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Abstract—Feature Selection (FS) is an important process 

to find the minimal subset of features from the original 

data by removing the redundant and irrelevant features. It 

aims to improve the efficiency of classification 

algorithms. Rough set theory (RST) is one of the 

effective approaches to feature selection, but it uses 

complete search to search for all subsets of features and 

dependency to evaluate these subsets. However, the 

complete search is expensive and may not be feasible for 

large data due to its high cost. Therefore, meta-heuristics 

algorithms, especially Nature Inspired Algorithms, have 

been widely used to replace the reduction part in RST. 

This paper develops a new algorithm for Feature 

Selection based on hybrid Binary Cuckoo Search and 

rough set theory for classification on nominal datasets. 

The developed algorithm is evaluated on five nominal 

datasets from the UCI repository, against a number of 

similar NIAs algorithms. The results show that our 

algorithm achieves better FS compared to two known 

NIAs in a lesser number of iterations, without 

significantly reducing the classification accuracy. 

 

Index Terms—Feature Selection, Rough Set Theory, 

Cuckoo Search, Binary Cuckoo Search, Nature Inspired 

Algorithms, Meta-heuristic Algorithms. 

 

I.  INTRODUCTION 

The rapid growth of the number of features in 

structured datasets in classification causes a major 

problem, known as “curse of dimensionality”, that 

reduces the classification accuracy, increases the 

classification model complexity and increases the 

computational time, thus the need for Feature Selection 

(FS) [1] [2]. Koller and Sahami [3] define FS as selecting 

"a subset of features for improving the classification 

performance or reducing the complexity of the model 

without significantly decreasing the classification 

accuracy of the classifier built using only the selected 

features ".  

Good FS approaches are capable of minimizing the 

number of selected features without significantly 

reducing the classification accuracy of all features [1] [4]. 

In general, the search strategy, which is used to select the 

candidate feature subsets, and the objective function, 

which is used to evaluate these candidate subsets, are the 

two main steps employed in any FS approach [1] [5]. 

Based on the objective function, existing FS 

approaches are categorized into two categories: filter 

approaches and wrapper approaches [1] [6][60]. Filter 

approaches select the feature subset independently from 

the classification algorithms using statistical 

characteristics, such as dependency degree [7] and 

information measurement [8] of the data to evaluate 

features of a subset [6][58]. But the wrapper approaches 

include a classification algorithm as part of the objective 

function to evaluate the selected feature subsets [2]. Filter 

approaches are often recognized as faster and more 

generic than wrapper approaches [2] [6]. 

The RST approach, proposed in the early 1980s, is one 

of the effective approaches to feature selection [9] [10] 

[11]. Its main concept is to search or generate all possible 

feature subsets and select the one with maximum 

dependency and a minimum number of features. 

However, its search strategy (complete search) is very 

expensive [10]. Several researchers have shown that 

meta-heuristic algorithms are more efficient for searching 

[12]. They have been shown to provide an efficient 

solution for an optimization problem. FS is effectively an 

optimization problem, since it needs less number of 

assumptions to find the near optimal feature subset [2] [5] 

[12]. Thus, many approaches combine meta-heuristic 

algorithms and RST to solve the FS with higher accuracy 

and lesser cost. 

NIAs are an efficient type of meta-heuristic algorithms 

[13]. They process multiple candidate solutions 

concurrently, and they are developed based on 

characteristics of biological systems [13]. They are 

widely used for improving the search strategy in FS, 

because they are easy to implement and incorporate 

mechanisms to avoid getting trapped in local optima [54] 

[59][61][65]. These algorithms are also able to find 

best/optimal solution in a reasonable time with efficient 
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convergence [13][14][65]. Ant Colony Optimization 

(ACO) [15], Particle Swarm Optimization (PSO) [16], 

Genetic algorithm (GA) [17], Artificial Bee Colony 

(ABC) [18], and Cuckoo Search (CS) are known 

examples of NIAs [65]. Binary CS (BCS) is a binary 

version of the CS, in which the search space is modelled 

as a binary string [19]. 

