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Abstract—Interactions appearing regularly in a network 

may be disturbed due to the presence of noise or random 

occurrence of events at some timestamps. Ignoring them 

may devoid us from having better understanding of the 

networks under consideration. Therefore, to solve this 

problem, researchers have attempted to find quasi/quasi-

regular patterns in non-weighted dynamic networks. To 

the best of our knowledge, no work has been reported in 

mining such patterns in weighted dynamic networks. So, 

in this paper we present a novel method which mines 

maximal quasi regular patterns on structure (MQRPS) 

and maximal quasi regular patterns on weight (MQRPW) 

in weighted dynamic networks. Also, we have provided a 

relationship between MQRPW and MQRPS which 

facilitates in the running of the proposed method only 

once, even when both are required and thus leading to 

reduction in computation time. Further, the analysis of 

the patterns so  obtained is done to gain a better insight 

into their nature using four parameters, viz. modularity, 

cliques, most commonly used centrality measures and 

intersection. Experiments on Enron-email and a synthetic 

dataset show that the proposed method with relationship 

and analysis is potentially useful to extract previously 

unknown vital information. 

 

Index Terms—Dynamic weighted graph, evolving graph, 

regular graph, quasi regular graph, frequent graph. 

 

I.  INTRODUCTION 

Graph mining is an important topic in the field of Data 

Mining because most of the available data can be 

modelled using the graphs, in which the vertices represent 

entities and the edges represent relationship between 

them. We know that the amount of data is increasing at 

an exponential rate spanning across all the domains. But, 

at the same time, advances in data collection and storage 

capacity are coping up to make it possible to collect 

temporal graph (Dynamic Graph) dataset. Pattern 

recognition algorithms, earlier limited to temporal 

databases [1], now hold utmost importance for enhancing 

our understanding about local behavior in dynamic 

networks too broadly, till date, there are two main trends 

to analyze dynamic networks: 

1. Mining of non-weighted, undirected dynamic 

networks. 

2. Mining of attributed/weighted dynamic networks. 

 

The former that involves the analysis of the overall 

structure of the graphs dates back to 2004 it has deal with 

the analysis of the World Wide Web [2]. It has primarily 

focused on temporal evolution of web graphs. Further, 

due to the need for mining patterns in frequent dynamic 

sub graphs, the first algorithm [3] for the same has been 

evolved which has been earlier limited to mining in the 

domain of Web Data. Thereafter, a method [4] has been 

brought forward which has revolved around mining 

partially periodic patterns in the structure of dynamic 

networks. However, Lahiri et al. have presented a method 

which is robust enough for mining patterns in attributed 

networks as well. Further, in order to extract specific 

information depending on the needs of the users, an 

algorithm [5] focusing on mining dense and isolated sub 

graphs by user-parameterized constraints has been 

developed in 2009. Thereafter, a novel method [6] for 

mining similar patterns in biological networks has been 

developed, which has also involved analyzing a sequence 

of graphs using two metrics: ‟Prediction‟ and ‟Coverage‟. 

This has been followed by the development of an 

algorithm [7] for mining regular periodic patterns in 

dynamic networks. Subsequently, for obtaining greater 

insight into the evolving nature of dynamic networks, a 

method [8] for finding the most frequently changing 

components (MFCC) in evolving graphs has been 

presented. 

Besides, the concept of attributed dynamic networks 

with the addition of vertex-weighted and edge-weighted 

networks also took shape in 2007. The central theme of 

the paper [9] has been on introduction and discovery of 

trend-motifs, which have targeted putative patterns of 

changes for a group of closely related entities. Afterwards, 

a method [10] to find dense homogenous sub graphs 

(having vertices which share a large set of attributes) has 

been developed for obtaining insight into the microscopic 

properties of attributed networks. A novel method [11] 

for graph clustering based on both structural and attribute 

similarities through a unified distance measure has been 

proposed in 2009. It has been followed with the evolution 
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of an efficient algorithm [12] for the NP-Hard problem of 

finding the highest-scoring temporal sub graph in a 

dynamic network. In 2013, a paper [13] focusing on 

mining the graph topology of a large attributed graph by 

finding irregularities among vertex descriptors and 

analyzing the resulting topological patterns using three 

measures has also been brought forward.  

However, due to the ever increasing rate of data, the 

problem of noise/jitter has surfaced. Noise (a random 

occurrence of events) can be due to a variety of factors 

and causes a loss of important trends and patterns. The 

concept of jitter has been handled previously while 

mining of partial periodic patterns [4] and regular 

periodic patterns in the overall structure [7] in dynamic 

networks. However, noise can affect not only the 

presence and absence of relationships over a period but 

also the attributes of edges such as weight and direction. 

To express the importance of noise in such attributes 

better, let us take an example of any E-commerce 

network, which contains information about products that 

are bought together over time. For simplicity, let us 

assume that if the quantity of a product sold at a 

particular timestamp lies between 1 to 10, then it will be 

denoted by the character a and if it lies between 11 to 20, 

then it will be denoted by character b and so on. It is 

possible, that two products A and B over a period of 8 

days are sold in quantities ranging from 1 to 10 and on 

the 9th day, due to problems in the website are not sold at 

all. Therefore, we represent the relationship between 

product A and B as, aaaaaaaa0. The pattern here would 

have been “aaa” if the products A and B would have been 

sold on the 9th day as well. This pattern (Quasi regular), 

though important, would have been lost if mined by the 

existing algorithms [14,7]. Our work tries to fill the gap 

that has been there due to the lack of focus on noisy 

aspect of dynamic datasets. The intention is to propose a 

framework which incorporates the presence of noise and 

proposes a more reliable framework.  

