
I.J. Information Technology and Computer Science, 2017, 3, 10-18
Published Online March 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.03.02

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

ATAM-based Architecture Evaluation Using

LOTOS Formal Method

Muhammad Usman Ashraf
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: m.usmanashraf@yahoo.com

Wajdi Aljedaibi
Department of Computer Science, FCIT, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: waljedaibi@kau.edu.sa

Abstract—System Architecture evaluation and formal

specification are the significant processes and practical

endeavors in all domains. Many methods and formal

descriptive techniques have been proposed to make a

comprehensive analysis and formal representation of a

system architecture. This paper consists of two main parts,

in first we evaluated system performance, quality

attribute in Remote Temperature Sensor clients-Server

architecture by implementing an ATAM model, which

provides a comprehensive support for evaluation of

architecture designs by considering design quality

attributes and how they can be represented in the

architecture. In the second part, we computed the selected

system architecture in ISO standards formal description

technique LOTOS with which a system can be specified

by the temporal relation between interactions and

behavior of the system. Our proposed approach improves

on factors such as ambiguity, inconsistency and

incompleteness in current system architecture.

Index Terms—ATAM, Architecture, LOTOS, CADP,

Software Quality Attributes Evaluation, Software Quality

Assurance.

I. INTRODUCTION

Architecture assessment has become more important

due to the ever-increasing complexities in software and

system development. Indeed, system architectural

analysis at early stages detects and removes maximum

flaws with minimum effort and cost [18]. In addition,

accurate selection of system architecture is vital for time

to market of critical systems [19]. Many approaches have

been proposed to evaluate the architectural designs of a

system at early stage, including Scenario-based

Architecture Analysis (SAAM), Performance Assessment

of Software Architecture (PASA), Architecture Level

Modifiability Analysis (ALMA) etc. [20]. Nevertheless,

early stage evaluation of large-scale system architecture

is not sufficiently addressed by existing architectural

evaluation methods.

There is a tradeoff in designs vs. discipline that play a

role to correctly direct efforts at such initial level of a

system. We selected a Remote Temperature Sensor (RTS)

[4] client server architecture as an example to implement

the Architecture Tradeoff Analysis Method (ATAM),

which provides support to discover dependencies among

elements and quality attributes of an architecture design

at early stages of product lifecycle [21]. Further, we

executed the selected architecture in the Language of

Temporal Ordering Specification (LOTOS) [9], which is

an ISO standard formal description technique from which

an initial prototype can be generated to get immediate

feedback from the client on the basis of elicited

requirements [23].

The reminder of the paper is organized as follows: a

background on ATAM and LOTOS is given in section 2.

Section 3 describes Remote Temperature Sensor client

server architecture (RTS) and its functionality. ATAM

evaluation of selected RTS architectures is given in

section 4. Section 5 presents the LOTOS specification of

ATAM architectures for RTS. We also show RTS

architecture graphically as generated by CADP [11]; a

toolset to compile and execute LOTOS specifications

II. BACKGROUND

In this section we introduce the basic overview of

software architecture, architecture tradeoff analysis

method (ATAM) and its phases and steps in detail by

implementation on real life scenarios.

A. Software Architecture

Every program has an architecture which is comprised

of different pieces/ components that interact in a

deterministic way. Similarly in a software system,

software architecture is, basically, a structured set of an

interactive elements, which constitute different software

parts, their visible properties and interconnection between

them. A well designed architecture is a complete

description of how the system elements interact with each

other. An intensive software system is described as a

static software structure on which design time elements

depend on, controls dynamic software structure runtime

elements and the interconnection between them [1]. With

respect to visible properties of software architecture

elements, a system is noticed by its behavior (what the

system will do) and its quality properties (how the system

mailto:waljedaibi@kau.edu.sa

 ATAM-based Architecture Evaluation Using LOTOS Formal Method 11

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

will do it) such as availability, scalability, security,

ubiquity, usability etc. However, a software architecture

could be designed in different ways based on software

requirements and desired quality attributes.

According to one principle of architecture “Every

computer program has an architecture, whether or not it is

documented and understood” [24]. The architecture of a

system is a fundamental property that demonstrates

whether or not it has been documented and understood.

The right architecture paves the way of the system,

whereas a wrong architecture usually spells some form of

disaster. A software architecture designing is very early

and important stage where an architect has to take most

decisions on how the development should proceed. Once

an architecture of a system is built, it is hard to change in

later, therefore all the decisions should be in the right way

under the limitation of the requirements and quality

attributes of the system as well [1].