The ACO algorithm uses graph representation and 

needs more parameters than others, which makes it much 

more complex and more expensive compared to other 

NIAs [20] [16] [15] [18]. PSO, ABC, and BCS use binary 

representation, which makes their implementation easier 

and less expensive. The convergence of ABC and BCS is 

more efficient compared to ACO and PSO because ABC 

and BCS use a hybrid search mechanism. But BCS is 

easy to implement and has a more efficient convergence 

compared to ABC, it uses lesser number of parameters in 

its local search which makes it one of the fastest 

algorithms [14] [21][65]. 

There are several studies in filter FS for classification 

that combine NIA with Rough Set Theory Dependency 

Degree (RSTDD). [22] [23] [24][63] employ ACO with 

RSTDD, [25] [26] [27][62] combine PSO and RSTDD, 

while [28] [29] [30] [64] use ABC and RSTDD. But 

according to our knowledge, none of the existing FS 

approaches use BCS [19] [31] [32][55][56] and RSTDD. 

Thus this paper proposes a new classification filter FS 

approach for nominal datasets that combines between 

BCS and RSTDD. It minimizes the number of selected 

features (i.e. achieve significant Size Reduction % 

(SR %)) without significantly reducing the classification 

accuracy. This approach has developed an algorithm 

referred to as Feature Selection based on hybrid Binary 

Cuckoo Search and rough set theory in classification for 

nominal datasets (FS-BCS). 

The remainder of this paper is organized as follows. 

Section 2 describes RST, CS and BCS. In section 3, 

details the proposed algorithm FS-BCS. The followed 

evaluation methodology is described in section 4. Section 

5 presents the results and discussion. The conclusion is 

discussed in section 6. The last section presents the made 

assumptions and future work. 

 

II.  RST AND BINARY CUCKOO SEARCH 

RST and binary cuckoo search are the key concepts 

that our approach bases itself on, these are described 

briefly below. 

A.  Rough Set Theory 

RST was developed, by Z Pawlak, in the early 1982s 

[9] as a mathematical tool that deals with classificatory 

analysis of data table. The advantages of RST are as 

follows [33] [11]: First, it provides efficient methods for 

finding hidden patterns in data. Second, it allows to 

reduce original data without additional information about 

data. Third, it is easy to understand. Fourth, it allows to 

evaluate the significance of data using data alone.  

RSTDD and positive region are two important issues in 

data analysis to discover the dependency between the 

feature subsets and class labels. Positive region (POSp(Q)) 

contains all objects that can be classified into classes of Q 

using information in P. The RSTDD can be defined in 

equation (1) [10] [33] [34]. 

 

.                        (1) 

 

Where |U| is the total number of objects, |POSp(Q)| is 

the number of objects in a positive region, and   ( ) is 

the dependency between feature subset p and classes Q.  

B.  The Principle of Cuckoo Search 

CS is a new and powerful NIA algorithm that was 

developed by Yang and Deb in 2009 [20]. CS is a search 

algorithm inspired by the breeding behavior of cuckoos 

and L’evy flight behavior of some birds and fruit flies 

which is a special case of random walks [20] [19] [35]. 

The reproduction strategy for Cuckoo is aggressive. 

Cuckoos use the nests of other host birds to lay their eggs 

in and rely on these birds for hosting the egg. Sometimes, 

the other host birds discover these strange eggs and they 

either throw these strange eggs or abandon their nest and 

build a new one. Cuckoos lay eggs that look like the 

pattern and color of the native eggs to reduce the 

probability of discovering them. If the egg of the cuckoo 

hatches first, it gets all the food that is provided by its 

host bird [20] [36].  

Algorithmically, each nest represents a solution, CS 

aims to replace the "not so good" solution (nest) with a 

new one that is better. CS starts to generate the 

population of nests randomly, then in each iteration, CS 

uses hybrid search to update the population of nests as 

follows: The nests that have the lowest quality are 

updated randomly (global search) [20] [36]. And the 

remaining nests are updated using local search that uses 

L’evy flight via the equation (2) and equation (3) [19]: 

 

.                (2) 

 

Where xt+1 is a new candidate solution (nest), α is the 

step size (α>0) scaling factor of the problem, in most 

cases, we can use α=1. ʘ Means entry-wise 

multiplications, and λ: L’evy distribution coefficient (0 < 

λ ≤ 3). Random step length (L’evy (λ)) is calculated 

from power low by equation (3): 

 

.                     (3) 

 

Where s is step size. L'evy flight is a semi-random 

search that moves in search space in diverse step lengths 

depending on the current location to find a good location. 