Thus, as evident from the above example, due to the 

presence of noise, some important information is easily 

lost. The focus of this article has been to mine such noisy 

patterns. And such patterns when mined on structural 

aspect are known as Maximal Quasi Regular Pattern on 

structure (MQRPS) and when done on the weight aspect 

are known as Maximal Quasi Regular Pattern on Weight 

(MQRPW).  

Also, we make use of an observation in order to 

increase the efficiency of our work. This observation has 

been presented as a claim in the article which is as 

follows: 

An edge representing a relationship between two 

entities shall have the possibility of following a MQRPW 

if and only if it follows MQRPS. 

Subsequently, a microscopic analysis of the evolution 

graphs formed from the patterns obtained has been done 

on the basis of 4 parameters which are explained in the 

subsequent subsections (Section5).  

Summarizing, the main contributions in this paper are 

as follows:  In Section-II, formal definition for mining 

Maximal Quasi Regular Patterns in dynamic networks 

has been presented. In Section-III, the proposed method 

for mining evolution graph on structure (MQRPS) or 

evolution graph on weight (MQRPW) is described. In 

Section-IV, a claim is introduced which explain how the 

proposed method can be restructured by incorporating the 

claim for saving our time while mining the 

aforementioned patterns. Further, complexity of the 

proposed method (Section-III) is assessed. In Section-V, 

intention of taking different parameters for the analysis of 

the obtained patterns is explained. In Section-VI, the 

method is evaluated on one real world dataset (Enron 

Email Dataset) and on a synthetically generated dataset. 

The synthetic dataset is taken to establish the relative 

importance of the proposed method and parameters in 

business networks. Further, we analyze the evolution 

graphs obtained on the basis of 4 parameters. It helps us 

to get an insight into the trends and habits. Finally, in 

Section-VII, discussion and concluding remarks are 

provided with future research possibilities.  

 

II.  NOTATIONS AND DEFINITIONS 

In this section, we will define weighted dynamic 

network and the type of patterns that we are interested in 

within these network. 

 

Definition 1: Time series of graphs: For a given 

sequence of T graphs G = {G1, G2,.....,GT} with Gt = (Vt, 

Et, Wt), where 1<=t<=T, Vt is the vertex-set, Et is the 

edge-set and Wt(weight on edges) is the weight-set of the 

graph at a timestamp „t‟.  We define G as a time series of 

graphs which can be transformed into weighted dynamic 

network.  

 

Definition 2: Weighted dynamic network:  For a given 

a time series of graphs G with T timestamps, a weighted 

dynamic network Gd is defined as Gd = {Vd, Ed, Wd}, 

where Vd = 1

T

tU  Vt, Ed = 1

T

tU   Et and Wd = 1

T

tU   Wt. So, 

Gt = (Vt, Et, Wt) and 1<=t<=T, is a simple graph of 

interactions Et observed at a timestamp „t‟ among the set 

of uniquely labelled entities Vt ⊆ V (union of all vertices) 

with a function Ft mapping weights to edges: Ft: Et -> Wt. 

For example, Fig. 1(a) represents a dynamic weighted 

network across 9(T= 9) timestamps. 

 

Here, we are interested in forming occurrence 

sequence and weight sequence of edges, which are 

defined next.  

 

Definition 3: Occurrence Sequence: The occurrence 

sequence [7] of an edge e is a sequence of 1s and 0s of 

length T such that if „e‟ appears at a timestamp t (t<= T), 

then the tth position of its occurrence sequence is 1, 

otherwise it is 0. Therefore, in Fig. 1(b), the occurrence 

sequence of edge AC is “110110111”. 

 

Definition 4: Weight Sequence: The weight sequence 

[15] of an edge e is a sequence of values of length T such 

that if an edge appears at timestamp t (t<=T), then the tth  
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position of its weight sequence has the corresponding 

weight W, otherwise it is 0. Hence, in Fig.1(b), the 

weight sequence of edge AC is “ab0ab0abc”. 

 

Note that Occurrence Sequence is the set of {1 | 0}m  

and Weight Sequence is the set of {W | 0}m, where W is 

the weight of an edge at that timestamp. We can now 

specify our concept of Summary Graph using Occurrence 

Sequence and Weight Sequence.  

 

Definition 5: Summary Graph: For a given weighted 

dynamic network, the summary graph [17] Gs for the 

network G = { G1,G2,….,GT } is defined as a set of Gs = 

{Vs, Es, Le}, where Vs = V (V1 ∪ V2 ∪ …∪  VT) , Es = E 

(E1 ∪ E2 ∪ … ET) , and Le is the set of labels of Es , 

which maps each edge e in Gs with its corresponding 

occurrence sequence and weight sequence. Therefore, Fig. 

1(b) represents the summary graph of Fig. 1(a). 

This paper provides a method for mining MQRPS / 

MQRPW incorporating our notion of jitter, which is 

explained in the next definition.  

 

Definition 6: Jitter: In the occurrence sequence, it might 

be possible that due to a random occurrence of an event, 

an interaction which is present might be recorded as 

being absent or vice-versa. The occurrence sequence of 

edge AC in Fig. 1(b) is “110110111”. It is clear that the 

pattern, “110” will be missed by regular pattern miner [7]. 

This random occurrence of an event at 3rd position of 

pattern “110” is defined as jitter. Similarly, jitter can be 

present in weight sequence as well.  

Here, we focus on mining patterns having length of jitter 

equal to 1. 

 

Definition 7: Maximal Quasi Regular Pattern(s) 

(MQRP): The MQRP corresponding to 

occurrence/weight sequence for an edge E, is the 

substring(s) S, such that S = maxlength (S1, S2, …..Sn) 

where (S1,S2....Sn) are the substrings in the sequence that 

satisfy the condition of repeating consecutively minimum 

th (threshold) number of times and can have jitter. As an 

example, let the weight sequence be 

“abcabcabdmnopmnopmnoqwasdwasdwase” and the 

minimum threshold is 3, then the substrings satisfying 

criteria of minimum threshold are (mnop,abc,wasd) 

where “mnop” and “wasd” are considered as MQRPs 

(here, MQRP on weight). 