B. ATAM

System design evaluation is a key analytical process in

all disciplines and intellectual and practical endeavors. In

terms of software architecture design analysis, many

methods have been proposed in order to analyze a system

architecture such as Scenario-based Architecture Analysis

(SAAM), Performance Assessment of Software

Architecture (PASA), Architecture Level Modifiability

Analysis (ALMA) and Architecture Tradeoff Analysis

Method (ATAM). ATAM provides a comprehensive

support for evaluation of architecture designs since it

allows consideration of multiple quality attributes such as

reliability, portability, performance, usability, security,

etc. The origins of ATAM started with software

architecture analysis method (SAAM) with ambitions to

consider most common quality attributes such as

modifiability and performance [4]. There is a tradeoff that

must be considered, i.e. some qualities may conflict such

dependability vs performance. As a result, a tradeoff

method is highly required at initial levels of the system

development. ATAM tradeoff analysis helps to discover

the dependencies among the elements and attributes of an

architecture.

ATAM

· Business Drivers
· Architectural Approaches
· Scenarios
· Risks, non-Risks
· Sensitivity Points
· Tradeoffs
· Risk Themes

Architecture

Participants

Fig.1. ATAM Input Output [6]

ATAM extracts the architecture of a system as well as

stakeholder participation and business goals to emphasize

the attention of the evaluators on the portion of the

architecture that is central to the achievement of the goals.

ATAM takes some business drivers and architectural

documents as input and produce a valuable output with

involvement of some participants of the method as

described in below fig.1 [5]. ATAM gets an input as an

architecture and produces the output of some participant

of the method. Output from ATAM is utilized to prepare

a final written report.

C. ATAM Phases and Steps

ATAM method activities are categorized into four

phases as shown in fig.2 and explained below:

ATAM

Follow up
Partnership &
Preparation

Continued
Evaluation

Evaluation

· Present ATAM

· Present Business Drivers

· Present Architecture

· Identify Arch. Approaches

· Generate Quality Attributes

Utility Tree

· Analyze Arch. Approaches

· Brainstorm & Priorities

Scenarios

· Analyze Arch. Approaches

· Present Results

Fig.2. ATAM Phases and Steps [6]

· Phase “0” Partnership and Preparation

The first phase of ATAM is “partnership and

preparation” takes a little over few weeks under the

leadership of the evaluation team and project decision

makers. It involves a set of informal meetings between

them to sort out the work in detail.

· Phase “1” Evaluation

The second phase of ATAM is the evaluation of the

system at initial level. The evaluation team evaluates the

system architecture, its functional and non-functional

requirements as detailed in the requirements document.

This phase takes normally couple of days at which a

formal meeting is arranged between project decision

maker and evaluation team to gather the information and

analysis. This phase consists of several steps where

ATAM method is presented by the evaluation leader to

the project representatives. In the next step, all project

representatives are involved in evaluating and

understating the primary business drivers and overall

system‟s business perspectives [12]. In step 3 of this

phase, a detailed architecture of the system at an

appropriate level is presented by an architect where all

technical limitations are addressed such as OS, hardware,

and software limitations are presented and discussed. An

important decision at this step is the selection of

architectural approaches that are suitable for system

requirements. In step 5, evaluation team and project

12 ATAM-based Architecture Evaluation Using LOTOS Formal Method

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

decision makers articulate the quality attributes in detail

and prioritize them according to the system requirements.

These quality attributes are discussed in the form of

different scenarios. In the final step, the architect

explains the architectural support against these scenarios.

· Phase “2” Evaluation (Continued)

This phase has three steps which may last around 2-3

days to complete where project decision makers,

evaluation team, and stakeholders review all what has

been learnt from phase 1 and summarize them. In this

phase, more scenarios could be considered and analysed.

The methodology presents to stakeholder what is going to

be implemented for this particular system and share all

the risks, non-risks, trade-off, and sensitive factors.

Moreover, in order to brainstorm scenarios, evaluation

team discusses with stakeholder which scenarios are more

meaningful with respect to the stakeholders' individual

roles and then order them accordingly. Once the scenarios

are finalized, evaluation team presents the high ranked

and newly, if added, scenarios to the architect. In last step

of this phase, the collected information is documented

and presented to stakeholder.

