
I.J. Information Technology and Computer Science, 2017, 6, 34-42
Published Online June 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.06.05

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

Recommendation of Move Method Refactoring to

Optimize Modularization Using Conceptual

Similarity

Md. Masudur Rahman
Institute of Information Technology, University of Dhaka, Dhaka, 1000, Bangladesh

E-mail: bit0413@iit.du.ac.bd

Md. Rayhanur Rahman and B M Mainul Hossain
Institute of Information Technology, University of Dhaka, Dhaka, 1000, Bangladesh

E-mail: rayhan@du.ac.bd, raju@du.ac.bd

Abstract—Placement of methods within classes is one of

the most important design activities for any object

oriented application to optimize software modularization.

To enhance interactions among modularized components,

recommendation of move method refactorings plays a

significant role through grouping similar behaviors of

methods. It is also used as a refactoring technique of

feature envy code smell by placing methods into correct

classes from incorrect ones. Due to this code smell and

inefficient modularization, an application will be tightly

coupled and loosely cohesive which reflect poor design.

Hence development and maintenance effort, time and

cost will be increased. Existing techniques deals with

only non-static methods for refactoring the code smell

and so are not generalized for all types of methods (static

and non-static). This paper proposes an approach which

recommends „move method‟ refactoring to remove the

code smell as well as enrich modularization. The

approach is based on conceptual similarity (which can be

referred as similar behavior of methods) between a source

method and methods of target classes of an application.

The conceptual similarity relies on both static and non-

static entities (method calls and used attributes) which

differ the paper from others. In addition, it compares the

similarity of used entities by the source method with used

entities by methods in probable target classes. The results

of a preliminary empirical evaluation indicate that the

proposed approach provides better results with average

precision of 65% and recall of 63% after running it on

five well-known open projects than JDeodorant tool (a

popular eclipse plugin for refactorings).

Index Terms—Code Smell, Refactoring, Feature Envy,

Move Method, Coupling, Cohesion, Conceptual

Similarity.

I. INTRODUCTION

Code smell is a design problem that makes source code

duplicate, tightly coupled and complex. Therefore, code

smells should be removed from the application in order to

make maintenance task easier. Refactoring is the

technique which is used to remove the code smells by

restructuring existing code [1]. As a result, it improves

the software quality in terms of maintainability and

reengineering process [2]. In the last decade, code smells

have become an established concept for patterns or

aspects of software design that may cause problems for

further development and maintenance of the system [3].

Among the 22 types of code smells described by

Martin Fowler [1], Feature Envy is one of those smells

that is directly related to coupling and cohesion in an

object oriented application. The code smell exists in the

application when a method makes too many calls to other

classes to obtain data or functionality (i.e., feature), in

order to accomplish its task, rather than that of its current

class. Moreover, this type of code smell occurs when

developers violate the principle of grouping behavior

with related data. This violation makes the application

tightly coupled and loosely cohesive, and eventually

imperfect modularization among the components. In the

case of structured design and programming, application

design with low coupling and high cohesion lead to

products that are both more reliable and maintainable [4].

In an object oriented system, classes encapsulate

internal states manipulated by their methods. However,

developers often unconsciously implement methods into

incorrect classes and thus create feature envy code smell

that makes the application complex in terms of coupling

and cohesion [1]. High levels of coupling and lack of

cohesion make an application so complicated that it

becomes very difficult for developers to maintain the

application in the long run. In addition, during the

development and maintenance phase, changing in one

class makes effect in other classes that leads extra

activities to change those affected classes due to high

coupling and low cohesion. Coupling is a significant

factor to measure complexity of the application and to

analyze change impact [22]. Therefore, to maintain high

quality software, developers‟ should implement loosely

coupled and highly cohesive design [5]. Moreover,

modifying existing classes as well as introducing new

features require higher effort if feature envy code smell

presents in the application rather than other code smells

[3]. So refactoring of the code smell by moving methods

 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity 35

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

into appropriate classes from incorrect ones plays a

significant role to reduce coupling and increase cohesion,

and eventually, enrich modularization of the application.