 

Definition 8: Maximal Quasi Regular Pattern(s) on 

Structure (MQRPS): An edge e has MQRPS if it 

follows a MQRP in its occurrence sequence. In Fig. 1(b), 

the edge AC will have the MQRPS as “110”. 

 

Definition 9: Maximal Quasi Regular Pattern(s) on 

Weight (MQRPW): An edge e has MQRPW if it follows 

a MQRP in its weight sequence. In Fig. 1(b), the edge AC 

will have the MQRPW as “ab0”. 

 

Hence, if 
( , , ..... )1 2 3G G G Gn

nL  represents the length of the 

occurrence sequence for an edge in the dynamic network, 

Pi corresponds to the pattern (MQRPS/MQRPW) in that 

edge, L(Pi) is the length of the pattern and „th‟ is the 

threshold for which the pattern should appear 

continuously, then, 

 

( , , ..... )1 2 3( )
G G G Gn

n

i

L
L P

th
                          (1) 

 

Since we have assumed the length of the jitter to be 1, 

then, the maximum percentage of noise in a pattern that 

can be captured by the proposed method is,  

 

1
( ) *100

( )i

Pi
L P

                        (2) 

 

Substituting the value of L(Pi) from expression (1) into 

expression (2), we get,  

 

( , , ..... )1 2 3

100*
( )

G G G Gn
n

th
Pi

L
                         (3) 

 

From this expression, it can be inferred that the 

maximum percentage of noise in a pattern that can be 

captured is directly proportional to the threshold (th). 

For example, if the threshold is 3 and the occurrence 

sequence for an edge over a time-period of 16 units is 

“1101101111010101”, then the MQRPS will be “110” 

and “101”. Since, the length of the patterns mined is 

equal to 3 and we have assumed the length of jitter to be 

1, therefore the maximum percentage of noise is 33.33%. 

Now, we state the concept of Evolution Graph. 

 

Definition 10: Evolution Graph(s): A sub graph G = (E, 

V) is an Evolution Graph on structure/weight, if it is 

connected and all its edges Ei ∈ E follow the same 

MQRPS/MQRPW.  

 

Problem Definition: Given a dynamic network G = (G1, 

G2, G3, G4…G|n|) and threshold th, the method for 

discovering evolution graph(s) on structure (MQRPS) as 

well as on weight (MQRPW) and analyze such evolution 

graph(s) on different parameters (as described in section 

(V). 
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Fig.1(a) Weighted Dynamic Network                                                 Fig.1(b) Summary Graph of Fig. 1(a). 

Fig.1. Weighted Dynamic Network with Summary Graph. 

 

III.  METHOD 

In order to achieve the objective mentioned in the 

problem definition, a methodology has been worked out 

and is described in this section. The following will 

describe the input/output and each of the steps involved: 

 

Input: A set of {G, s, th}, where G is the weighted 

dynamic network which is equal to {G1, G2…… Gt }, s is 

the minimum number of times an edge should appear to 

be considered significant for pattern mining (3 as default 

value) and threshold „th‟ (3 as default value) is the 

minimum number of times a substring should appear 

consecutively in the occurrence/weight sequence to be 

considered as a valid pattern (MQRPS/MQRPW). 

A.  Construction of Summary graph: 

Summary graph is constructed corresponding to 

occurrence/weight sequence. For example, Fig. 1(b) 

represents the summary graph for Fig.1 (a). 

B.  Removal of infrequent edges:  

Remove those edges from the summary graph which 

appear at less than s timestamps in the dynamic network. 

In Fig. 1(b), we consider the edges BE and CE as 

infrequent edges because the number of 1‟s in their 

occurrence sequence is less than 3 which results in Fig.2. 

C.  Searching for edges following a MQRPS/MQRPW:  

Algorithm is applied on each of the occurrence 

sequence/weight sequence in the summary graph (Fig. 2) 

to obtain the MQRPS/MQRPW for each edge. Applying 

the algorithm, we obtain the MQRPS for (AC, BC, CD, 

AB) in the summary graph in Fig. 2 which are 

(“110”,”00”,”01”,”110”) respectively. 

 

 

Fig.2. Summary graph after removing   infrequent edges. 

 

Algorithm:  

Function1: 

Input: Sequence in which patterns have to be found, minimum threshold „th‟. 

Output: Actual patterns in network (MQRPS/MQRPW) 

 

1. th = 3 (used if nothing mentioned) 

2. len = floor(nchar(string)/th) 

3. found:= FALSE 

4. for sublen = len to 1 do 

5.  for inlen = 0 to sublen do 

6.      dif <- Take difference of sublen & inlen 

7.       res <- Repeat "(\\2.\\3)" th-1 times 
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8.      pat <- Paste res and regular expression diff, (.{",inlen,"}) 

9.  test <- Match the substring available in pat with string using gregexpr and return all 

disjunct matches 

10.       for r in test 

11.        length = nchar(r) 

12.    if ( length > 0 ) 

13.          for i = 1 to length 

14.              a <- substring of the original string to find the pattern 

15.       lenp <- nchar(a) 

16.          start <- r[i] 

17.                end <- r[i] + lenp*th - 1 

18.       b <- Pass the value of string,start,end,lenp to function2 

19.      patterns <- Write b in the list of patterns 

20.       found = TRUE 

21.                    end for 

22.     end if 

23.                end for 

24.    end for 

25.         if (found = TRUE) 

26.         break 

27. end for 

 

Function2:  

Input: Substring with its starting point in the original string, threshold set by user, length of the   

pattern found by Function1. 

