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Abstract—Hull algorithms are the most efficient and 

closest methods to be redesigned for connecting vertices 

for geometric shape reconstruction. The vertices are the 

input points representing the original object shape. Our 

objective is to reconstruct the shape and edges but with 

no information on any pattern, it is challenging to 

reconstruct the lines to resemble the original shape. By 

comparing our results to recent concave hull based 

algorithms, two performance measures were conducted to 

evaluate the accuracy and time complexity of the 

proposed method. Besides achieving the most acceptable 

accuracy which is 100%, the time complexity of the 

proposed algorithm is evaluated to be  (  ). All results 

have shown a competitive and more effective algorithm 

compared to the most efficient similar ones. The 

algorithm is shown to be able to solve the problems of 

vertices connection in an efficient way by devising a new 

approach. 

 

Index Terms—Convex hull, concave hull, vertices, shape 

reconstruction. 

 

I.  INTRODUCTION 

Many approaches are given to solve the problem of 

polygon computing to approximate geometric shapes 

based on a given point set in   . Various methods are 

designed specifically based on the nature of the output [1]. 

The objective of this research, is to connect the points or 

vertices from the identified object faces that contain 

disordered vertices of (   ). One of the challenging tasks 

is to know which vertices to connect together as we have 

no connectivity information. Typically, a line is drawn 

from each vertex to every other remaining vertex to form 

a polygon such as the             ready function. 

However, this does not allow the recognition of the real 

object as can be seen in Figure 1. The main objective of 

the proposed method in this paper is to imitate the source 

drawing and reconstruct the shape. Given a set of points 

(vertices) from two faces representing the dominant shape 

of the object, the goal is to connect them ―connect-the-

dots‖ by finding the correct path to produce a 

‗meaningful‘ object. The most relevant studies that could 

address this issue are the ones done on hull computation. 

Numerous algorithms were developed and improved over 

the years to address the problem of hull computation and 

detection [2]–[5]. The algorithm starts with the convex 

hull computation and several works developed from this 

process are still considered as state of the art. The 

strategies to solve the problem in this paper are taken as a 

basis on how to handle convex and non-convex objects. 

 

         
(a)                        (b)                           (c) 

Fig.1. A connection on (a) a sample object of our dataset, (b) vertices of 

the object and (c), Line drawing between points in       . 

The computations of convex and concave hulls on the 

set of points in two-dimensional planes are still a 

challenge in many different areas. They have been widely 

used in many fields such as computer graphics, image 

processing, GIS, wireless tracking, pattern recognition 

and artificial intelligence. It is important to understand 

that numerous algorithms are designed based on very 

different needs. The construction of hull from a given set 

of points is used to detect convexity or concavity as can 

be seen in Figure 2. The convex hull of a point-set is the 

smallest convex space that contains all the points 

belonging to that set. For a finite 2D point-set, the convex 

hull can be defined as the smallest convex polygon 

containing all the points. Meanwhile, concave hull is 

described when the hull around one set of group of 

objects is not required to have a convex shape. The shape 

defined allows any angle between the points. Convex 

hulls have several useful properties that can be suitable 
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for a variation of recognition and representation tasks. A 

convex hull can also be defined when the shape that 

contains all the points does not have any angle that 

exceeds 180 degrees between two adjacent points. 

 

            
(a) Convex hull               (b) Concave hull 

Fig.2. Classification of convex and concave hull. Adapted from [6] 

Graham‘s scan algorithm [4] for computing the convex 

hull is used as a basic idea for connecting set of points in 

a plane. The result of convex hull construction using 

Graham‘s Scan shows that the enumeration is to extract 

the extrapolation or the image boundary. The algorithm 

does not enumerate points with same   or   value and 

neglects the inner points. Figure 3 shows several results 

for using Graham‘s Scan Algorithm. As seen in the figure, 

the convex hull technique does not reflect the original 

shape which mostly has a dataset of concave objects. 

Thus, concave hull is a better choice and is more 

advanced to capture the concaveness of the shape of the 

object [7]. 

 

 

Fig.3. Graham‘s Scan based on convex hull rules of our datasets 

 
Fig.4. The smoothness of concave hull determined by threshold [7] 

Concave hull computation is an active field in 

computation geometry with different approaches to 

compute the boundaries from point sets of the arbitrary 

shape. There are many known algorithms for computing 

convex hull but very few for computing concave hulls. 