· Phase “3” Follow-Up

The last phase of ATAM is related to self-examination

of architecture evaluation team where they discuss the

advantages, disadvantages, obstacles, and all decisions

related to the architecture devised. They go through all

surveys and conducted meetings in phase 0, 1, 2 to

generate a final report from the scenarios.

D. Formal Description Approach

Due to the ever increasing complexities of technology

and its advancement in many facets of our surrounding

environment, system reliability and correctness have

become major concerns during software development

projects. An appropriate address to such concerns lies

within formal system specification methods that

embodies mathematical rigor and precision to verify

system properties [8]. The use of formal specification

approach increases confidence on quality factors such as

reliability, performance, availability, ambiguity,

inconsistency and incompleteness in current system

architecture.

The Language of Temporal Ordering Specification

(LOTOS) is a formal description language developed by

International standard organization (ISO) for open system

formal specification. Systems in LOTOS are specified by

drawing the temporal relation between interactions

establishing the discernible behaviour of the system [3].

LOTOS is one of the Formal Description Techniques

(FDTs) built on precise mathematical semantics that can

be implemented in different architectural styles and

approaches [2]. Specifying a system in LOTOS describes

both the static and dynamic behaviours of the system.

Particular properties are described in different ways in

different methods which lead to problem in other

methods to ensure after developing the system model the

descriptions remain invariant [2]. In addition, LOTOS

specifications, due to its strong mathematical basis, can

be executed at an early stage in the development project

generating an initial level prototype from which

immediate client feedback can be gathered.

LOTOS syntax can be written in two different styles

depending on the desired level of abstraction as set forth

by architect. Basic LOTOS is an abstract style in which

an architect can specify the basic interactions and

synchronizations between concurrent processes, while

full LOTOS is a more expressive style that allow for

additional language operators to accommodate for

complex conditions, parameters, and return values.

LOTOS code can be compiled by CAESAR compiler

after which it can be used in many ways. For example,

CADP allows for running the specification enabling the

architect to experiment the architecture in a live mode

and examine flow of events. Furthermore, the compiler

generates a Binary Coded Graph (BCG) file which is a

formatted labelled transition system. BCG file is further

compiled using BCG_DRAW tool to generate the final

graphical representation of the architecture [9].

III. RTS CLIENTS-SERVER ARCHITECTURE

In order to elaborate a system architecture in ATAM,

we used a common Remote Temperature Sensor (RTS)

system which used to measure the temperature of all the

furnaces placed in it, full details of RTS can be found in

[4]. The basic principle of RTS is that an operator, might

be host computer, sends specific frequency to RTS to get

the furnace temperature according to specified frequency.

Once RTS receives the frequency from host, it gets the

temperature from a set furnaces in analog form and

forwards it to Analog to Digital Converter (ADC) which

converts it into digital form. Temperatures are then

placed in a queue because ADC can convert only one

furnace temperature at a time. By following frequency

restrictions, ADC converts the temperature from analog

to digital form and reports to system operator.

In this section we illustrated RTS (Remote

Temperature Sensor) an example architecture analyzed

using ATAM method. RTS system could be used in

different architectures such as clients-Server architecture,

two servers multiple clients and Client-Intelligent Cache

Server architecture. RTS architecture selection depends

on system requirement and quality attributes for that

particular system. For instance, system requirement may

enforce to implement clients-Server architecture with

limited quality attributes that provide furnace report to

any client. In contrast, if a quality attribute such as

“availability” is a requirement for our RTS system that

should be implemented with limited cost constraints, then

rebuilding architecture by using two servers and multiple-

clients architecture is a candidate architectural model.

However, if the system requires additional quality

attributes, for example “performance”, a client-intelligent

cache server model maybe considered at which an extra

wrapper, i.e. intelligent cache, can analyze variation in

furnace temperature by its cool down or heat up levels

[10].

 ATAM-based Architecture Evaluation Using LOTOS Formal Method 13

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

In this paper we selected the client-server architectural

model for our RTS example, as shown in fig.3. The

selected architecture consists of single server and eight

clients as shown in fig.3-a. A detailed description of RTS

server that contains ADC and similar number of furnaces

as clients is shown in fig.3-b.

Furnace
Client 1

Furnace
Client 2

Furnace
Client 8

RTS
Server

Furnace
Client 1

Furnace
Client 2

Furnace
Client 8

ADC COMM

To Furnaces To Clients

(a)

(b)

Fig.3. RTS Client-Server Architecture

IV. ATAM IMPLEMENTATION IN CLIENTS-SERVER

ARCHITECTURE

In this section we show the phase activates when

applying ATAM on our selected RTS architecture, which

are as follows:

· Partnership and Preparation (Phase „0‟)

· Present ATAM (Phase „1‟ Step 1) already

discussed above.