Output: Actual pattern in a substring. 

 

1. s <- string 

2. begin <- start 

3. terminate <- end 

4. length <- lenp 

 5. startchar <- Generate a sequence using `seq` command with input parameters as begin,     terminate, 

length. 

 6. a <- Make a table showing the number of occurrences of each of the string of length in the  original 

string s. 

7. Return the pattern having the maximum value in a. 

 

D.  Removal of edges having all 0‟s in their 

MQRPS/MQRPW:  

We have removed edges having all 0‟s in their MQRPS 

which are considered to be insignificant, and therefore, 

the edge BC is removed.  

E.  Determination of Evolution Graphs on structure/on 

Weight: 

The edges with the same MQRPS/MQRPW are 

grouped to form evolution graphs on structure which 

should have at least two edges.  

Since edges AC and AB follow the same MQRPS, 

both of them combine to form the evolution graph shown 

in Fig. 3.  

 

 

Fig.3. Evolution graph for MQRPS “110” 

Similarly, in the same manner we can apply the 

proposed method for mining MQRPW as well. For 

instance, taking the same weighted network in fig. 1(a) 

and applying the steps (A-E), we will obtain evolution 

graph on weight as shown in Fig. 4.  

 

 

Fig.4. Evolution graph for MQRPW “ab0” 

Output: Evolution graph on structure (MQRPS)/on 

weight (MQRPW) 

 

Also, when MQRPS and MQRPW are required then 

instead of using the steps A-E of the method twice for-

mining both, we can save our time by using the claim 

mentioned in the introduction. 

In the next section, the claim is elaborated and used for 
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efficient mining of MQRPS as well as MQRPW. 

 

IV.  EXPLANATION OF CLAIMS 

After mining MQRPW on edges, we matched these 

edges with those which follow MQRPS. We have 

observed that only a subset of the edges which follow 

MQRPS follow MQRPW. Therefore, we make the 

following claim. 

4.1  Claim:  

An edge will have the possibility of following 

MQRPW if and only if it follows MQRPS. 

Proof: 

Let us prove it by contradiction. Let there be an edge 

linking the two vertices, having an occurrence sequence 

(string of '0's and „1's) and a weight sequence (string of 

characters /numerals) over a time period T. Let us assume 

that it follows MQRPW but not MQRPS.  But, the 

presence of weight on an edge at a timestamp implies the 

presence of that edge at that particular timestamp as well, 

which is denoted by '1' in the occurrence sequence. Also, 

the flexibility of jitter = 1 holds in both the sequences. 

For understanding it better, let us take an example. 

Consider minimum threshold (th=3) and any arbitrary 

weight sequence for an edge e over a time period (T = 12) 

to be "abcdabcdab0d". Clearly, MQRPW for this edge e 

is "abcd". Now, applying the concept that an edge will 

have a weight associated with it at a particular timestamp,  

if and only if it is present at that timestamp, it gives us the 

occurrence sequence of e as “11111111101”. But, as can 

be seen, the occurrence sequence obtained follows 

MQRPS which is “1111”.   

Hence, if an edge follows MQRPW then it will 

definitely follow MQRPS, which proves our assumption 

being wrong. Therefore, claim is proved. 

It follows from the intuition as well that if an edge 

follows MQRPS then only it has a chance of following 

MQRPW. 

4.2  Restructuring the method: 

Now, we add the following steps to the method 

proposed in Section3 for incorporating the claim. Here, 

we first mine MQRPS using the method (steps A-E) and 

then MQRPW using the steps as follows: 

 

1) Mapping of the edges following MQRPS to 

obtain their weight sequence for mining 

MQRPW: Applying the Claim, only the weight 

sequences corresponding to the edges AC 

(“ab0ab0abc”), BC (“0fa00000f”), CD 

(“e00c0e0h0”), and AB (“abcab0ab0”) are 

considered. 

2) Mining of MQRPW using the Algorithm: 

MQRPW are obtained from the weight sequences 

using the algorithm mentioned in Section3. 

Therefore, for the edges AC, BC, CD, AB, the 

MQRPW are “ab0”, “00”, “0” and “ab0” 

respectively. Further, the patterns containing all 

0‟s are removed and we are left with AC and AB. 

3) Determination of Evolution graphs on Weight: 

All the edges following the same MQRPW are 

combined to form evolution graphs on weight.  

 

Therefore, the edges AC and AB are combined to form 

the evolution graph (Fig. 6). 

 

Output: Evolution graphs on structure (MQRPS) and 

evolution graphs on weight (MQRPW). 

 

 

Fig.5. Evolution graph for MQRPS “110” 

 

Fig.6. Evolution graph for MQRPW “ab0” 

Now, we assess the complexity of the method proposed 

in Subsection 4.3.  

4.3  Complexity analysis 

We try to analyze the computational complexity of the 

method step by step. Let there be T timestamps, and 

E1,E2, ....Et be the sets of edges in the corresponding 

timestamps of the dynamic network, respectively. Let the 

total, i.e. mtotal = |E1|+|E2|+ ....+|Et | and mreal = |E1 ∪E2 ∪,... 