The techniques used to compute concave hulls are based 

on nearest neighbor, kernel functions, using a convex hull 

or Delaunay triangulation. A prominent algorithm for 

concave hull computation is to construct non-convex or 

simple polygons that characterize the shape from a set of 

points in the plane. It is based on the Delaunay 

triangulation of the points. The method first creates a 

convex Delaunay triangulation with the entire vertex 

connecting each other. Then, the algorithm removes the 

edges that are smaller than a certain threshold value, but 

still does not give any expected results. However, it is not 

applicable in our work because the algorithm still 

connects the most outer points. The smoothness of the 

shape is based on the ‗digging method‘ and threshold 

value in order to produce the appropriate depth as shown 

in Figure 4. In conclusion, we abandoned the convex hull 

approach because it cannot preserve the original object 

shape. 

The challenge in this work is of how to re-implement 

hull based algorithms to utilize the concavity to 

reconstruct an object shape. While any convex and 

concave hull approach ignores some points, our work 

inspects all points for a given object to be connected. By 

comparing and analyzing the time complexity of the 

previous algorithms we have realized the issue of high 

time complexity. In this study, a technique for object 

shape reconstruction is proposed by utilizing a ‗splitting 

and recombination‘ approach to correctly connect the 

vertices which also affects the detection of the object 

shape. We have emphasized on a design to decrease the 

time complexity in comparison with the best options. 

Point and vertex is used interchangeably throughout this 

paper.  

This paper is organized as follows: section 2 presents 

the related works. Section 3 describes the concave Hull 

based algorithm developed for object shape 

reconstruction. Section 4 introduces the implementation 

undertaken. Section 5 presents some examples of the 

obtained results, and discusses performance evaluation of 

the implemented algorithm. Section 6 concludes with 

some remarks and future work. 

 

II.  RELATED WORKS 

Computing a set of points in a plane to represent a 

shape has arisen in the computer vision and computer 

graphics domain. It has been used to solve several 

problems in pattern recognition, control theory, machine 

learning, computational graphics, and structural health 

monitoring and also signal classification. A shape 

recognized from a set of points can easily be perceived by 

a human brain, but the recognition is difficult for a 

computer. Before related works are presented, it is 

important to define the ideas about terminologies and the 

difference of opinion. There are several hulls, however 

we reviewed the concave hull category due to their wide 

and various range of utilization.  

Several methods are exploited to compute a shape or 

boundary from arbitrary set of points. The main idea 

behind the concave hull computation is based on the 

nearest neighbor techniques, kernel functions or convex 

hull, and its Delaunay triangulation [8]. A well-known 

concave hull algorithms proposed by Edelsbrunnern et al. 

[9] is defined as   shapes obtained from Delaunay 

triangulation that represent a set   of   points in the plane 

parameterized by  . For a finite set of points, the         
approaches the generalization of convex hull. A related 

notion,   shape of the set of points   constructed from 

Voronoi diagrams is proposed by  Melkemi & Djebali 

[10]. This algorithm is presented for only 2D and could 

be extended for 3D. By composing the Voronoi diagram 



 A Concave Hull Based Algorithm for Object Shape Reconstruction 3 

Copyright © 2017 MECS                                                I.J. Information Technology and Computer Science, 2017, 3, 1-9 

for      where   is an arbitrary finite points set, we 

also join pair points        and thus define the 

  shape of  . The pair points     would only be 

considered if in addition to these cells bordering each 

other, they also border some common Voronoi cells that 

contain a point of  .   

Galton & Duckham [1] proposed a non-convex hull 

algorithm to characterize the boundary of a finite input 

set in the plane based on Delaunay triangulation of the 

points. These boundaries are commonly derived using 

either polygon or hull-based methods or statistical 

techniques. Also called non-convex footprint is 

implemented in GIS for footprint delineating the area 

occupied by a set of points and is extended in the work of  

Moreira & Santos [11]. The algorithm requires  (  ) 
time to execute.  

Moreira & Santos [11] proposed an algorithm based on 

Jarvis march to compute the boundary of points set in 2D. 

It employs a      nearest neighbor, and angles 

properties which are depending on the previous computed 

point. The algorithm can work with most of the scenario. 

However, in some cases it produces boundaries that do 

not contain all the samples in the dataset. Thus, pre-

processing is needed to remove outliers in order to 

produce an accurate result.  

Duckham et al. [12] proposed a technique called 

  algorithm to generate a characteristic hull-based 

method. They applied this method for boundaries shaping 

the countries and also alphabet letters using datasets of 

known distribution. The         algorithm is based on 

Delaunay triangle which receives dot patterns as input 

and produces a polygon as an output. A length parameter 

  is introduced between the shortest and longest boundary 

edges. No digging can occur when the   is longer than the 

longest boundary edge. The concavity degrees rise when 

the edge is shorter than the shortest boundary edge. This 

method is to delineate the polygonal regions as an 

alternative to a minimum convex polygon (MCP) and is 

considered as one of the time-efficient concave hull 

algorithms with a time complexity of  (     ) [13].   