However, manual inspection to group similar behaviors

of methods in the same classes is a lengthy and risky

process, since assumption of placement of methods might

not be correct always and it varies from developer to

developers. Therefore, design and maintenance problem

of the application might exist in the manual process. In

order to decrease coupling and increase cohesion in the

application, automatic move method refactoring

technique is indispensable which eventually optimizes the

interactions among the modularized components. The

technique is used to detect methods implemented in

incorrect classes and recommend more appropriate

classes for those methods. In literature, most of the

techniques were based on coupling and cohesion to group

similar methods in a class. The traditional approach is to

recommend a method to a class whose entities are used

mostly by the method rather than similar behavior.

However, these existing techniques do not focus on

conceptual similarity whereas a class should stands for

SRP 1 (Single Responsibility Principle). The methods

within a class perform the responsibility which is referred

as a concept of being grouped together. This conceptual

behavior is an important factor to group similar methods

into a class, regardless of the directly used entities

(method calls and used attributes) by methods of classes.

In software design and modularization, similar behaviors

of methods that perform similar tasks should be grouped

together into classes to achieve optimized interactions

among the modules. In other words, conceptual similarity

is defined by similar entities used by the source method

and the methods in a classes. Moreover, we consider both

static and non-static entities (methods and attributes) in

the technique whereas most of the existing works

considered only non-static entities. This move method

refactoring approach assists developers significantly by

reducing development and maintenance effort, time and

cost through improving software modules.

This paper proposes an approach of recommending

move method refactoring technique based on similar

concept or behavior of methods in a class. The approach

consists of three phases. In the first phase, it analyzes

source code information by parsing source class files and

generates conceptual set. The set contains references

(class names) of both static and non-static entities

(method calls and attributes) used by methods. The

conceptual behavior and inclusion of both static and non-

static entities help to group similar methods more

accurately and makes the approach different from

existing ones. In the second phase, similarity between a

source method and probable target classes are calculated

using conceptual set. Here, Jaccard Similarity [18]

Coefficient is used to calculate similarity by considering

both static and non-static entities. In the third phase, by

comparing the similarity values of the method‟s current

1 In SRP (Single Responsibility Principle) a class should have only a

single responsibility: http://www.oodesign.com/single-responsibility-

principle.html. [Last Accessed 15 June, 2016]

class and other classes, it is decided whether feature envy

code smell exists in the system or not. If the similarity

value of the method‟s current class is less than the values

of other one or more classes, then the approach detects

the method as a feature envy code smell and suggests

more appropriate class to move on. Thus, this approach

refactors the code smell which also reduces coupling and

increases cohesion, and eventually enriches

modularization of the application.

For validation, we experiment our approach on five

well-known open source java projects and compare the

results with JDeodorant tool2 (a popular eclipse plugin for

refactorings). The preliminary empirical evaluation

provides satisfactory results with average precision of

65% and recall of 63% which are better than JDeodorant

tool. The results also indicate that the incorporation of

conceptual strategy and inclusion of static entities along

with non-static are important factors for recommending

of move method refactoring technique to enrich software

modularization.

In summary, the paper makes the following major

contributions:

1) A recommendation approach of move method

refactorings based on conceptual similarity to

optimize software modularization.

2) A technique to automatically detect feature envy

code smell for both static and non-static methods.

3) Evaluations on five popular open source java

projects. The results show that our approach more

effectively recommends move method refactoring

than JDeodorant tool.

The remainder paper is organized as follows: Section II

discusses the existing works related to feature envy code

smell detection and its refactoring technique. Section III

describes the proposed recommendation approach, while

Section IV discusses results from a preliminary empirical

evaluation. Section V shows a case study of the whole

approach and finally, Section VI concludes the paper.

II. RELATED WORK

A number of works exists in the literature regarding the

identification of feature envy code smells and move

method refactoring opportunities, mainly related to

methods implemented in incorrect classes. These

techniques are mostly based on structural information

analysis from source code and historical information

analysis from versioning system. These existing

approaches are described in this section.

JDeodorant is a well-known eclipse plugin for

refactorings that identifies five kinds of code smells,

namely “Feature Envy”, “Type Checking”, “Long

Method”, “Duplicate Code” and “God class” [6], [7].

Feature envy is one of those smells that the tool identifies

as well as provides recommendation to the appropriate

2
 https://marketplace.eclipse.org/content/jdeodorant.

