
I.J. Information Technology and Computer Science, 2017, 4, 18-23
Published Online April 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.04.03

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

Improved Parallel Apriori Algorithm

for Multi-cores

Swati Rustogi
Banasthali Vidyapith, Rajasthan, India

E-mail: swati.rustogi@gmail.com

Manisha Sharma
Banasthali Vidyapith, Rajasthan, India

E-mail: manishsharma8@gmail.com

Sudha Morwal
Banasthali Vidyapith, Rajasthan, India

E-mail: sudha_morwal@yahoo.co.in

Abstract—Apriori algorithm is one of the most popular

data mining techniques, which is used for mining hidden

relationship in large data. With parallelism, a large data

set can be mined in less amount of time. Apart from the

costly distributed systems, a computer supporting multi

core environment can be used for applying parallelism. In

this paper an improved Apriori algorithm for multi-core

environment is proposed.

The main contributions of this paper are:

 An efficient Apriori algorithm that applies data

parallelism in multi-core environment by reducing

the time taken to count the frequency of candidate

item sets.

 The performance of proposed algorithm is

evaluated for multiple cores on basis of speedup.

 The performance of the proposed algorithm is

compared with the other such parallel algorithm

and it shows an improvement by more than 15%

preliminary experiment.

Index Terms—Multi-core, data mining, parallelism,

Apriori.

I. INTRODUCTION

Data mining comprises of many techniques, out of

which association rule mining is very popular.

Association mining involves finding out hidden

relationships It has been used in many diverse areas like

searching for relevant articles from a document repository

[Ji, Y., Ying, H., Tran, J., Dews, P., & Massanari, R. M.,

2015], predicting adverse drug reactions after taking

inputs from social media [Yang, H., & Yang, C.

C. ,2015], identifications of diseases [Sengupta, D., Sood,

M., Vijayvargia, P., & Naik, P. K. ,2013], emergency

management [Fan, B., & Luo, J. ,2013], finding out

relation between music genre and regions [Narberth, K.,

Goienetxea , I., Johnson, C., & Conklin, D. ,2012]. Till

now for data mining multiprocessors [Yu, K. M., & Zhou,

J., 2010], clouds or grids [Aflori, C., & Craus, M., 2007]

have been used Limitations with these systems are 1)

increased cost due to increased hardware; 2) Decreased

throughput of the system due to time taken in

communication between multiple processors. The

existing association mining techniques should be

enhanced to take advantage of commonly available multi

core systems. These systems provide the advantage of

reduced cost as they are based on shared memory

architecture.

 Algorithms have been developed to take the

advantage of multi core environment [Yu, K. M., & Wu,

S. H., 2011]. In this paper Apriori algorithm has been

redesigned to gain better performance in multi-core

environment. The paper has been organized as following:

In section 2 Apriori algorithm, Apriori algorithm with

TID table and parallel versions of Apriori are discussed.

In section 3, the proposed algorithm and its working with

an example is discussed. In section 4 simulation results

are explained using two datasets. In section 5 conclusions

of this work and future work is presented.

II. RELATED WORK

There are many algorithms which fall in the category

of association mining. Of all the algorithms Apriori and

FP growth are the most popular algorithms. First we are

going to look into the popular algorithms used for

association, namely Apriori and FP-growth. After this we

are going to study the parallel implementations of Apriori

algorithm.

Apriori: The first serial algorithm of Apriori was

proposed in [Agrawal, Rakesh, Tomasz Imieliński, and

Arun Swami, 1993]. Main parts of the algorithm are:

generating itemsets and calculating their count in the

database. The existing itemsets are merged with each

other to generate new itemsets. This process is iterative

 Improved Parallel Apriori Algorithm for Multi-cores 19

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

and it is continued till no more new candidate keys can be

generated. Also the itemsets, whose count is less than the

support, are not considered for candidate generation in

any of the iterations.

To generate candidate itemsets, transactions are read

from database. The multiple reads of database reduces the

efficiency of algorithm. To remove this disadvantage TID

table is prepared which maps each item to the transaction

Identification (TID) for the transaction in which it is

occurring [Yu, K. M., Zhou, J., Hong, T. P., & Zhou, J.

L., 2010].