L'evy flight makes the CS more efficient in exploring the 

search space. 

C.  Binary Cuckoo Search 

BCS is proposed by [19] in 2013. It is a binary version 

of the CS, in which the search space is modelled as a 

p

| ( ) |

| |

ppos Q

U
 

1 ' ( )t tx x L evy   

'L evy u s 



 Feature Selection based on Hybrid Binary Cuckoo Search and Rough Set Theory in  65 

Classification for Nominal Datasets 

Copyright © 2017 MECS                                            I.J. Information Technology and Computer Science, 2017, 4, 63-72 

binary n-bit string, where n is the number of features [19]. 

BCS represents each nest as a binary vector, where each 1 

corresponds to a selected feature and 0 otherwise. This 

means each nest represents a candidate solution, and each 

egg represents a feature. The initialization strategy is 

generating an initial population of n nests randomly by 

initializing each nest with a vector of binary value. Then 

according to a probability pa ϵ [0, 1]), it selects the worst 

nests and updating them using L'evy flight. Finally, BCS 

stops when the number of iterations reaches the 

maximum predefined by the user, and produces the best 

global nest. Algorithm 1 explains how BCS work. 

In order to build binary vectors in local search, it 

employs equation (4) and equation (5) [19]: 

 

.                       (4) 

 

.                (5) 

 

Where σ belongs to [0, 1],  (   )
    stands for new eggs js 

(features) at nest i in iteration t.  

 

III.  THE PROPOSED ALGORITHM 

Feature selection based on hybrid binary cuckoo search 

and rough set theory in classification for nominal datasets 

(FS-BCS) uses BCS as a search technique to generate 

candidate feature subsets, and it uses objective function 

based on RSTDD to evaluate these candidates' features 

subsets to guide the BCS to reach best feature subset. 

This objective function is proposed by Jensen et al. [30] 

that selects the minimum number of selected features and 

maximum classification accuracy, it is shown in equation 

(6). The proposed FS-BCS is presented in Algorithm 1.  

 

      (6) 

 

Where |C| is the number of conditional (total-class) 

features, |R| is the number of selected features, D is class, 

and   ( ) is the dependency degree between feature 

subset (selected features) and class label. 

 
Input 

1: Number of nests N. // Each nest represent candidate feature subset 

2: Probability pa ϵ [0, 1]. 

3: Maximum number of iteration T, initial iteration t=0. 

Output 

4: Best global feature subset g_best. 

Initialization (Initialize the population of nests and best global feature subset g_best). 

5:     for i=1 to N do 

6: Generate Initial population of N candidate feature subsets xi randomly. 

7: Sort the xi descending according to value of objective function. 

8: Evaluate xi using equation (6). 

9: Best local feature subset=top candidate feature subset. 

10: g_best=best local feature subset. 

11:      end for 

Updating the population several time ( T times) 

12: Repeat 

13: Abandon a fraction pa of worse candidate feature subsets and updating them using L évy flight. 

14: Evaluate each candidate feature subset in population 

15: Sort the population of nests descending according to value of objective function. 

16: Best local solution= top candidate feature subset in the population. 

17: If g_best< best local solution 

18: g_best=local best solution. 

19: end if. 

20: t=t+1. 

21: Until t <T 

22: Produce the global best solution (g_best). 

Algorithm 1. FS-BCS algorithm 
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IV.  EVALUATION 

There are a number of potential ways to evaluate our 

approach. However, the most commonly used and 

perhaps provides comparative results on its efficiency is 

one that uses existing datasets, which have known 

features, and then compares our approach to a set of other 

competitive approaches. These are described below. 

A.  Datasets Selection   

To evaluate the performance of FS-BCS, a group of 

experiments have been run on five nominal datasets with 

different number of features (from 9 to 36), different 

number of objects (from 366 to 8124) and different 

number of classes (from 2 to 19). These nominal datasets 

are randomly selected from a set that has very little 

missing values from the University of California at Irvine, 

known as the UCI data repository of machine learning 

database [37]. Table 1 shows the selected datasets and 

their characteristics. 

Table 1. Datasets 

Dataset Features Objects Classes 

Breast-W 9 699 2 

Mushroom 22 8124 2 

Dermatology 34 366 6 

Soybean(large) 35 683 19 

Chess 36 3196 2 

 

The following is a brief description of the datasets. 