∪Et |, and mqregular  be the total number of quasi-regular 

edges. Since the method and the steps followed for each 

quasi regular pattern (occurrence, weight) are same, we 

analyze the complexity for a quasi-regular pattern in 

general and then obtain the total complexity by using 

mqregular edges. In step A, a summary graph of the 

dynamic network is created by reading edges from 

different timestamps, and hence time complexity is 

O(mtotal). In step B, each edge is checked if it is 

infrequent. According to the algorithm, in any particular 

iteration of sublen, the value of inlen varies from 0 to 

sublen, and a regular expression is formed which is 

matched with the original string. The gregexpr engine 

tries to match starting from the position 0,1,2,3 and so on 

till last position in the input string str. It will first match a 

fixed number of characters which is equal to the sum of 

(sublen-inlen) and (inlen) and then will try to match the 

2nd and the 3rd capturing group exactly (th-1) times. If 

the match is successful, the result is inserted into the list 

named test. This process goes on until the end of string 
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str, and therefore, it performs, a total of {th* [(sublen - 

inlen)+(inlen)]*length(str)} number of computations. In 

the next for loop in line 10, the length of the match found 

is calculated, and then in the innermost for loop, starting 

from 1 to the length of the longest match, the actual 

pattern is found using the substring function, thus worst 

case being the maximum length of pattern which is len = 

length (str) / th. This leads to the overall complexity as 

th*[(subleninlen)+( inlen)*length(str)* blength (str) / thc. 

This is repeated a maximum of len times and thus the 

overall complexity is, {th*[(sublen - inlen) + 

(inlen)*length(str)* [length (str) / th]2 }. Thus the overall 

time complexity for the algorithm is O(length(str)3) 

which is same as O(T). The process is repeated for all the 

mreal edges, and so the time complexity of Step C is 

O(mreal*T3). In Step D, each quasi regular edge is visited 

only once, so the time complexity is O(mqregular). The 

process is again repeated for calculating MQRPW but 

with less input size. From the above analysis, we obtain 

the net time complexity as O(mtotal + mreal*T3). 

 

V.  PARAMETERS 

The purpose of taking different parameters is to 

produce a better understanding of the nature of evolution 

graphs obtained by viewing it in different ways. We have 

used the following parameters for the analysis of the 

evolution graphs formed: 

1.  Modularity:  

It is designed to measure the strength of division of a 

network into modules. Networks with high modularity 

have dense connections between the nodes within 

modules but sparse connections between nodes in 

different modules. The value of the modularity lies in the 

range [−1/2, 1). It is positive if the number of edges 

within groups exceeds the number expected on the basis 

of chance and its value has been calculated using “walk 

trap community detection” algorithm [16]. 

2.  Cliques: 

A clique [17] is a subset of vertices of a graph in which 

every two vertices are connected by an edge. Therefore, 

cliques can be used as a method for acknowledging 

structural characteristics of an entity or its behavior in a 

network.  

3.  Intersection of two graphs: 

It outputs the common elements [18] between two 

graphs. A new graph, M, is formed by calculating 

intersection between the two graphs. 

4.  Centrality measures:  

Centrality of nodes is an important factor to understand 

their embedding in a network. Centrality helps to identify 

the most important nodes in a graph, whereby this 

analysis is helpful for answering a variety of questions 

such as: 

 

 Which two or three people must we select in order 

to pass a message to everyone in a network? 

 Which node is most central or who is the most 

influential person(s) in a social network? 

 Which are the key infrastructure nodes in the 

internet or urban networks? 

 

There are various centrality measures for analyzing 

different aspects of structural position in a network. In 

this paper, we have considered most commonly used 

centrality measures. They are: 

A.  Degree Centrality [19]:  

It is defined as the number of direct 

links/ties/connectivity‟s a node has.  It can be used to 

analyze a person having the maximum number of 

connections. 

B.  Closeness Centrality [19]:  

Closeness is based on the length of the average shortest 

path between a vertex and all vertices in the graph. 

Closeness score of nodes which connect with other nodes 

through many intermediate nodes is nearer to zero, 

whereas it is higher for nodes which are near the center of 

local cluster. It has been calculated using the formula 

given by Freeman. It helps in finding nodes which will be 

close to many nodes of any community within an 

evolution graph or which can communicate quickly with 

other nodes in a graph. 

C.  Betweenness Centrality [20]:  

The betweenness centrality is equal to the number of 

shortest paths from all vertices to all others that pass 

through that node. A node lying on high number of paths 

between other nodes in a cluster of an evolution graph 

will have a very high betweenness centrality score. It has 

been calculated using the formula given by Brandes and it 

helps in identifying the nodes which are relatively more 

connected as compared to others. 

D.  Eigenvector Centrality [21]:  

Eigenvector centrality is calculated by assessing how 

well connected a node is to the parts of the network with 

the greatest connectivity.  Nodes with high eigenvector 

scores have many connections, and their connections 

have many connections and out to the end of the network. 

However, a node receiving many links does not 

necessarily have a high eigenvector centrality (it might be 

that all linkers have low or null eigenvector centrality). 

Moreover, a node with high eigenvector centrality is not 

necessarily highly linked (the node might have a few but 

important linkers). It has been calculated using the exact 

same formula given by Bonacich. 

 

VI.  EXPERIMENTAL ANALYSIS 

We conduct the experiments in R on a system having 

2.6 Ghz dual-core Intel core i5 processor with 8 GB of 

RAM and OS X Yosemite. To establish the robustness of 

the proposed method, we perform experiments on one 

real world dataset and one synthetic dataset.  
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6.1  Datasets: 

Enron E-mails dataset: The Enron email dataset is a 

publicly available dataset. It contains email sent to and by 

the employees of now defunct Enron Corporation in 

which the vertices stand for employees and edges stand 

for the emails sent/received. In this paper, we have used a 

cleaner version of dataset [22] which consists of emails 

within 28 months, from December 1999 to March 2002 

and has 2352 vertices and 23536 edges. An additional 

weight has been assigned to each edge randomly which is 

represented by the character „ a‟  if the number of emails  

sent/received between 1 to 10, „b‟  if the number of 

emails sent/received between 11 to 20 and so on.  