[Last Accessed 12 July, 2016]

36 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

classes of the affected methods which is proposed by

Fokaefs et al. [6]. The identification of feature envy code

smell is based on the notion of distance between methods

and system classes. The tool, JDeodorant follows a

classical heuristic in order to detect the code smell: A

feature envy code smell is identified if the distance of a

method from a system class is less than the distance of

this method from the class that it belongs to. The distance

which can also be referred as dissimilarity between

methods and system classes has been measured by

Jaccard Distance technique. The tool also suggests more

appropriate classes for the affected methods based on the

distance score.

JMove is another tool for eclipse plugin which is used

to refactor the feature envy code smell using „move

method‟ technique [8]. The approach is based on the

dependency set which is calculated using coupling and

cohesion. The calculation of dependency set consists of

the references of attributes, parameters, return types and

method calls established by a given method located in a

class. Then Sokal and Sneath 2 similarity coefficient is

used to detect the smell. This technique claims better

result in terms of recall than JDeodorant. However, the

both techniques detect only non- static methods as feature

envy code smell.

To detect feature envy code smell and use move

method refactoring technique, an approach called

Methodbook has been proposed by Oliveto et al. [9]. This

approach uses Facebook as metaphor to detect the smell.

It identifies the friend methods of the affected method to

calculate similarity and provide recommendation to the

more appropriate class based on the calculation. However,

the Methodbook technique performs better in terms of

precision whereas the number of detection is 40%. In

addition, it is difficult for the Methodbook process to

identify envied class when a method has significant

similarities with almost same number of methods of

multiple classes. In that case, the technique may give

inefficient result.

HIST (Historical Information for Smell Detection) is

an approach proposed by Palomba et al. in 2013 to

detect five different code smells in which feature envy is

one of those smells. It exploits change history

information mined from versioning systems [10]. The

feature envy code smell can be detected solely relying on

structural information and several approaches based on

static source code analysis have been proposed to detect

the smell. Thus, HIST is able to compare directly to these

code analysis based approaches for detecting feature envy

smells to assess to what extent change history data might

be of some value in the detection also of these types of

smells. Considering another view is that a feature envy

may manifest itself when a method of a class tends to

change more frequently with methods of other classes

rather than with those of the same class. Based on such

consideration, HIST approach has been update in 2015 to

detect smells based on change history information mined

from versioning systems and specifically, by analyzing

cochanges occurring between source code artifacts [11].

inCode is an eclipse plugin which is used to identify

feature envy smells of static methods only [12]. It does

not manipulate any data of the source class but it

processes data of other system classes. According to

object oriented design heuristics and principles, method

must be placed in the class, in which data it manipulates

more. This basic heuristic has been used in inCode

approach to detect these methods as feature envy code

smell [13]. Due to no access to inCodes documentation,

the approach is not understandable of how it detect only

static methods as smell rather than non-static methods.

Tsantalis et al. have proposed an approach to identify

move method refactoring opportunities based on coupling

and cohesion using Jaccard distance [14]. They have

suggested the refactoring opportunity on the basis of

certain preconditions. However, they have not considered

whether the target method and the suggested class are

contextual similar or not. Designer has to take the final

decision by manual inspection of design documents. So,

manual efforts of checking conceptual similarity are

needed.

Fontana et al. have proposed machine learning

techniques to detect several code smells including feature

envy, but not suggest any refactoring opportunities [20].

Kimura et al. have proposed a technique to detect the

refactoring candidates by analyzing method traces that

contains method invocation in program execution [15]. It

detects irregular methods as candidates of move method

based on pattern of method invocations. Without having

the method traces that is program execution, the

technique will not work. In another paper, Napoli et al.

have provided move method refactoring opportunity

based on CBO (Coupling Between Objects) and LCOM

(Lack of Cohesion on Methods) aiming at optimizing

modularity for large systems as well as emphasized on

GPU (Graphics Processing Unit) rather than single CPU

(Central Processing Unit) for faster calculation [16].

As stated above, these researches has addressed the

importance of removing feature envy code smell, as it

occurs due to the violation of two significant design

principles coupling and cohesion. Several automated

approaches have been proposed throughout the years to

refactor the code smell. However, almost all the

techniques have used coupling and cohesion in the code

smell detection and move method refactoring approaches,

and have not considered the SRP that represents

behavioral similarity that a method and its class stand for.