 

Breast-W. It is obtained from the university of 

Wisconsin hospitals, it has 9 features, and each one has 

ten distinct values. There are 699 objects, 458 objects 

classified into benign class, and the remaining objects are 

classified into malignant class. 

Mushroom. It contains records drawn from the Audubon 

society field guide to North American mushrooms. This 

dataset has 22 features with different number of distinct 

values (from 2 to 12). Also, it has 8124 objects that are 

classified roughly into two classes. 

Dermatology. This dataset has 34 features which have 

distinct values from 2 to 4. 366 objects are classified into 

six classes, 61 objects for first class, 112 objects for 

second class, 72 objects for third class, 52 for fourth class, 

49 for fifth class, and 20 objects for sixth class. 

Soybean (large). The task is to diagnose diseases in 

soybean plants. There are 304 objects which are classified 

into 19 classes.  

Chess (King-Rook vs. King-Pawn). It has 36 features 

which have 2 distinct values. This dataset has 3196 

objects, 1669objects belong to White can win class, and 

remaining objects belong to White cannot win class. 

B.  Evaluation Method 

The indirect approach [2][57] is used to evaluate the 

developed algorithm, three comparisons are used in the 

experiments. First, “before and after comparison” is 

employed, which measures the classification accuracy of 

all available features and of the selected features. 

Secondly, our approach is evaluated against the Genetic 

algorithm [17] with Correlation based on Feature 

Selection (CFS) [38]. Thirdly, our approach is evaluated 

against PSO [39] with CFS [38]. Decision Tree (DT) [40] 

and Naive Bayes (NB) [41], which are two different 

classification algorithms (types), are used to measure the 

classification accuracy for all approaches that are used in 

the experiments. DT and NB are from the top ten data 

mining algorithms, and do not need complex initial 

parameters [42]. These are evaluated against three factors, 

their number of selected features, classification accuracy 

and number of iterations. 

All implementations are run on a personal computer 

running Windows 8.1 with (i7), 3.0 GHZ processor and 

16 GB memory. FS-BCS is implemented with PHP. The 

Genetic algorithm with CFS and PSO are known filter FS 

approaches, and are already implemented in the Weka 

tool [43]. The Genetic and PSO algorithms are selected, 

they are common NIAs for FS, and they are implemented 

in the Weka tool. CFS is an efficient objective function 

for FS, because it measures the redundant and relevant 

features in each candidate feature subset by evaluating 

the correlation between each feature and the class labels 

and between each pair of features using mutual 

information [38]. 

All parameters in these approaches are selected 

according to default parameters in the Weka tool, some of 

them are shown as follows: population size is 20, 

maximum number of iterations is 20, and the size of k is 

10 objects in K-fold cross-validation which will be 

mentioned later in this section. 

Each dataset was divided into two datasets randomly, 

training set, and a learning and test set. A training set that 

has about 70% of the dataset objects, and a learning and 

test set has about 30% of the dataset objects [44]. The 

training set is used by FS approaches to achieve features 

reduction. The learning and test set is used to build the 

classification model and estimates the performance of 

classification. We use K-fold cross-validation [45], also 

implemented in the Weka tool, to split the learning and 

test set into two disjoint sets to build the model and 

estimate the classification performance using DT and NB. 

When an object belongs to the test set, its class is hidden 

from the built classification model based on the learning 

set only. 

In this work, we found, running the FS-BCS five times 

over a training set was sufficient to obtain good results, 

running the experiments longer than five times did not 

provide additional value. The best run, with the best 

classification accuracy, is selected. 

 

V.  RESULTS AND DISCUSSION 

In these experiments, classification Accuracy (Acc) is 

used to evaluate the classification performance, and Size 

Reduction percentage (SR %) is used to evaluate the 

percentage of removed features compared to all available 

features (or Subset Size (SS), which is the number of 
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selected features). In table 2, all means all features in a 

dataset. The best approach is the one that achieves 

maximum SR% without significantly reducing the 

classification accuracy compared to the total number of 

features in the least number of iterations [1]. Differences 

in accuracy is considered significant when it is more than 

5% [46], and it is considered the same when it is less than 

1% [47]. 