 

Artificially generated E-commerce co-purchasing 

weighted network: We have generated a weighted 

dynamic network dataset containing information for 100 

timestamps about the products that are bought together. 

There is an additional weight associated with such 

products which basically denotes the number of times 

they are bought together at a particular timestamp. The 

entire dataset consists of 100 different files where each 

file represents the dynamic network at a particular 

timestamp. Every file consists of three columns in which 

the first two columns denote the Product ID‟s whereas the 

third column denotes the weight. The weight is 

represented by a character (a,b,c,d,e,f,g,h,I,j) where a is 

used if the value of weight lies between 1 to 50, b is used 

if weight lies between 51 to 100 and so on. The dataset 

generated contains a total of 67,424 edges over a total of 

5645 products.  

6.2  Observations and Result Analysis: 

1.) Enron Email dataset: In order to prove the 

usefulness of the proposed method, the 

experiments on Enron Email dataset has been 

conducted using a method [14] which ignores 

noise and compared the results with those obtained 

from the proposed method. The results obtained 

are summarized in Table 1. 

Table 1. Comparison of the proposed method with a method in (Gupta et al., 2014) 

Measures 
Regular pattern Miner 

(Doesn’t handle noise) 

Proposed method (Handles noise 

up to 1 position) 

Number of Input edges(dynamic graph) 23536 23536 

Number of edges following a pattern on structure 1593 4807 

Number of MQRPS 56 154 

Number of MQRPS followed by more than 3 edges 33 101 

Table 2. Result of the proposed method on Enron Email dataset 

Total number of input edges 80237 

Total number of edges having presence at greater than s (3) timestamps.  23536 

Total number of MQRPS 154 

Total number of MQRPS followed by greater than 2 edges (Evolution graphs) 101 

Total number of edges in evolution graphs of MQRPS 4807 

Total number of MQRPW 194 

Total number of MQRPW followed by greater than 2 edges (Evolution graphs) 114 

Total number of edges in evolution graphs of MQRPW 4322 

 

It can be seen that in the Enron Email dataset, the 

patterns in as many as 3214 (4807-1593) edges would 

have been lost due to the presence of noise at just one 

position. The mining of these patterns and edges helps in 

the further analysis. The results of the proposed method 

obtained on Enron Email Dataset are summarized in 

Table 2. 

Also, it can be seen that instead of taking 23536 edges 

for mining MQRPW, using claim only 4807 edges are 

considered. Therefore, the claim will be extremely 

helpful in dealing with big data as well. The running time 

for mining such patterns with and without the use of 

claim in Enron-email dataset is presented in Fig. 7.  

It is clearly evident from Fig. 7 that the claim has been 

extremely beneficial to the present case as it has reduced 

the running time of mining MQRPW after mining 

MQRPS by a large amount. 
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Fig.7. Running time analysis with and without claim 

These evolution graphs (MQRPS) have been numbered 

from 1-101 for further analysis, which is as follows:  

A.  Modularity: 

On calculating the modularity score of evolution 

graphs on structure for MQRPS (1-101) and plotting 

them, we have found an interesting relationship. It can be 

seen from the plot (Fig. 8) that almost all the patterns 

have their modularity score on the higher side (> 0.7). 

This leads to the conclusion, that random people who 

follow the same pattern have a very high tendency of 

forming communities with each other which might be due 

to their personal relationships, or it might be due to 

people belonging to the same department. 

B.  Cliques: 

A clique refers to a group of entities which are all 

connected to each other. In this paper, we have on 

focused on largest cliques. A clique is largest if there is 

no other clique including more vertices. On plotting the 

size of the largest cliques against the evolution graph on 

structure for MQRPS (1-101), we get Fig. 9. It can be 

seen that the evolution graphs of some patterns have a 

largest clique of size 3. And therefore, it can be said that 

those 3 users (nodes which are part of the clique) 

demonstrate the possibility of a very high degree of a 

professional relationship. 

 

 
Fig.8. Plot of modularity against evolution graphs on structure  

 

 

Fig.9. Number of cliques in evolution graphs on structure 

C.  Centrality:  

Based on four different centrality measures, we try to 

discern most central node of a particular evolution graph 

on structure. The analysis involves extracting the number 

of nodes that have the maximum value for the centrality 

measures. The evolution graphs on structure when 

analyzed with the 4 centrality measures (degree, Eigen 

vector, closeness, betweenness) resulted in: 

 

 Exactly same number of nodes having maximum 

value of the 4 measures. 

 If the nodes are different, even then there is a 

single node which has maximum value for 

majority of the measures. 

 

In other words, for example, we have found that in 

evolution graph on structure for MQRPS “1101”, the 

nodes having the maximum degree appeared to be exactly 

same as the nodes that have the highest closeness and 

betweenness and are a subset of the nodes that have the 

highest value of Eigen vector in the entire evolution 

graph. However, there is a difference in 11 evolution 

graphs which provided different values and number of 

nodes possessing maximum values of the described 
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centrality measures. 

So, if some information is to be passed on to a group of 

people, then it can be directly sent to the most central 

node(s) only. On plotting a graph of the number of nodes 

that have the highest value for the centrality measures in 

the evolution graphs on structure (number of edges > 

100), we get the plot (Fig. 10). 

As is evident from Fig. 10, each centrality measure 

yields one node in the evolution graph having the 

maximum value for that measure. For example, in the 

evolution graph corresponding to pattern number 10, the 

node which has the maximum value of degree is same as 

the node that has the maximum value of betweenness, 

and is same as the node that has the maximum value of 

closeness, and finally, same as the one which has the 

maximum value of eigenvector.  Such node (most central) 

might be the head of a department. Therefore, with the 

help of these 4 measures, we are able to narrow down on 

one single node which is most central for evolution 

graphs on structure having edges greater than 100. 