Moreover, most of the cases, these techniques have

avoided static entities in the detection process.

III. PROPOSED APPROACH

The proposed approach is used to provide

recommendation of move method refactorings to remove

feature envy code smell in any object oriented application.

 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity 37

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

Fig.1. Architecture of Recommending Move Method Refactoring Using Conceptual Similarity

The approach identifies similar methods of a target

method which should remain in the same class based on

the conceptual similarity. The approach has three phases

(shown in Fig. 1):

1) Source Code Parsing,

2) Conceptual Set and Similarity Score Measurement

Using Jaccard Similarity Coefficient, and

3) Compare the Similarity Scores between Classes to

Recommend Move Method Refactoring.

In the first phase (Source Code Parsing), in order to

group similar methods into a class and recommend move

method refactorings, information like - classes, methods,

attributes, etc. from the source code of an application are

required to be analyzed. To analyze these information, a

third party parser named ByteParser [17], [21] which is

used to parse java bytecode, is used in this phase. The

parser analyzes information of both static and non-static

method calls and used attributes by each method of

classes in the application. The analyzed information from

class files of the application are the basis of the approach

which are used to calculate similarities between the

source method and classes. So source code parsing to

identify and refactor the code smell can be considered as

the initial and fundamental step of the implementation

part.

In the second phase (Conceptual Set and Similarity

Score Measurement Using Jaccard Similarity

Coefficient), from parsing phase, analyzed information -

used entities (method calls and used attributes) by the

source method are fed up in this phase. The main task of

this phase is to calculate similarity between the source

method and other methods of classes based on similar

entities rather than direct used entities using Jaccard

Coefficient [18]. To calculate similarity, we use class

names of used entities instead of reference or object

names, as object cannon be used for static method calls.

Hence, the step is more accurate to group similar methods.

In the third and final phase (Compare the Similarity

Scores between Classes to Recommend Move Method

Refactoring), similarity scores measured in second phase

are compared between the method‟s current class and

other probable target classes of the application. The class

with highest similarity score and greater than the

method‟s current class is recommended in which the

method should be moved as the refactoring technique.

In the remainder of this section, we describe the

recommendation algorithm proposed in this paper

(Subsection A) and the similarity calculation function that

plays a central role in this algorithm (Subsection B).

A. Recommendation of Move Method Refactoring

The proposed recommendation of move method

refactoring process is shown in Algorithm 1. Assume, S
is a system having a set of classes. m is a target method

which is implemented in a class C of the system. For

each class Ci ∈ S, the algorithm determines whether m

is more similar to the methods in Ci than to the methods

in its original class C (line 5). Note that, the similarity

function based on similar behavior of methods (i.e., SRP)

deals with both static and non-static entities. If Ci

satisfies the condition of the line 5, that is, Ci is more

similar than C, then Ci will a probable candidate class

to receive m. Such classes are inserted into a list T (line

6) as there can be multiple classes to be the candidates.

Finally, the most suitable class Cr to receive m is

determined by the function bestClass(m, T) (line 9).

The function receives the target method m and a list of

candidate classes Ci. It then sorts the classes according to

the similarity values of the classes and provides the most

appropriate class having the highest similarity value.

Thus the algorithm suggests move method refactoring in

order to remove and refactor feature envy code smell

from the system S.

38 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

Algorithm 1 Recommendation of Move Method

Refactoring Algorithm

Input: Target system S

Output: A list of candidate classes

1: for each method m ∈ S do

2: C ← getClass(C)

3: T ← null

4: for each class Ci ∈ S do

5: if similarity (m, Ci) > similarity (m, C) then

6: T ← T + Ci

7: end if

8: end for

9: Cr ← bestClass(m, T)

10: end for

similarity(m, C) is the key function of the algorithm

that computes the similarity between method m and the

methods in class C. This function is described in the

following subsection.

B. Similarity Measurement Function

The function relies on the conceptual set of entities

(method calls and used attributes) established by a

method m to compute its similarity with the methods in a

class C, as described in Algorithm 2.