Another approach for concave hull method is a method 

starting with convex hull followed by ‗a digging‘ method 

which is presented by  Park & Oh [7]. The algorithm first 

starts with the concave list from the concave point and 

the ‗dig‘ process is based on the list in order to find the 

nearest point. This study also includes the evaluation 

criteria for convex and concave hull algorithms. It has a 

time complexity of  (       ) , where it takes   

computations longer than the Duckham algorithm in all 

times. The algorithm also uses a threshold parameter   to 

determine an occurrence of the digging process that may 

result to convex or concave. The authors also suggested 

that the lower threshold value will result to a more 

concave hull, whereas a higher threshold value results to 

convex hull. However, their algorithm never entirely 

captures the actual shapes of the datasets as the digging 

only occurs on the shorter edges. By digging at the long 

edges the algorithm would have a more close simulation 

of finding the desired shape but still it will not be able to. 

Methirumangalath et al. [14] proposed an unified 

algorithm to compute geometric shape by a given set of 

point   in   . The algorithm is based on Delaunay 

triangle and is capable to deal with many prominent 

features such as sharp corners, concavities and thin 

regions. However, the algorithm requires parameter 

tuning for boundary detection if the input point is very 

sparse. Additionally, it also suffers dealing with noise 

input like other approaches that use Delaunay triangle in 

their algorithm. Table 1 refers to different concave hull 

algorithms and their time complexity.  

Table 1. A time complexity comparison of concave hull algorithms 

Algorithms Time complexity 

 Galton & Duckham [1]  (  ) 

 Moreira & Santos [11]  (  ) 

 Duckham et al. [12]  (     ) 

 Park & Oh [7]  (       ) 

 Methirumangalath et al. [14]  (     ) 

 

III.  THE PROPOSED METHODS 

The aim of the algorithm is to create edges or connect 

unorganized vertices in each face (  )  and (  )  and 

between the two faces in order to define the original 

shape.  Figure 5 shows a set of vertices of an object 

comprising of two faces that provides no connection 

information. Each face is a representative of a side of a 

symmetric object. 

 

 
(a)                            (b)                           (c) 

Fig.5. Two-dimensional vertices represents an object: (a) object vertices, 

(b) vertices of face 1 (  ) and (c) vertices of face 2 (  ) 

The proposed approach is based on the points or 

vertices which are elements of    in the plane. The first 

step is to determine the Seed Point    as the connection 

determinant for the initial and subsequent vertices 

construction. The second step is region splitting which is 

to divide the faces into two parts based on the centroid of 

the face vertices. In the third step, the vertices in each 

region are connected and complete face connection is 

completed in the fourth step where the edges are added 

between faces. The procedure used in this algorithm is 

illustrated in the flow shown in Figure 6. 
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Fig.6. The procedure of the proposed method 

 

A.  Seed Point Identification 

This is the first stage where certain elements are 

determined for accurate shape identification. Based on 

our method, each face must be divided into two regions 

which are referred as the upper region (  ) and the lower 

region (  ) based on the centroid of the face vertices. The 

Seed Point (  ) is a starting point for connecting vertices 

and needs to be declared beforehand. If a wrong seed 

point is selected, it may result in misconnecting and thus 

produce the wrong shape. To determine the   , a 

minimum   value is initialized and is resided in the first 

index of the upper region (  ), meaning that the regions 

would change to include the seed point at the upper 

region (  ) automatically.  Later, the remaining vertices 

are computed for the region division. Figure 7 shows the 

seed point being dedicated to the upper region and the 

region classification represented in equation (1).  

 

 (  )       (  )                       (1) 

 

      
(a)                                       (b) 

Fig.7. (a) The original location of seed point in (  ) (b) Seed point (  ) 
being dedicated to the upper region (  ) 

B.  Region Splitting 

There are two sets: face    and    containing all the 

vertices            corresponding to the object which is 

also expressed in equation (2). The algorithm is to find 

the upper region (  ) and lower region (  ) based on the 

remaining vertices after seed point has been identified. 

Later these two regions are merged together in order to 

have complete connection in the object face. 

 

  ∑      
 
                                    (2) 

 

                           

 [ ]     ∑     
 

   
 

 

For every face, two regions are partitioned based on 

the centroid of        or       . In equation (3) we 

show that the remaining vertices which are less than   ̅ 

(also same for  ̅) are assigned to    and the rest are kept 

in   . The centroid of vertices in respect to  ̅  are 

accumulated in the second equation of (3). The y-values 

of the vertices, yi for 0 ≤ i < n, are used to split the region 

into horizontal strips while x-values in vertical strips. 

Figure 8 illustrates the visualization of the object face 

with the division of two regions.  