The intersection parameter has not been used on the 

Enron Email Dataset since the available dataset is not 

large enough to divide it and obtain meaningful results.  

Similarly, the application of the three parameters used 

above on the evolution graphs obtained from MQRPW in 

Enron Email Dataset can help in the analysis of user‟s 

habits in terms of the number of emails that they 

send/receive. 

 

 

Fig.10. Number of nodes having maximum values for each centrality measure in each evolution graph on structure 

Table 3. Result of the method on Synthetic dataset 

Total number of input edges 67424 

Total  number of edges having presence at least s (3) timestamps 7046 

Total number of MQRPS 536 

Total number of MQRPS followed by greater than 2 edges (Evolution graphs) 145 

Total number of edges in evolution graphs of MQRPS 5928 

Total number of MQRPW 386 

Total number of MQRPW followed by greater than 2 edges (Evolution graphs) 219 

Total number of edges in evolution graphs of MQRPW 3090 

 

2.) E-commerce co-purchasing weighted network: 

The results of the proposed method on the 

synthetic dataset described above are summarized 

in Table 3. 

 

Each of the patterns (MQRPS) represents a sequence 

by which the products are bought together and they have 

been numbered from 1-145 for further analysis, which is 

as follows: 

A.  Modularity: 

The value of modularity for some of the evolution 

graphs are summarized in Table 4. These evolution 

graphs correspond to the MQRPS which consist of 

98.24% of all edges. 

Table 4. Values of modularity in evolution graphs of MQRPS obtained 

MQRPS Number of edges in evolution   graph Value of modularity 

111111111111111111111111111111111 3860 0.60 

0111111111101111111111 520 0.83 

1011111111110111111111 508 0.83 

1101111111111011111111 500 0.82 

1110111111111101111111 484 0.84 

1111011111111110111111 482 0.84 

1111101111111111011111 478 0.84 

1111110111111111101111 460 0.83 
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Fig.11. Plot of modularity against evolution graphs on structure 

Further, we plot the value of modularity of each 

evolution graph for MQRPS (1-145) and obtain Fig. 11 

where abscissa shows the pattern number for the 

synthetic graphs. 

It can be inferred from the plot that almost all the 

evolution graphs have their value of modularity ranging 

from [0.5, 0.99] which shows the presence of high 

community structure in products following a particular 

pattern (MQRPS).  

Now, as has been mentioned in the article [23], a high 

value of modularity depicts higher presence of 

communities and thereafter each community has the 

possibility of containing products belonging to a 

particular category/genre such as books, toys, music, etc.  

It means that the product belonging to different 

categories that are sold by a particular pattern can be 

easily identified by an appropriate mapping of products 

with the respective product-id. This can help in setting up 

of offers and promotional schemes depending upon the 

patterns in which the products of different categories are 

being sold. This can help to boost profits.   

Fig. 12 shows a sample evolution graph containing 65 

edges for the MQRPS (110101010110). The different 

communities in the graph have been shown with the help 

of different colors and the value of modularity for this is 

0.95. 

 

 

Fig.12. Communities in a MQRPS (110010101) 

B.  Cliques:  

For a particular evolution graph on structure, cliques 

help us to identify the items that are most frequently 

bought together. This can help in providing appropriate 

recommendations when user wishes to buy a particular 

product. Table 5 shows the size of the largest cliques 

obtained in the largest evolution graphs which contains 

about 83.3% of all the edges in the dataset.  

Table 5. Cliques in evolution graphs of MQRPS 

Pattern in structure Number of edges in evolution graph Size of the largest clique 

111111111111111111111111111111111 3862 6 

0111111111101111111111 520 3 

1011111111110111111111 508 3 

1101111111111011111111 500 3 

1110111111111101111111 484 3 

 

 

Fig.13. Largest Cliques in evolution graph on structure for MQRPS “111111111111111111111111111111111” 
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As an example, consider Fig. 13 which shows two of 

the largest cliques found in the evolution graph for 

MQRPS “111111111111111111111111111111111” 

having 3862 edges. 

On analyzing the dataset, we have obtained largest 

cliques having as many as 6 products in a particular 

pattern. From all these, we can infer that the products 

which form a clique, not only follow a particular pattern 

in which they are sold over time, but also are bought 

simultaneously with each other. This gives us much 

insight into people‟s habits. 

C.  Intersection: 

We have divided the given dataset of 100 timestamps 

into 3 segments and use the proposed method on each of 

the 3 segments separately. Most of the patterns we obtain 

in the three segments are similar to each other, apart from 

the nodes following them. For example, a MQRPS, 

“111111” has a different set of nodes (i.e. different 

products) in each of the three segments. But, there are 

some nodes which are common across all the segments. 

These nodes have been found out by calculating the 

intersection of the evolution graphs of the same patterns 

(MQRPS) over the 3 segments. Through this, we are able 

to identify the set of products which are sold consistently 

with the same MQRPS over a time period. And therefore, 

this can be effectively utilized for predicting future trends 

and enhancing the profits over time. The results of 

intersection on some of the evolution graphs of a 

particular pattern over the three segments are described in 

Table 6 as follows:  

Table 6. Intersection statistics on the three segments of E-commerce Dataset 

Pattern Vertices in Part1 Vertices in Part2 Vertices in Part3 Common vertices 

11111111111 4653 5073 5121 2672 

1111111111 68 149 164 7 

11111111 104 192 230 13 

1111111 174 147 196 12 

111111 179 166 202 14 

 

D.  Centrality: 

We have analyzed the centrality on the basis of 4 

parameters. In this case, it helps us to identify the product 

that is most frequently bought with all the other products 

over time. That product, in other words, will be the most 

central among the products that are sold with a similar 

pattern. As an example, consider the evolution graph in 

Fig. 14 for pattern (MQRPS) “10111111111”.  