Algorithm 2 Similarity Measurement algorithm

Input: Target method m and a class C
Output: Similarity coefficient between m and C

1: for each method mi ∈ C do

2: if mi ≠ m then

3: similarityScore ← similarityScore +

getSimilarity(m, mi)

4: end if

5: end for

6: if m ∈ C then

7: averageSimilarityScore ←

averageSimilarityScore / [NOM (C) − 1]

8: else

9: averageSimilarityScore ←

averageSimilarityScore / [NOM (C)]
10: end if

11: return averageSimilarityScore

Initially, we compute the similarity between m and

each method mi in C (line 3). In the end, the similarity

between m and C is defined as the arithmetic mean of the

similarity coefficients computed in the previous step. In

this algorithm, NOM(C) denotes the number of methods

in a class C (lines 7 and 9).

The key function is getSimilarity(m,mi) in Algorithm

2, which computes the similarity between the sets of

entities established by the two methods (line 3). The

similarity is measured by the use of the Jaccard similarity

coefficient which is defined as:

 ()

 (1)

Here,

Am = set of entities used by method m

Ami = set of entities used by method mi

IV. IMPLEMENTATION AND RESULT ANALYSIS

To assess the proposed approach, preliminary

experiments have been conducted on recommendation of

move method refactoring. A prototype of the proposed

algorithm has been implemented in java language for this

purpose. The existing refactoring tool JDeodorant which

is a well-known eclipse plugin, has also been used for

comparative analysis. For the justification of correctness,

heuristics regarding the refactoring technique from

Martin Fowler is followed [1].

A. Environmental Setup and Implementation

As mentioned earlier, the algorithm for evaluation has

been implemented in java programming language. The

equipments used to develop the algorithm are as follows:

• Eclipse Mars version-4.5 [19]

• ByteParser

To implement the proposed algorithm in java language,

Eclipse has been used. A source code parser named

ByteParser has also been included in this implementation

in order to analyze the input source code. ByteParser is an

analyzer which is used to analyze java source code

of .class files. It analyzes information like – class name,

method name, field name, method call, etc. from the

source code.

For the validation of the approach, five open source

java projects have been used as datasets. The descriptions

of the projects are shown in Table 1 consisting of five

columns. The columns represent the project name, project

version, number of class (NOC), number of method

(NOM), and line of code (LOC) respectively. Each

project has a large amount of NOC, NOM and LOC.

From the table, it is seen that Weka is the largest project

and Maven is the smallest one on the basis of NOC,

NOM an LOC.

Table 1. Experimental Projects

Project Version NOC NOM LOC

JHotDraw 7.6 674 6,533 80,536

ArgoUML 0.34 1,291 8,077 67,514

JMeter 2.5.1 940 7,990 94,778

Maven 3.0.5 647 4,888 65,685

Weka 3.6.9 1,535 17,851 272,611

B. Preliminary Results

The results of the proposed approach is shown in Table

2 consisting of five columns. The table columns are –

Project name, Total Instances# (total actual number of

affected methods for move method refactoring), True

Positive# (TP, number of methods suggested move

 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity 39

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

method refactoring correctly), False Positive# (FP,

number of incorrect suggestions), and Precision

(=TP/(TP+FP)). Our approach gets highest precision of

79% with JHotDraw project and lowest precision of

58% with Weka project which are significant in the

recommendation approach.

Table 2. Results of the Proposed Approach

Project
Total

Instances#

True

Positive#

False

Positive#
Precision (%)

JHotDraw 19 15 4 79

ArgoUML 31 16 8 67

JMeter 10 5 4 56

Maven 16 6 3 67

Weka 29 14 10 58

C. Comparative Analysis

The comparative results between the proposed

approach and the eclipse plugin JDeodorant have been

shown in this section. The comparative analysis shows a

significant contribution of the proposed approach over

other techniques. The existing approaches considered

only non-static entities as they used reference names of

used entities by methods to calculate similarity. But non

static entities are used directly using class names instead

of references. Consideration of both static and non-static

entities in our proposed approach have made a

meaningful improvement in case of similarity

measurement. In addition, the approach has excluded the

primitive types in case of similarity measurement process

as those types are not related to coupling and cohesion.

Moreover, the primitive types are not associated with

method placement. Moreover, the approach does not

follow the traditional approach that a method should be

placed in the class whom entities it used mostly. Rather

the approach is based on the concept that a method

should be placed in the class such that the source method

along with the methods of the class use similar entities.

The comparative results in terms of precision and recall

(=TP/(TP+FN)) between the two approaches have been

shown in Table 3.