· Present Architecture (Phase „1‟ Step 3) already

discussed above.

· Analyze Architectural Approach (Phase 1, Step 6)

These ATAM activates were selected for this particular

RTS architecture; ATAM provides many steps from

which a suitable subset can be chosen. Next, two more

ATAM activates are needed for evaluation of the

architecture:

· RTS requirements and constraints within a client-

server architecture can be viewed as:

o Receive client‟s request.

o Supply furnace temperature under specific

frequency constraint.

o Provide temperature periodic update to client at

particular rate.

· RTS architecture & attribute utility tree, which is

evaluated and explained in details in the next

section.

A. RTS Architecture & Performance Quality Attributes

RTS system requires a prompt response within specific

frequency rate. However, according to above business

drivers and constrains the high priority quality attribute is

asserting system performance. Other quality attributes,

such as availability, security etc., might be required,

however, in this paper we only consider performance

quality. Real-time RTS system architecture frequently

implicate with jitter and latency that are important for

furnace temperature report. Latency for system

performance could be analysed by depicting execution

paths [13] [14]. A latency determination model consists

of several factors including paths and its related

execution time. The following parameters are of concern

as follows:

· Temperature transmission time over the network

netC

· Queuing time of Input / output for temperature

report dqC

· ADC: Analog to Digital converter

· ADC Processing time and periodic reporting fncC

Using these parameters, latency can be computed by

finding Best Case Periodic Latency (BCPL) And Worst

Case Periodic Latency (WCCL). The best case could be

occurred when the queue (Q) requests from clients to

server is zero as Q = 0. In contrast, worst case scenario

occurs when all clients (C) associated to server (S)

control request for (F) furnace temperatures

simultaneously as shown in Table 1. WCPL and BCPL

can be defined as [4]:

WCPL = C / S  F  (+ +) (1)

BCPL = (+ +) (2)

Table 1. RTS Client Server Performance Summary

WCPL

(Sec)

BCPL

(Sec)
HLPL

(Sec)

MLPL

(Sec)

(Sec)

(Sec)

12.16 0.19 12.16 12.16 11.97 589

In case of significant variation in control request,

processing and periodic report, and time equation will be

changed to these control requests and periodic report.

Generally, when at same time all clients associated to

server are scheduled for furnace reading, latency of

periodic report will be as in equation 3.

Q = C / S  F

PL = (Q + 1)  (+ +) (3)

In order to determine jitter which is the variation in

latency from the BCPL or ideal case, (4) can be applied:

Jitter = PL – BCPL (4)

14 ATAM-based Architecture Evaluation Using LOTOS Formal Method

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

For instance, in term of performance evaluation, C = 8

number of clients request to S server for temperature of F

= 8 number of furnaces. We assume that the network

transmission time netC for this scenario is 100 ms

(milliseconds) and operation time
dqC for queue is 10 ms.

The request processing time
fncC can be adjusted as

80ms; then according to (1) worst case periodic latency is

as follows:

WCPL = 8 / 1  8  (100 + 10 + 80) => 64  (190)

WCPL = 12160

Where

BCPL = (100 + 10 + 80) => 190

Periodic latency in moderate and heavy load cases:

 = (64)  (100 + 10 + 80) => 64  190

 = 12160

 = WCPL

Where, for moderate case, the number of clients can be

minimized to 4 furnaces.

 = 4 / 1  8  (100 + 10 + 80) => 32  190

 = 6080

Similarly, the worst and best cases of jitter can be

computed by applying (4) & (5):

 = 12160 – 190 = 11970

 = 6080 – 190 = 5890

B. RTS Architecture Quality Attributes Tree

Table 2. RTS Architecture Quality attributes and Scenarios

Quality

Attribute

Attribute

Refinement
Scenarios

Performance

Temperature

Response Time

Server respond periodic

temperature report to clients

at specific rate received

from Furnaces.

Furnace

temperature

response frequency

Furnace respond to Server

according to frequency sent

by server.

Analog to Digital

Temperature

Conversion

processing

ADC receives analog

temperature from furnace,

convert it into digital form

and send to operator.