 

 

Fig.14. Evolution graph on structure for MQRPS “10111111111”. 

Here, the product represented by the node 198 is the 

most central. That is, it is most often bought with all the 

other products that are sold in a similar pattern 

(10111111111) and that there is a very high tendency that 

a person buying product numbered 198 will land up 

buying products linked to it directly. Therefore, the 

identification of such a product coupled with the 

information about the pattern that it follows while being 

sold, will help to increase the profits by offering, for 

example sales on the one who is most central. 

On plotting the number of nodes having maximum 

values of the 4 centrality measures described in Section5 

in the evolution graphs (having number of edges > 100), 

we have obtained the graph in Fig.15. wherein the 

abscissa shows the pattern number for the evolution 

graphs. 

Different colors and symbols denote different 

centrality measures. For example, in the evolution graph 

for pattern numbered 9, there is only a single node having 

maximum value of eigenvector, betweenness and 

closeness, whereas, the number of nodes having 

maximum value of degree is 2. However, that single node 

which has the maximum value of the first three 

parameters has the maximum value of degree as well. 

And hence, we are able to narrow down on one single 

node having highest value for all parameters.  

As evident from Fig.15, in almost all the evolution 

graphs, the parameters yield the same values for the 

number of nodes.  
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Fig.15. Number of nodes having maximum values for each centrality measure in some of evolution graphs obtained on structure

Similarly, the analysis of the evolution graphs obtained 

on the basis of weight can be analyzed using the above 4 

parameters. Each of them hold a separate meaning and 

give insights into the quantities and amounts in which the 

products are sold. These insights can further help to boost 

the sales and profit from the products. Finally, the next 

section summarizes the paper through discussion and 

conclusion. 

 

VII.  DISCUSSION AND CONCLUSION 

7.1  Discussion 

We consider the evolving nature of the graphs and the 

fact that a pattern may start from any timestamp. So, in 

this paper, we present a method for finding informative 

patterns (MQRPS and MQRPW) in noisy dynamic 

networks. These patterns are extremely meaningful and 

provide us a better understanding of the complex 

networks under consideration. Then, the study of 

evolution graphs at microscopic level on the basis of four 

parameters has helped us to gain an insight into the nature 

of the patterns captured by the method. Each chosen 

parameter conveys its own meaning, helps us to view the 

evolution graphs in distinct way and thus makes unique 

conclusion(s). Modularity tells us about the high or low 

community structure in a particular evolution graph. 

Clique is used to extract that (those) community 

(communities) which is (are) strongly connected. Then, 

centrality parameter discerns most central node(s) which 

is (are) the part of some community. Intersection gives 

the edges (linking two nodes) which are consistently 

following the same pattern over a time period. Hence, 

these parameters are used to yield vital piece of 

information. There have been previous works [6] which 

have solved the problem of mining noisy patterns in 

dynamic networks, however, they focused on mining 

patterns only in the structural domain and without 

involving any comprehensive analysis. Whereas, the 

current article presents a holistic and a novel framework 

for mining noisy patterns across all the dimensions 

(structure, weight and direction) and also analyses the 

patterns obtained to derive real world insights. This kind 

of method is useful particularly to those organizations 

who deal with large amount of data. Though in the recent 

days, the data collection practices have become extremely 

accurate, however, there is always a possibility of noise 

creeping in which diminishes the purpose of the analysis 

and patterns obtained from such datasets. For an 

organization who recognizes how noise can be 

detrimental to their analysis, there exists two methods of 

action. Either, they can focus on removing noise from the 

data first and then conducting an analysis, or, they can 

instead strive to develop algorithms which take these 

noisy details into account. And, the framework presented 

in this paper focusses on the latter one.  

7.2  Conclusion 

 With the ever growing size of the data, noise finds 

its entry into it. Hence, the scope of this paper is to 

provide a method which mines Maximal Quasi 

Regular patterns on Structure and Maximal Quasi 

Regular Patterns on Weight in any weighted 

dynamic network dataset and the detailed 

examination of the evolution graphs formed. We 

convert the weighted dynamic network into a 

summary graph, obtain the occurrence 

sequence/weight sequence of the edges on the 

basis of its presence and absence and apply the 

proposed algorithm on the sequence for pattern 

discovery. MQRPS and MQRPW so obtained not 

only help us in making future predictions but also 

provide us with some crucial hidden information 

which might have been lost. Moreover, the 

addition of analysis helps to dig for more 

knowledge they (patterns) contain and thus, 

increases our understanding of the network. Hence, 

summarizing, the paper deals with the following 

questions: Why is it important to consider the 

presence of noise?  

 Has noise been handled before? If yes, how it is 

different from the current direction of research? 

 What‟s the use of patterns that have been mined?  

 How an analysis on the patterns obtained can be 

used for the benefit of real world organizations?  

 

To demonstrate the same, we have evaluated the 

proposed method on two datasets followed by the 

analysis. This has provided beneficial inferences. Further, 

by restructuring the method, we can mine MQRPS and 

MQRPW in a very less time. Therefore, it is clearly 

evident that it is able to deal with large scale networks to 
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extract the beneficial knowledge hidden in them. 

Dynamic graph mining is relatively a new research 

topic and owes to a large number of applications. 

Currently, we have focused on finding patterns having 

noise at one position and analyzing them. In the current 

work, we have focused on patterns having noise only at 

single positons. However, there exists a possibility that 

noise might be present at more than a single position. 

Also, there is also a possibility of the presence of a 

relationship between the parameters that have been 

chosen for analysis. This relationship can help us to 

predict the values of some variables, given some other 

values. These are some of the future research areas that 

we intend to work in future. 
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