FP-Growth: This algorithm is based on FP-tree data

structure [Han, J., Pei, J., Yin, Y., & Mao, R., 2004]. It

reduces execution time as it scans transaction database

only twice. For applying parallelism Apriori algorithm is

more appropriate than FP growth, because tree structures

in FP growth are more difficult to balance [Yu, K. M.,

Zhou, J., Hong, T. P., & Zhou, J. L., 2010].

Parallel versions of Apriori designed so far are based

on processors connected in a network or grid. Authors of

[Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., & Shi, Y.,

2013] used GPUs for achieving parallelism. Authors of

[Lin, M. Y., Lee, P. Y., & Hsueh, S. C., 2012] developed

Apriori algorithm based on map reduce. Map Reduce has

the disadvantage of heavy disk IOs at every map and

reduce operation [Rathee, S., Kaul, M., & Kashyap, A.,

2015]. Authors of [Ravi, V. T., & Agrawal, G., 2009]

designed a middleware to perform parallel execution of

Apriori, K-means and E-M algorithm. Authors in [Ye, Y.,

& Chiang, C. C., 2006] proposed a parallel algorithm for

Apriori. But disadvantage with this algorithm are the

multiple database reads required. Authors in [Yu, K. M.,

& Wu, S. H., 2011] have proposed Apriori algorithm

based on multi core architecture. This algorithm aims at

reducing the time for candidate generation.

III. PROPOSED ALGORITHM

To take advantage of the multicore architecture of

computers, the existing algorithm needs to be modified.

And for this parallelism has to be applied. To apply

parallelism, data or task parallelism can be used [Garg, R.,

& Mishra, 2011]. Data contains a set of transactions.

Each transaction contains a set of items. In this work data

parallelism and scatter gather approach [Holmes, D. W.,

Williams, J. R., & Tilke, P., 2010] has been used. Data

parallelism means splitting the data among multiple cores.

Then each core will perform same processing on the data

assigned to it.

In the proposed algorithm there are three phases: initial,

scatter and gather phase. In initial phase, TID table will

be generated. In scatter phase, each core performs its task

and generates output. In gather phase, the output

generated by each core is gathered and further actions are

taken.

Fig.1. Phases in the proposed algorithm

1. Initial Phase: TID table is populated with keys.

Table 1 is the database example which will be

used to explain the proposed algorithm.

Table 1. Database Example

Transaction ID (TID) Transaction Detail

1 1,2,5

2 2,4

3 2,3

4 1,2,4

5 1,3

6 2,3

7 1,3

8 1,2,3,5

9 1,2,3

TID table is populated with TIDs after scanning

database. For this database is divided equally among all

the cores, so that TID table is populated in less time.

Table 2 displays the contents of TID table after initial

phase.

Table 2. TID table after Initial Phase

Item TID List

1 1,4,5,7,8,9

2 1,2,3,4,6,8

3 3,5,6,7,8,9

4 2,4

5 1,8

TID List of Item 1 contains the transaction IDs in

which Item 1 is present.

2. Scatter Phase: In scatter phase candidate keys are

generated. Each core generates itemsets for equal

number of items. After this count is computed for

each new generated candidate key. Fig. 2

summarizes the workings of scatter phase.

Initial Phase

Scatter Phase

Gather Phase

Check if more

candidates can be

generated

Yes

No
Exit

20 Improved Parallel Apriori Algorithm for Multi-cores

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

Fig.2. Scatter Phase

Due to following strategies new itemsets are generated

in a lesser amount of time:

1. Each core generates itemsets for equal number of

items.

2. To generate new candidate key, existing candidate

keys are merged with themselves.

3. To compute count of new candidate key, the key is

split into two parts. First part contains the new

candidate key except the last item. The second part

contains the last item present in the new candidate

key. TID list is fetched for both the parts.

Intersection of the TID list gives the TID list of the

new candidate key. Number of TIDs in the

generated TID list gives the count for the new TID

list. Given below are the pseudocodes of merge

function and compute count function.