Throughput

At peak level, System is able

to respond at .19 per second

with Best Case Periodic

Latency.

Since RTS scenarios are associated with only the

performance quality attribute, the required quality

attribute is refined and presented explicitly according to

generated scenarios in ATAM step 2.

V. LOTOS FORMAL MODEL

In order to specify System architecture in LOTOS, we

have used CADP: an interactive tool for construction and

analysis of distributed processes [11]. CADP is formally

known as “CAESAR/ALDEBARAN Development

Package” that provides an extensive number of

functionalities for design and analysis of multiple

architectures and processes. It was developed by CAVCS

team to provide support for several languages

compilation and specification [11], and offers the tools

such as:

· Compiler for various patterns.

· Various verification algorithms.

· Different model checkers for several temporal

logics

· Supportive for different Equivalence checker tools.

· Performance Evaluations.

· Simulation and evaluation.

· Visual validation and verification.

CADP provides a systematic way for LOTOS

specification and compilation to generate desired output.

The CADP life cycle which is required to generate an

output of LOTOS code in graphical form is shown in fig.

4. In phase 1, the desired architecture is specified by

following ATAM principles and written in LOTOS

syntax. All ATAM scenarios should be present in the

code so that the architecture can be fully and correctly

exercised. Compiling the LOTOS specification in CADP

produces the BCG, which is required for further handling

of the specifications. Once the BCG file is generated,

CADP uses it to reason about many aspects of the

specification including running it and/or showing a

graphical representation of the specification, hence a

visual representation of the architecture. In phase 3,

CADP toolset takes in the BCG file as its input to

produce a graphical representation of the architecture

which is the final step as shown in fig.4.

STEP 1
LOTOS Specification

STEP 2
LOTOS Compilation

STEP 3
BCG Processing

STEP 4
Graphical

Representation

Fig.4. CADP steps for handling LOTOS Specification

A. RTS Architecture Specification in LOTOS

In this section we present the LOTOS specification

code of RTS client server architecture using basic

LOTOS. RTS System architecture specification consist of

two parts as behaviour and Processes.

 ATAM-based Architecture Evaluation Using LOTOS Formal Method 15

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

1. Behaviour part contains process synchronization at

an abstract level using hiding operator. In order to

achieve parallel composition we use interleaving

operator (|||) among different processes [16, 17].

2. Process part consist of all processes where each

process has its name, list of interaction points,

behaviour expression, and list of parameters.

specification RTS_Client_Server [Req_Temp, Prov_Temp] :

noexit behaviour

hide Temp_Freq, A_Temp, D_Temp, Temp_update,

Convert_Temp, Recieve_Temp in

(

 (

 Client [Req_Temp, Temp_Freq,Prov_Temp, Recieve_Temp]

 |||

 Server [Req_Temp,Prov_Temp, Temp_Freq, Temp_update]

 |||

 communicator [Req_Temp,Prov_Temp]

)

 |[Temp_Freq, A_Temp, D_Temp, Temp_update,

Convert_Temp, Recieve_Temp]|

 (

 RTS_Furnace [Temp_Freq,Temp_update, A_Temp ,D_Temp]

 |||

 ADC [A_Temp,D_Temp,Convert_Temp]

)

)

where

process

Server[Req_Temp,Prov_Temp,Temp_Freq,Temp_update]:

noexit:=....endproc (*Server Process*)

process

Client[Req_Temp,Temp_Freq,Prov_Temp,Recieve_Temp]:

noexit:=...endspec(*Clients Process*)

process

RTS_Furnace[Temp_Freq,Temp_update,A_Temp,D_Temp]:

noexit:=....endproc(*Furnace Process*)

process ADC [A_Temp,D_Temp,Convert_Temp] :

 noexit := endproc (*ADC Process*)

process communicator [Req_Temp,Prov_Temp]:

noexit := endproc (*Communicator Process*)

Listing 1: RTS Architecture LOTOS Specification

Listing 1 shows the LOTOS code for RTS architectural

modules, where language keyword are noted in bold. In

line 1, specification RTS_Client_Server synchronizes

with environment through the two formal gates

Req_Temp and Prov_Temp [15]. For instance, when a

client requests temperature reading of specific furnace at

particular frequency, there is an internal interaction

between furnaces and the server, which should be hidden

from client side. However, the internal functionalities and

actions of processes are abstracted using the hide

operator in line 2. Lines 3 to 10 show the parallel

composition between clients, server, and communicator

model between them. As our model consists of multiple

clients and furnaces, their processes are specified

generically to enable reuse and hence accomplish

possible system scalability. A generic form of client

process is described as listing 2.