Table 2 shows that FS-BCS achieves better SR% 

without significantly reducing the classification accuracy 

in lesser number of iterations compared to the Genetic 

and PSO approaches. The main reason for these results is 

that BCS’s convergence is more efficient and faster 

compared to convergence of the PSO and Genetic 

approaches, because BCS uses efficient and simple 

hybrid mechanism [20] [19]. To be more specific, the 

local search in the BCS's hybrid mechanism plays the 

main role in the efficiency and speed of its convergence, 

because it uses levy flight technique to maximize the 

guarantee and speed of convergence [35]. The following 

subsections discuss the experiments results in more 

details in reference to SR%, "before and after FS" and a 

number of iterations. 

 

A.  Size Reduction Percentage and Classification 

Accuracy 

Table 2 and fig. 1 show the results of the comparisons 

between the FS-BCS, PSO and Genetic approaches. 

The results show that FS-BCS achieves better FS for 

four datasets and the same for one dataset compared to 

the Genetic and PSO. In Breast-W dataset, FS-BCS 

achieves significant SR% (66.7%) compared to PSO and 

genetic (SR%=0), while the classification accuracy, 

according to DT and NB, is the same in the three 

approaches. FS-BCS achieves better SR% and 

classification accuracy according to DT and NB for 

Soybean (large). In Mushroom dataset, three approaches 

achieved the same FS (SR% and classification accuracy). 

But FS-BCS is capable to achieve better SR% and 

classification accuracy (DT and NB) in the dermatology 

dataset compared to the Genetic approach. Also in this 

dataset, FS-BCS achieves the same SR% and better 

classification accuracy (DT and NB) compared to PSO 

approach. The Genetic and PSO approaches achieve 

better SR% and significant reduction in classification 

accuracy (DT and NB) compared to FS-BCS, which 

achieves SR% without significant DT classification 

accuracy and improvement NB classification accuracy. 

Table 2. Results of FS-BCS, genetic and PSO approaches 

Dataset Method Size SR% DT Acc. NBAcc. 

Breast-W 

All 9  93.9 96.1 

FS-BCS 3 66.7 97.6 98.1 

Genetic 9 0 98.5 98.1 

PSO 9 0 98.5 98.1 

Mushroom 

All 22  100 95.8 

FS-BCS 6 72.7 99.7 98.1 

Genetic 6 72.7 98.8 98.7 

PSO 6 72.7 98.8 98.8 

Soybean 

(large) 

All 35  92.3 92 

FS-BCS 14 60 91.7 90.7 

Genetic 22 37.1 82.4 85.3 

PSO 23 34.2 82.9 84.8 

Dermatology 

All 34  93.9 97.2 

FS-BCS 11 67.6 95.4 94.5 

Genetic 13 61. 6 76.3 86.3 

PSO 11 67.6 77.2 78.1 

Chess 

All 36  99.4 87.8 

FS-BCS 17 52.7 97.3 90.8 

Genetic 6 83.3 80.9 78.6 

PSO 6 80.9 81.2 83.3 

All: Original Datasets.  Size: Number of features.  SR%: Percentage of size reduction 

against all features Acc: Accuracy.  
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Fig.1. Comparisons between FS-BCS, genetic and PSO based on SR% and Classification Accuracy. 

On average, in all datasets that are used in our 

experiment, FS-BCS achieves about 64% SR% and 

improves the DT and NB classification accuracy 

compared to the Genetic and PSO approaches, which 

achieve 50.9% and 51.6% SR% respectively 

B.  Classification Accuracy “before and after” FS-BCS, 

Genetic and PSO. 

The results in Table 2 and fig. 2 show the classification 

accuracy according to DT and NB classification 

algorithms before and after running the FS-BCS, Genetic 

and PSO. 

These results show that FS-BCS improves the 

classification accuracy-DT in breast-W and Dermatology 

datasets, as well as in the Soybean (large) and mushroom, 

while in the chess dataset, there is insignificant DT 

reduction. But the genetic and PSO achieve significant 

DT reduction in three datasets. According to NB 

classification algorithm, FS-BCS improves the NB in 

three datasets, and it achieves slight reduction, in NB, in 

two datasets, while the Genetic and PSO achieve 

significant reduction.  