Merge Function:

For each I1 € Item_index1 do

 For each I2 € Item_index2 do

 CI1 = Candidate Item at index I1

 CI2 = Candidate Item at index I2

 If (CI1[0]==CI2[0] &&

-2] == CI2[n-2] &&

 CI1[n-1] !=CI2[n-1]

 Then

 New_candidate_key = merge of CI1 and CI2

Compute Count Function:

Split the new candidate key in two parts

Split_key_1 and Split_key_2

TID1 = TID List of Split_key_1

TID2 = TID List of Split_key_2

If (TID1 ⊅ TID2 && TID1TID2)

Then

 Return

Else

 Compare elements of TID1 and TID2

End If

Add new_candidate_key, new_TID_list to TID table

Count of new_candidate_key= number of TIDs in new_TID_list

Table 3 is the TID table after candidate-2 itemsets has

been generated. After this candidate-3 itemsets will be

generated using candidate-2 itemsets.

Table 3. TID table after candiate-2 itemset generation

Item TID List

1 1,4,5,7,8,9

2 1,2,3,4,6,8

3 3,5,6,7,8,9

4 2,4

5 1,8

1,2 1,8

1,3 5,7,8,9

1,4 4

1,5 1,8

2,3 3,6,8

2,4 2,4

2,5 1,8

3,5 8

Next we show the generation of TID list and count

generation for candidate-3 itemset with two examples.

Case I: New candidate key 1,2,3

Split_key_1 = 1,2

Split_key_2 = 3

TID1 = 1,8

TID2 = 3, 5, 6, 7, 8, 9

TID1∩TID2 = 8

So TID list of 1, 2, 3 is {8} and count is 1.

Case II: New candidate key 1, 3, 4

Split_key_1 = 1, 3

Main

Thread

Core 1

1. Generate

Count for each

candidate itemset

2. Update TID

Table

Core 2

Core 3

Core 4

Generate

Candidate

Itemsets

 Improved Parallel Apriori Algorithm for Multi-cores 21

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

Split_key_2 = 4

TID1 = 5,7,8,9

TID2 = 2,4

Since TID1 ⊄ TID2 and TID1 ⊅ TID2 so TID list not

generated for 1,3,4.

3. Gather Phase: The main thread prunes the

candidate itemsets. If the count of the candidate

key is less than the minimum support then the

candidate key is discarded.

Fig.3. Gather Phase

IV. EXPERIMENTAL RESULTS

Algorithm is implemented in multicore environment

and compared with the algorithm given by author in [Yu,

K. M., & Wu, S. H., 2011]. Following are the

specifications of the system: Intel(R) Core (TM) i3-4030

CPU @ 1.90GHz, RAM 4GB. Two datasets are used to

compare the algorithms. Dataset A has been generated by

using IBM data generator [17]. Dataset B is a retail

dataset [Tank, D. M., 2014].

Table 4 shows the characteristics of the data set A.

Table 4. Dataset Characteristics of Dataset A

Dataset Transactions
Distinct

Items

Average

Transaction

Size

T10I4D10K 10000 1000 10

Table 5 shows the execution time of MATI algorithm

in seconds [Yu, K. M., & Wu, S. H., 2011] and the

improved parallel algorithm for dataset A. For this

experiment minimum support is varied and then

execution time is observed. Fig. 4 is graphical

representation of table 5. From the figure it can be

observed that execution time is less in case of improved

parallel algorithm.

Table 5. Execution time comparison (Dataset A)

Minimum

Support

Execution Time (seconds)

MATI Improved parallel algorithm

.01 71.96 38.127

.02 14.76 2.40

.03 2.94 0.69

.04 1.28 .37

.05 0.53 .39

.005 227.5 171.2

Fig.4. Execution time comparison of MATI and Improved Algorithm

(Dataset A)

The algorithm is evaluated for speedup for multiple

cores.

Speedup = T(1)/T(n), where T(1) is the time taken in

serial execution and T(n) is the time taken by using n

processors. It indicates the impact of using multiple

processors or cores on the execution time of the

algorithm. For computing speedup, dataset is T10I4D10K

and support is .03.This experiment is conducted by using

serial Apriori algorithm and the improved parallel

algorithm. From table 6 it is clear that execution time

decreases when using parallel algorithm and speedup

increases with increase in number of cores. Fig. 5 is the

graphical representation of table 6.

Table 6. Speedup with multiple cores (Dataset A)

No. of cores T(1) T(n) Speedup

1 4.16 1.03 4.03

2 4.04 0.92 4.39

3 3.99 0.73 5.46

4 3.88 0.68 5.70

Main Thread

Prune the Candidate

Itemsets

Yes
Discard candidate

key if support less

than minimum

support

22 Improved Parallel Apriori Algorithm for Multi-cores

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

Fig.5. Speedup with multiple cores (Dataset A)

As shown in Fig. 5, speedup increases with increase in

number of cores. This indicates that as the number of

cores increases the speedup increases.