process Client [Req_Temp, Temp_Freq, Prov_Temp,

Recieve_Temp] : noexit :=

 Req_Temp; (* request to server for temprature *)

 Server[Req_Temp,Prov_Temp, Temp_Freq,Temp_update]

>> Recieve_Temp;

 []

 Prov_Temp;exit

Endspec

Listing 2: RTS Clients Process Module LOTOS Specification

In listing 2 Client process consist of four formal gates

parameters: Req_Temp, Temp_Freq, Prov_Temp, and

Recieve_Temp. A noexit in first line implies that Client

must recursively perform an operation either

1. Send request to server for any furnace temperature,

or

2. Receive temperature from server side.

However, after receive the temperature reading, the

Client is forced to exit. We assume that clients get

activated by another process each time a temperature is

requested. A choice operator „[]‟ to used to allow for

selection since a Client can have one of two behaviors:

request temperature (Req_Temp), or receive temperature

(Prov_Temp.) For example, when requesting a

temperature reading from server, it calls server process

along required parameters as temp_freq and

„Receive_temp‟ to receive furnace temperature. Similarly

at server process side, shown in listing 3, Server process

can either provide temperature to clients or send

temperature frequency to RTS_Furnace and call furnace

process for further processing.

process Server [Req_Temp,Prov_Temp, Temp_Freq,Temp_update]:

noexit :=

Req_Temp; (* if client ask for temprature *)

 >> Prov_Temp;

 Client [Req_Temp, Temp_Freq,Prov_Temp, Recieve_Temp]

[]

Temp_Freq;

 RTS_Furnace [Temp_Freq,Temp_update, A_Temp,D_Temp]

[]

>> Temp_update;exit

endproc

Listing 3: RTS Server Process Module LOTOS Specification

RTS_Furnace process, shown in listing 4, gets the

temperatures at specific frequency and forwards them to

ADC in analog form. ADC process, shown in listing 5,

has three formal gates:

1. A_Temp for analog temperature received from

furnaces,

2. D_Temp for digital temperature that returns back

after conversion, and

3. Convert_Temp a device that converts the

temperature.

ADC gets a single request from queue and converts it

into digital form. According to ADC process, there is

always A_Temp in first step to produces D_Temp. Once,

A_Temp is received, it creates a call to Convert_Temp

16 ATAM-based Architecture Evaluation Using LOTOS Formal Method

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

for temperature conversion and then processes D_Temp

value. Finally, it returns furnace temperature in digital

form which is further forwarded to Client according to

required frequency rate.

process RTS_Furnace[Temp_Freq,Temp_update,A_Temp,

D_Temp] : noexit :=

 Temp_update OR Temp_Freq; (* Get Request of Temperature

update from Server *)

 (

 ADC [A_Temp,D_Temp,Convert_Temp];

(* Provide Analog temperature to ADC and request for Digital

temperature update *)

)

 >> D_Temp;

 Server[Req_Temp,Prov_Temp,Temp_Freq, Temp_

 update]

exit

endproc

Listing 4: RTS Furnace Process Module LOTOS Specification

process ADC [A_Temp,D_Temp,Convert_Temp] :

noexit :=
 A_Temp;

 (* Get Analog temprature *)

 (

 Convert_Temp;

(* Convert temprature *)

)

 >> D_Temp;

 RTS_Furnace [Temp_Freq,Temp_update,

A_Temp,D_Temp] exit

endproc

Listing 5: RTS ADC Process Module LOTOS Specification

VI. RESULTS

Producing an executable architecture in LOTOS is

shown to be a promising step towards establishing

confidence that an architecture satisfies initial

requirements and constraints. Running the architecture in

LOTOS is an additional plus that can help to develop the

correct system. Our proposed RTS architecture was

initially devised and evaluated in ATAM, then specified

in LOTOS using CADP tool to produce a running version

of the architecture as shown in fig5. A Client process

sends a temperature reading request Req_Temp to Server

process. However, we notice that there is an

intermediatory process communicator, which is needed to

facilitate communication between possibly differing

Client –Server platforms. Once the Server receives the

request, it forwards it as a Temp_Freq message to all

furnace processes RTS_Furnace for temperature reading.