These results show that FS-BCS improves the 

classification accuracy-DT in breast-W and Dermatology 

datasets, as well as in the Soybean (large) and mushroom, 

while in the chess dataset, there is insignificant DT 

reduction. But the Genetic and PSO achieve significant 

DT reduction in three datasets. According to NB 

classification algorithm, FS-BCS improves the NB in 

three datasets, and it achieves slight reduction in NB in 

two datasets, while genetic and PSO achieve significant 

reduction.  

Finally, according to DT and NB classification 

algorithms, FS-BCS succeeded to avoid significant 

reduction in classification accuracy for all the five 

datasets, while the Genetic and PSO failed to. Since FS-

BCS is a general filter FS approach, it is efficient for DT 

and NB, which are different types of classification 

algorithms. According to [1], when a filter FS approach is 

efficient for DT and NB, it can be generalised for 

different types of classification algorithms, thus the 

results of FS-BCS. 

 

 

0

20

40

60

80

100

120

Breast-W Mushroom Chess

P
er

ce
n

ta
ge

 

Datasets 

FS-BCS(DT-Acc)

Genetic(DT-Acc)

PSO(DT-Acc)

FS-BCS(SR%)

Genetic(SR%)

PSO(SR%)

0

20

40

60

80

100

120

Breast-W Mushroom Chess

P
er

ce
n

ta
ge

 

Datasets 

FS-BCS(NB-Acc)

Genetic(NB-Acc)

PSO(NB-Acc)

FS-BCS(SR%)

Genetic(SR%)

PSO(SR%)



 Feature Selection based on Hybrid Binary Cuckoo Search and Rough Set Theory in  69 

Classification for Nominal Datasets 

Copyright © 2017 MECS                                            I.J. Information Technology and Computer Science, 2017, 4, 63-72 

 
 

 

Fig.2. Classification Accuracy Before and After FS 

C.  Analysis based on the number of iterations. 

Table 3 and fig. 3 show the number of iterations 

needed to find the best solution for FS-BCS, genetic and 

PSO approaches. As shown, FS-BCS requires the least 

number of iterations compared to genetic and PSO in all 

datasets to reach the best solution. FS-BCS was able to 

find the best solution in 25% and 34% (these percentages 

are the average of all datasets) from the number of 

iterations in the Genetic and PSO respectively. 

 

 

Fig.3. COMPARISONS BETWEEN FS-BCS, GENETIC AND PSO BASED ON NUMBER OF ITERATIONS
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Table 3. Number of iterations of FS-BCS, genetic and PSO approaches 

Dataset FS-BCS Genetic PSO 

Breast-W 6 20 20 

Mushroom 6 19 14 

Soybean (large) 3 18 10 

Dermatology 3 20 16 

Chess 3 10 6 

VI.  CONCLUSION 

BCS has quick and efficient convergence, less 

complexity, easier to implement, and fewer parameters 

compared to other NIAs such as ACO, ABC and PSO, 

and thus is increasingly used in many algorithms as a 

search technique. Similarly, RSTDD is used in many 

filter FS approaches as an objective function, for its 

relatively cheaper, easier to implement characteristics, 

and does not need any preliminary or additional 

information.  

This paper proposed a new algorithm, FS-BCS, as a 

classification filter FS approach for nominal datasets 

using BCS and RSTDD to achieve significant SR% 

without significantly reducing the classification accuracy 

compared to the total number of features in lesser number 

of iterations. According to our knowledge, FS-BCS is the 

first approach that combines the BCS with RSTDD.  

The experimental results show that FS-BCS achieved 

better FS in four datasets, and same FS in the fifth dataset 

compared to known filter FS approaches (PSO and 

Genetic) in the Weka tool implementations. 

 On average, FS-BCS achieved significantly higher SR% 

and improved the DT and NB classification accuracy 

compared to the Genetic and PSO approaches. Also our 

approach succeeded to maximize the SR% without 

significantly reducing the classification accuracy 

compared to the total number of features for all datasets, 

while PSO failed to do so in two datasets and Genetic 

failed in three datasets. Our approach also took lesser 

number of iterations to reach the best solution compared 

to PSO and genetic approaches. On average our approach 

needed significantly lesser number of iterations than 

those needed in Genetic and PSO. 

Although these results show that BCS with RSTDD 

has faster and more efficient convergence compared to 

PSO and Genetic approaches, the authors appreciate 

further experiments would needed to evaluate the 

scalability of the proposed approach on large high 

dimensional datasets.  
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