Table 3. Comparison between Proposed Approach and Jdeodorant

 Precision (%) Recall (%)

Project Proposed

Approach
JDeodorant Proposed

Approach
JDeodorant

JHotDraw 79 26 83 51

ArgoUML 67 60 70 56

JMeter 56 15 63 60

Maven 67 23 40 46

Weka 58 7 58 65

Average 65 26 63 56

The conceptual set is a vital part of the technique in

which references of method calls and used attribute are

listed. Both static and non-static method calls are

considered in the list while other techniques use only

non-static part. Therefore, the proposed technique

provides better results than JDeodorant tool. It has

precision of 65% and recall of 63% on average of the five

projects while JDeodorant has only 26% and 56%

respectively. As the technique applies similarity

technique of the affected method rather than counting

traditional method calls and used attributes of other

classes to detect the method‟s appropriate class, it reduces

false positive results. The results of comparative analysis

are graphically shown in Fig. 2 (comparison of precisions)

and Fig. 3 (comparison of recalls).

Fig.2 shows that the proposed approach provides better

accuracy in terms of precision in each case of all the

source projects. In Fig. 3, the approach also provides

better accuracy in terms of recall in almost all cases,

except for Maven and Weka project. However, the results

for both of the projects are almost similar as JDeodorant

tool. The highest accuracy in terms of both precision and

recall that our approach has gained is for JHotDraw

project.

Fig.2. Comparison of Precisions

Fig.3. Comparison of Recalls

V. A CASE STUDY ON PROJECT „MOVIERENTALSTORE‟

The result analysis of recommending move method

refactorings for feature envy code smell shows the

40 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

proficiency of the proposed approach. However, a step-

by-step study may increase the understanding of the

approach as well as justify the reason behind the

improved results than conventional approaches. Thereby,

this chapter provides a phase-to-phase analysis of the

recommendation approach.

For an assessment of the competency of the approach,

the technique has been used on a simple java project

MovieRenalStore. The source code has been collected

from the book Refactoring: Improving the Design of

Existing Code [3]. The main project named „VideoStore‟

in the book is free from code smell as well as refactored.

So, some modification has been done in the project

(MovieRenalStore - Version2) by injecting feature envy

code smell in order to analyze the proposed approach.

The main phases of the case study are:

a. Conversion of Source Code

b. Analysis of Byte Code

c. Generation of Conceptual Set

d. Similarity Coefficient Measurement and

e. Recommendation of Move Method Refactoring

Each phase is described in the following subsections.

A. Conversion of Source Code

To recommend move method refactorings, methods

and attributes in the source code are required to be

analyzed. By analyzing the source code, entities like

method calls and used attributes of a method are

determined in order to calculate the similarity of the

method with other methods in a class. So source code

parsing to identify methods and attributes on the classes

can be considered as initial and fundamental step of the

implementation part.

A third party parser named ByteParser is used in order

to analyze the source code. First of all, classes of the

source project are converted into byte codes through

compiling, that is, from .java files to .class files and made

those .class files in .txt form to make the files readable or

parsable using the following command –

”javap -c -private Customer.class > Customer.txt”

The sample of the source file in .java form and

corresponding byte file in .class form are shown in Fig. 4

and Fig. 5 respectively.

B. Analysis of Byte Code

After conversion to the byte code classes from the base

source code, those byte codes have been considered now

in the form to be analyzed. Those codes have been then

analyzed to get the methods and the classes of the source

application for further analysis. Finally, method calls and

attribute usages by a method are identified in this parsing

phase of the feature envy code smell detection process.

C. Generation of Conceptual Set

After the parsing stage, conceptual set of each method

of the MovieRentalStore project has been generated. The

set consists of the references (class names) of method

calls and used attributes. The conceptual set of the

method getMovie() is: {Movie, Rental} (Fig. 6).

Fig.4. Source Code Example (Customer.java Partial)

Fig.5. Byte Code Example (Customer.class Partial)

Fig.6. Method: getMovie()

D. Similarity Coefficient Measurement

Similarity coefficient has been measured based on the

conceptual set of method calls and used attributes using

Jaccard Similarity Coefficient method. The measurement

process is described in Fig. 7 as a flowchart.