A conversion process must be completed before the

returning the reading to the Server, mainly because our

furnaces produce analog based temperature readings. For

this reason, RTS_Furnace first forwards the temperature

in a Temp_update message to the ADC process, which

performs analog-to-digital conversion, then passes the

digital temperature reading as D_Temp back to

RTS_Furnce processes. At this stage, a value returning

process starts when RTS_Furnace returns the temperature

reading Temp_Update in digital format to the Server

process, which will ultimately returns the readings to

Client processes.

Before generating this computable architecture through

CADP tool, a manual architecture was drawn which was

specified in LOTOS. It should be noted at such an early

stage of development of a system, all formal gates should

be assigned meaningful titles to allow for proper and easy

understanding of the architecture specification. In our

LOTOS specification we implemented eight clients that

interact with a single RTS server to get temperatures from

different furnaces. However, results clearly shows that

the selected architecture is accurate and performed well.

VII. CONCLUSION

Architecture evaluation and formal description are

needed to see if certain requirements and quality

attributes can be realized gracefully at the final software

product. Accurate architecture selection at early stages of

development is crucial for time to market of critical

systems. In order enhance the system verification and

validation according to given requirement, we introduced

an approach to evaluate software architecture and

performance quality attribute of an RTS Clients-Server

Architecture. According to our approach, the first

encouraging result is that we applied current software

architecture evaluation methods and showed how a

required quality attributes can be expressed in ATAM.

We then measured the performance of the selected

architecture and showed how to calculate its functionality

in a way that signifies one or more quality attribute, e.g.

performance. Furthermore, we presented client-server

based RTS architecture in LOTOS formal description

technique and generated graphical representation by

executing through CADP tools. Our work show that the

proposed approach for evaluating and formally presenting

architectures in LOTOS is useful for proper architecture

selection. This approach is applicable to evaluate and

validate the requirements, constraints, and quality

attributes of any system.

 ATAM-based Architecture Evaluation Using LOTOS Formal Method 17

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

Client

Client

Client

Client

Client

Client

Client

Client

RTS_Furnace

RTS_Furnace

RTS_Furnace

RTS_Furnace

RTS_Furnace

RTS_Furnace

RTS_Furnace

RTS_Furnace

Server
communi

cator
ADC

Req_temp

Req_temp

Req_temp

Req_temp

Req_temp

Req_temp

Req_temp

Req_temp

P
ro
v_
te
m
p

R
e

q
_

te
m

p

P
ro

v_
te

m
p

T
e
m
p
_
Fr
e
q

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

A_temp

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

Temp_update

D
_
te
m
p

Fig.5. CADP output of LOTOS Specification

REFERENCES

[1] Shaw, Mary, and David Garlan. Software architecture:

perspectives on an emerging discipline. Vol. 1. Englewood Cliffs:

Prentice Hall, 1996.

[2] Moreira, Ana MD, and Robert G. Clark. "Combining object-

oriented analysis and formal description techniques." Object-

Oriented Programming. Springer Berlin Heidelberg, 1994. 344-

364.

[3] Bolognesi, Tommaso, and Ed Brinksma. "Introduction to the ISO

specification language LOTOS." Computer Networks and ISDN

systems 14.1 (1987): 25-59.

[4] Kazman, Rick, et al. "The architecture tradeoff analysis

method." Engineering of Complex Computer Systems, 1998.

ICECCS'98. Proceedings. Fourth IEEE International Conference

on. IEEE, 1998.

[5] Nord, Robert L., et al. Integrating the Architecture Tradeoff

Analysis Method (ATAM) with the cost benefit analysis method

(CBAM). No. CMU/SEI-2003-TN-038. CARNEGIE-MELLON

UNIV PITTSBURGH PA SOFTWARE ENGINEERING INST,

2003.

[6] Bass, Len. Software architecture in practice. Pearson Education

India, 2007.

[7] Lopez, Marta. An evaluation theory perspective of the

Architecture Tradeoff Analysis Method (ATAM). No. CMU/SEI-

2000-TR-012. carnegie-mellon univ pittsburgh pa software

engineering inst, 2000.

[8] Clarke, Edmund M., and Jeannette M. Wing. "Formal methods:

State of the art and future directions." ACM Computing Surveys

(CSUR) 28.4 (1996): 626-643.

[9] Lotos, I. S. O. "A formal description technique based on the

temporal ordering of observational behaviour." International

Organisation for Standardization-Information Processing

Systems-Open Systems Interconnection, Geneva (1988).