Table 7 shows the characteristic of dataset B.

Table 7. Dataset Characteristics of Dataset B

Dataset Transactions
Distinct

Items

Average

Transaction Size

Retail 5000 200 3

Table 8 shows the execution time of MATI and

improved parallel algorithm, for Retail dataset. Fig. 6 is

the graphical representation of table 8. Fig. 6 shows that

execution time is less in case of the improved parallel

algorithm.

Table 8. Execution time comparison (Dataset B)

Minimum

Support

Execution Time (seconds)

MATI
Improved parallel

algorithm

.01 1.47 0.50

.02 0.73 0.31

.03 0.66 0.31

.04 0.65 0.30

.05 0.48 0.27

0.005 2.84 2.02

Fig.6. Execution time comparison of MATI and Improved Algorithm

(Dataset B)

Table 9 and fig. 7 shows speedup for dataset B.

Experiment is conducted with minimum support as 0.03.

As per the table and figure, it is evident that speedup

increases with increase in number of cores.

Table 9. Speedup with multiple cores (Dataset B)

No. of cores T(1) T(n) Speedup

1 0.799 0.415 1.92

2 0.749 0.384 1.95

3 0.697 0.341 2.04

4 0.657 0.312 2.10

Fig.7. Speedup with multiple cores (Dataset B)

V. CONCLUSION AND FUTURE WORK

Apriori algorithm is one of the popular algorithms used

for association mining. The proposed algorithm reduces

the execution time of the algorithm by using data

parallelism in multi-core environment, which is evident

from the experiment results. It has been observed that the

proposed algorithm executes in a lesser time in

comparison to other such parallel algorithm and serial

algorithm. Also it has been observed that speedup

increases with increase in number of cores. Thus it can be

concluded that with increase in number of cores,

execution time of the proposed algorithm will decrease

and speedup will increase.

Although an efficient Apriori algorithm for multi-core

has been proposed, it can be analyzed from the point of

view of load on the cores. Also the load can be managed

dynamically, while the algorithm is in execution.

REFERENCES

[1] Agrawal, Rakesh, Tomasz Imieliński, and Arun Swami.

"Mining association rules between sets of items in large

databases." ACM SIGMOD Record 22.2 (1993), 207-216.

[2] Aflori, C., & Craus, M. (2007). Grid implementation of

the Apriori algorithm. Advances in engineering

software, 38(5), 295-300.

[3] Asha, P., & Jebarajan, T. (2015). Association Rule

Mining and Refinement Using Shared Memory

Multiprocessor Environment. In Artificial Intelligence and

 Improved Parallel Apriori Algorithm for Multi-cores 23

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 4, 18-23

Evolutionary Algorithms in Engineering Systems (pp.

105-117). Springer India.

[4] Fan, B., & Luo, J. (2013). Spatially enabled emergency

event analysis using a multi-level association rule mining

method. Natural hazards, 67(2), 239-260.

[5] Holmes, D. W., Williams, J. R., & Tilke, P. (2010). An

events based algorithm for distributing concurrent tasks

on multi-core architectures. Computer Physics

Communications, 181(2), 341-354.

[6] Garg, R., & Mishra, P. K. (2011). Exploiting parallelism

in association rule mining algorithms. International

Journal of Advanced Technology, 2, 222-232.

[7] Han, J., Pei, J., Yin, Y., & Mao, R. (2004). Mining

frequent patterns without candidate generation: A

frequent-pattern tree approach. Data mining and

knowledge discovery, 8(1), 53-87.

[8] Ji, Y., Ying, H., Tran, J., Dews, P., & Massanari, R. M.

(2015, November). Integrating association mining into

relevance feedback for biomedical literature search. In

International Conference on Bioinformatics and

Biomedicine (BIBM), 2015 IEEE (pp. 531-536). IEEE.

[9] Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., & Shi, Y.

(2013). Parallel data mining techniques on graphics

processing unit with compute unified device architecture

(CUDA). The Journal of Supercomputing, 64(3), 942-967.

[10] Neubarth, K., Goienetxea, I., Johnson, C., & Conklin, D.