The similarity coefficient of the method getMovie() in

its current class Customer is less than another class

Rental. So the proposed approach considers this method

as a feature envy code smell.

 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity 41

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

The getMovie() method in the MovieRentalStore
system is used to provide the names of movies that have

been rented. So this method is not in correct class of

Customer. So, conceptually it should be in the Rental

class.

E. Recommendation of Move Method Refactoring

The proposed approach not only detects the method

getMovie() as a feature envy code smell but also provides

a suggestion to its appropriate class. To do this, a list has

been maintained consisting of candidate classes in which

the method should be moved based on the higher

similarity values than its current class. The list is then

sorted in descending order of the similarity values. The

first class of the list having the highest similarity value is

then recommended as the method‟s appropriate class. In

this example, the Rental class has been suggested in

which the method getMovie() should be moved from its

current class Customer.

Fig.7. Flow Chart of Similarity Coefficient Measurement for

Method getMovie()

VI. CONCLUSION

Coupling and cohesion are the two key factors

considered during the designing phase of software

application. Since developers only need to focus on

coupled classes to meet a change requirements, the

application should be loosely coupled and highly

cohesive to make maintenance task easier with lower

effort, cost and time. Feature envy code smell is a

barrier to achieve this goal of maintenance task as it

increases coupling and decreases cohesion. The

proposed approach plays a significant role to refactor the

code smell by recommending appropriate move method

refactoring technique automatically. The approach based

on similar behavior of methods of both static and non-

static entities (method and attributes) improves the

recommendation accuracy. The preliminary investigation

provides satisfactory results with better precision and

recall than competitive tool. In addition, the approach

enriches software modularization through optimizing

interactions among the components of the application.

Therefore, low coupling and high cohesion are achieved.

REFERENCES

[1] F. Martin, B. Kent, and B. John, “Refactoring: improving

the design of existing code,” Refactoring: Improving the

Design of Existing Code, 1999.

[2] S. Demeyer, S. Ducasse, and O. Nierstrasz, Object-

oriented reengi- neering patterns. Elsevier, 2002.

[3] D. Sjoberg, A. Yamashita, B. C. D. Anda, A. Mockus,

and T. Dyba, “Quantifying the effect of code smells on

maintenance effort,” Software Engineering, IEEE

Transactions on, vol. 39, no. 8, pp. 1144– 1156, 2013.

[4] N. Fenton and J. Bieman, Software metrics: a rigorous

and practical approach. CRC Press, 2014.

[5] S. Sharma and S. Srinivasan, “A review of coupling and

cohesion metrics in object oriented environment,”

International Journal of Computer Science & Engineering

Technology (IJCSET), vol. 4, no. 8, 2013.

[6] M. Fokaefs, N. Tsantalis, and A. Chatzigeorgiou,

“Jdeodorant: Identi- fication and removal of feature envy

bad smells,” in ICSM, pp. 519– 520, 2007.

[7] N. Tsantalis, T. Chaikalis, and A. Chatzigeorgiou,

“Jdeodorant: Iden- tification and removal of type-

checking bad smells,” in Software Maintenance and

Reengineering, 2008. CSMR 2008. 12th European

Conference on, pp. 329–331, IEEE, 2008.

[8] V. Sales, R. Terra, L. F. Miranda, and M. T. Valente,

“Recommending move method refactorings using

dependency sets.,” in WCRE, vol. 20, p. 13, 2013.

[9] R. Oliveto, M. Gethers, G. Bavota, D. Poshyvanyk, and A.

De Lucia, “Identifying method friendships to remove the

feature envy bad smell (nier track),” in Proceedings of the

33rd International Conference on Software Engineering,

pp. 820–823, ACM, 2011.

[10] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, A. De

Lucia, and D. Poshyvanyk, “Detecting bad smells in

source code using change history information,” in

Automated software engineering (ASE), 2013 IEEE/ACM

28th international conference on, pp. 268–278, IEEE,

2013.

[11] F. Palomba, G. Bavota, M. Di Penta, R. Oliveto, D.

Poshyvanyk, and A. De Lucia, “Mining version histories

for detecting code smells,” IEEE Transactions on

Software Engineering, vol. 41, no. 5, pp. 462– 489, 2015.

