number of infectious humans passed under 5 000 

after 100 days and stabilizes at 0 after 401 days. 

 

V.  CONCLUSION 

We have analysed the impact of climatic factors in 

malaria transmission taking into account migration 

between Douala, Yaoundé and Ngaoundéré, three cities 

of Cameroon country. We showed how variations of 

climatic factors such as temperature and relative 

humidity affect the malaria spread by proposing and 

implementing a meta-population model of malaria that 

evolves in space and time and that takes into account 

climatic factors and the humans migration between 

Douala and Yaoundé, Yaoundé and Ngaoundéré. Our 

model incorporates the dynamic of the malaria spread 

inside a population between sick and healthy individuals. 

Results show difference between human evolution when 

we consider in the context of migration, climatic factors 

or not. More, there is a difference of results, 

specifically inside infected and infectious humans with 

the consideration of climatic factors throughout the 

mosquito life cycle and during only the contact 

Human-Mosquito. We plan to perform by coupling our 

model with a model where average number of contacts 

between susceptible humans and infectious mosquitoes 

(bi) and average number of contacts between 

susceptible mosquitoes and infectious humans (fi*ωi) 

will be both dynamic (evaluate by simulation) and 

evolve with each step of time. 
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