(2012). Association Mining of Folk Music Genres and

Toponyms. In International Society for Music Information

Retrieval Conference, Vol. 2012, p. 13th.

[11] Ravi, V. T., & Agrawal, G. (2009, May). Performance

issues in parallelizing data-intensive applications on a

multi-core cluster. In Proceedings of the 2009 9th

IEEE/ACM International Symposium on Cluster

Computing and the Grid (pp. 308-315). IEEE Computer

Society.

[12] Rathee, S., Kaul, M., & Kashyap, A. (2015, October). R-

Apriori: an efficient apriori based algorithm on spark.

In Proceedings of the 8th Workshop on Ph.D. Workshop

in Information and Knowledge Management (pp. 27-34),

ACM.

[13] Sengupta, D., Sood, M., Vijayvargia, P., & Naik, P. K.

(2013). Association rule mining based study for

identification of clinical parameters akin to occurrence of

brain tumor. Bioinformation, 9(11), 555-9.

[14] Tank, D. M. (2014). Improved Apriori Algorithm for

Mining Association Rules. International Journal of

Information Technology and Computer Science

(IJITCS), 6(7), 15.

[15] Tanna, P., & Ghodasara, Y. (2014). Using Apriori with

WEKA for Frequent Pattern Mining. arXiv preprint

arXiv:1406.7371.

[16] Yang, H., & Yang, C. C. (2015). Using Health-Consumer-

Contributed Data to Detect Adverse Drug Reactions by

Association Mining with Temporal Analysis. ACM

Transactions on Intelligent Systems and Technology

(TIST), 6(4), 55.

[17] Ye, Y., & Chiang, C. C. (2006, August). A parallel apriori

algorithm for frequent itemsets mining. In Fourth

International Conference on Software Engineering

Research, Management and Applications (SERA'06) (pp.

87-94). IEEE.

[18] Yu, K. M., Zhou, J., Hong, T. P., & Zhou, J. L. (2010). A

load-balanced distributed parallel mining

algorithm. Expert Systems with Applications, 37(3),

2459-2464.

[19] Yu, K. M., & Zhou, J. (2010). Parallel TID-based frequent

pattern mining algorithm on a PC Cluster and grid

computing system. Expert Systems with

Applications, 37(3), 2486-2494.

[20] Yu, K. M., & Wu, S. H. (2011, November). An efficient

load balancing multi-core frequent patterns mining

algorithm. In Trust, Security and Privacy in Computing

and Communications (TrustCom), 2011 IEEE 10th

International Conference on (pp. 1408-1412). IEEE.

[21] http://fimi.ua.ac.be/data/

Authors’ Profiles

Swati Rustogi is currently pursuing Ph.D.

(CS) from Banasthali Vidyapith, Rajasthan,

India. She is working as an Assistant

Professor with Amity University, Noida. She

completed her graduation from Delhi

University and MCA from Birla Institute of

Applied Sciences.

She has seven years of teaching and research experience and

five years of industry experience. In research she has been

focusing on distributed systems.

Dr. Manisha is currently working as

Associate Professor (Computer Science),

Banasthali University. She obtained her Ph.

D. degree in Computer Science from

Banasthali University. She is life member

of CSI and many academic bodies of

various universities.

She has presented many papers in international and national

conferences and has many publications in journals to her credit.

Current research interests of Dr. Manisha are Artificial

Intelligence, Intelligent Systems, Data Mining, and Natural

Language Processing. She has more than 17 years of teaching

experience. She is an active research supervisor and guiding Ph.

D. students in the area of Artificial Intelligence and Data

Mining.

Dr. Sudha Morwal: Sudha Morwal has

done research in the field of Natural

Language Processing. Currently she is

working as Associate Professor in the

Department of Computer Science at

Banasthali Vidyapith (Rajasthan), India.

She is NET qualified and has done

M.Tech (Computer Science) and M.Sc.

(Computer Science) from Banasthali University (Rajasthan),

India.

How to cite this paper: Swati Rustogi, Manisha Sharma,

Sudha Morwal,"Improved Parallel Apriori Algorithm for Multi-

cores", International Journal of Information Technology and

Computer Science(IJITCS), Vol.9, No.4, pp.18-23, 2017. DOI:

10.5815/ijitcs.2017.04.03

http://fimi.ua.ac.be/data/