[12] R. Marinescu, G. Ganea, and I. Verebi, “incode:

Continuous quality assessment and improvement,” in

Software Maintenance and Reengi- neering (CSMR), 2010

14th European Conference on, pp. 274–275, IEEE, 2010.

[13] A. Hamid, M. Ilyas, M. Hummayun, and A. Nawaz, “A

compara- tive study on code smell detection tools,”

International Journal of Advanced Science and

Technology, vol. 60, pp. 25–32, 2013.

[14] N. Tsantalis and A. Chatzigeorgiou, “Identification of

42 Recommendation of Move Method Refactoring to Optimize Modularization Using Conceptual Similarity

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 6, 34-42

move method refactoring opportunities,” IEEE

Transactions on Software Engineer- ing, vol. 35, no. 3, pp.

347–367, 2009.

[15] S. Kimura, Y. Higo, H. Igaki, and S. Kusumoto, “Move

code refactor- ing with dynamic analysis,” in Software

Maintenance (ICSM), 2012 28th IEEE International

Conference on, pp. 575–578, IEEE, 2012.

[16] C. Napoli, G. Pappalardo, and E. Tramontana, “Using

modularity metrics to assist move method refactoring of

large systems,” in Complex, Intelligent, and Software

Intensive Systems (CISIS), 2013 Seventh International

Conference on, pp. 529–534, IEEE, 2013.

[17] https://github.com/rifatbit0401/ByteParser

[Last Accessed: 15 March, 2016]

[18] https://en.wikipedia.org/wiki/Jaccard_index

[Last Accessed: 10 February, 2016]

[19] https://www.eclipse.org/mars

[Last Accessed: 10 November, 2015]

[20] F. A. Fontana, M. V. Mika, M. Zanoni, and A. Marino.

"Comparing and experimenting machine learning

techniques for code smell detection." Empirical Software

Engineering 21, no. 3 (2016): 1143-1191.

[21] A. Satter, A. S. Ami, and K. Sakib. "A Static Code Search

Technique to Identify Dead Fields by Analyzing Usage of

Setup Fields and Field Dependency in Test Code." CDUD

2016–The 3rd International Workshop on Concept

Discovery in Unstructured Data. 2016.

[22] B. Isong, and O. Ekabua,"A Framework for Effective

Object-Oriented Software Change Impact Analysis,"

International Journal of Information Technology and

Computer Science (IJITCS), vol.7, no.4, pp.28-41, 2015.

Authors’ Profiles

Md. Masudur Rahman is a graduate

student at the Institute of Information

Technology (IIT), University of Dhaka,

Bangladesh. Currently, he is pursuing his

Master of Science in Software Engineering

(MSSE). He earned his Bachelor of

Science in Software Engineering (BSSE)

from the same institution. His core areas of interest are software

engineering, code smell and refactoring.

Md. Rayhanur Rahman is a Lecturer at

the Institute of Information Technology

(IIT), University of Dhaka, Bangladesh. He

received his Bachelor of Information

Technology, major in Software

Engineering (BSSE) and Master of Science

in Software Engineering (MSSE) from the

same institution. He has the experiences of working both in

industry and academia. His core areas of interest are cloud

computing, software engineering, security and testing.

Dr. B. M. Mainul Hossain is Assistant

Professor at the Institute of Information

Technology (IIT), University of Dhaka,

Bangladesh. He received his Ph.D. degree

in computer science from University of

Illinois at Chicago, USA. Before that, he

earned his Bachelor of Science and Master

degrees from the department of Computer

Science & Engineering, University of Dhaka, Bangladesh. He

has the experiences of working both in industry and academia.

He worked as a Software Engineer in Microsoft Corporation

(Redmond, USA) & Accenture Technology Lab (Chicago &

California). His core areas of interest are software engineering,

security, data mining and machine learning.

How to cite this paper: Md. Masudur Rahman, Md. Rayhanur

Rahman, B M Mainul Hossain,"Recommendation of Move

Method Refactoring to Optimize Modularization Using

Conceptual Similarity", International Journal of Information

Technology and Computer Science(IJITCS), Vol.9, No.6,

pp.34-42, 2017. DOI: 10.5815/ijitcs.2017.06.05

https://github.com/rifatbit0401/ByteParser
https://en.wikipedia.org/wiki/Jaccard_index
https://www.eclipse.org/mars