[10] Kazman, Rick, et al. "The architecture tradeoff analysis

method."Engineering of Complex Computer Systems, 1998.

ICECCS'98. Proceedings. Fourth IEEE International Conference

on. IEEE, 1998.

[11] Garavel, Hubert, et al. "CADP 2006: A toolbox for the

construction and analysis of distributed processes." International

Conference on Computer Aided Verification. Springer Berlin

Heidelberg, 2007.

[12] Aladwani, Adel M. "Online banking: a field study of drivers,

development challenges, and expectations." International Journal

of Information Management 21.3 (2001): 213-225.

[13] Audsley, N. C. et al. “Fixed Priority Pre-Emptive Scheduling: An

Historical Perspective.” Real-Time Systems 8, 2-3 (March-May

1995): 173-198.

[14] Conway, R.; Maxwell, W.; & Miller, L. Theory of Scheduling.

Reading, MA: Addison-Wesley Publishing Company, 1967.

[15] Logrippo, Luigi, Mohammed Faci, and Mazen Haj-Hussein. "An

introduction to LOTOS: learning by examples." Computer

Networks and ISDN systems 23.5 (1992): 325-342.

[16] Poizat, Pascal, Christine Choppy, and Jean-Claude Royer.

"Concurrency and data types: A specification method an example

with LOTOS." International Workshop on Algebraic

Development Techniques. Springer Berlin Heidelberg, 1998.

[17] Ardis, Mark A. "Lessons from using basic lotos." Proceedings of

the 16th international conference on Software engineering. IEEE

Computer Society Press, 1994.

[18] Zalewski, Andrzej, and Szymon Kijas. "Beyond ATAM: Early

architecture evaluation method for large-scale distributed

systems." Journal of Systems and Software 86.3 (2013): 683-697.

18 ATAM-based Architecture Evaluation Using LOTOS Formal Method

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 10-18

[19] Rupanov, V., et al. "Employing early model-based safety

evaluation to iteratively derive E/E architecture design." Science

of Computer Programming 90 (2014): 161-179.

[20] Dobrica, Liliana, and Eila Niemelä. "A survey on software

architecture analysis methods." Software Engineering, IEEE

Transactions on 28.7 (2002): 638-653.

[21] Närman, Per, et al. "Enterprise architecture availability analysis

using fault trees and stakeholder interviews." Enterprise

Information Systems 8.1 (2014): 1-25.

[22] Moreira, Ana MD, and Robert G. Clark. "Combining object-

oriented analysis and formal description techniques." Object-

Oriented Programming. Springer Berlin Heidelberg, 1994. 344-

364.

[23] El-Gendy, Hazem, Nabil El Kadhi, and Narayan Debnath.

"Towards sound development of PIXITP, conformance test suites,

and conforming implementations for various Formal Description

Techniques." Computers and Communications, 2008. ISCC 2008.

IEEE Symposium on. IEEE, 2008.

[24] Clements, Paul, et al. "The duties, skills, and knowledge of

software architects." 2007 Working IEEE/IFIP Conference on

Software Architecture (WICSA'07). 2007.

Authors’ Profiles

Usman M. Ashraf received his B.Sc.

degree from Govt. College Gujranwala in

2007, M.Sc. degree in Computer Science

from The University of Agriculture

Faisalabad in 2009 and Master of Science in

Computer Science from University of

Lahore, Pakistan in 2014. Currently, he is

doing Ph.D. in computer science from King

Abdul-Aziz Saudi Arabia. His research interests include

Exascale computing System, High Performance Computing,

Ubiquitous Computing and Context awareness. He has

presented many papers in National and International

conferences.

Wajdi Aljedaibi is a faculty member of the

Computer Science department in the Faculty

of Computing & Information Technology

(FCIT) at King Abdulaziz University. He

served as the KAU IT Manager and then

Dean of Information Technology at KAU.

Wajdi was awarded the Ph.D. in

Information Technology – Software Engineering and MSc. in

Software Systems Engineering both from George Mason

University. His current research interests are: CMMI-based

evaluations and methods, component-based software

engineering, software measurement, and ERP system.

How to cite this paper: Muhammad Usman Ashraf, Wajdi

Aljedaibi,"ATAM-based Architecture Evaluation Using

LOTOS Formal Method", International Journal of Information

Technology and Computer Science (IJITCS), Vol.9, No.3,

pp.10-18, 2017. DOI: 10.5815/ijitcs.2017.03.02