 

 ( )  {
           (    ( )   ̅)

                (    ( )   ̅)
       (3) 

 

        ̅  
∑  
 

 

       
(a)                              (b)                             (c) 

Fig.8. (a) An imaginary lines shows the centroid of (b)    and (c)    that 

splitting the regions 

C.  Vertices Connection 

The idea of traversal strategy between vertices in this 

phase is based on an incremental construction approach 

which is a method of computing the convex hull of a 

finite set of vertices. While convex hull method chooses 

the anchor point from the lowest   coordinate, the 

algorithm sets the least   coordinate as the starting point. 

To reduce the complexity of the disorganization, the 

connection is broken into two regions which are upper 
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region (  )   and lower region (  )  as described in the 

previous section. The algorithm is operated by a ―walking‖ 

procedure. It walks clockwise for upper regions while 

counterclockwise for lower regions.  

For a formulated description of the procedure, let    be 

the point in    with the minimum              or the 

leftmost vertex and let (          ) be the remaining 

vertices in   . Starting from   , the connection is made 

based on             until the rightmost vertex. This is 

explained in equation (4) where we start from our seed 

point    and by incrementally differentiating the   values. 

The same procedure is performed on the lower region but 

with the exception of the direction. In case the next two 

vertices to be connected have the same   value, the 

smallest angle of the vertex is chosen based on equation 

(5), where       is to find angle in radians between two 

points (      ) . After each of these two regions is 

complete, they are concatenated into a complete face by 

connecting the corresponding first and last vertex in both 

regions.  

 

(  )     ∑(       )           (   ]      
 

 

   

 

(4) 

 

         

         

      |     (     )  (
   

  
)|                (5) 

 

Figure 9 shows the process of creating a combination 

of faces as a result of the algorithm. In Figure 9 (a) two 

regions of    are shown which will be unified to a single 

face in figure (b). The same is shown for the    in figure 

(c) and figure (d). Figure (e) shows the combination of 

the faces together as the result of our algorithm for this 

stage.  

 

         
(a)                           (b)                         (c) 

           
(d)                                (e) 

Fig.9. (a) Two regions of face one (b) the unified single face one (c) two 

regions of the second face (d) the unified single face two (e) the 

connection of each face 

D.  Face Connection 

In continuance of the previous step, every vertex of a 

face is connected to form the original shape. The results 

for now would be in a 2D form. To achieve the complete  

 

object, these faces are connected.  New edges are inserted 

to each corresponding vertex of each region and face as 

shown in Figure 10.  

 

             

Fig.10. The two faces is concatenated for a complete geometric object 

E.  Overall Algorithm 

Input: Face Vertices  //Two faces of the 

object contain same number of vertices 

Result: Polygon/object connection  //Set of edges form 

object shape 

 

/*1. List Initialization*/ 

The whole list is sorted (radix sort) as two arrays:   -array 

and  -array 

 

/*2. Seed Point Identification*/ 

The minimum   value from the  -array is initialized as the 

Seed Point (  ) 
The (  )  is resided as the first index in the  -array 

 

/*3. Region Splitting*/ 

Get the centroid of        of the vertices from  -array 

    all of the vertices   
     ( )           

             

      

             

 end     

 

/*4. Vertices Connection*/ 

The walking procedure is based on the              and 

the smallest angle between two vertices ( ( )  (   ))
 //clockwise for    and counter clockwise for    

 

We start from    and go one by one through the  -array. 

     all of the   in the    and    of  -array 

     ( )   (   ) 
  Insert new edge (     ) 
     ( )   (   ) 

              ( ( ))        ( (   )) 
  Insert new edge (     ) 
 end       
 

Connect the first index of    to the first index of    and 

Connect the last index of    to the last index of    

 

/*5. Face Connection*/ 

The connection is based on the clockwise movement 

      all of the vertices   
  Insert new edges (     ( )    
  ( ))  

  Insert new edges  (     ( )    
  ( )) 
            end       
 

Fig.11. The proposed pseudo code for object shape reconstruction 
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IV.  IMPLEMENTATION 

A Graphical User Interface (GUI) is designed to run 

the entire algorithm and to test the experiments for 

producing the results. The data structure and coded 

blocks were built based on each process indicated in the 

proposed methodology section. The implementation is to 

ensure that the overall algorithm is efficient enough to 

connect the vertices within the faces and to connect both 

faces accurately. Visual Basic 6.0 has been chosen as the 

development environment at this stage. Figure 12 shows 

the system GUI for object shape reconstruction process. 

The elements of each process have been segregated to 

show the progress in each stage for algorithm validation. 

In the top left corner it shows the visualized raw data as 

input and through the stages it reaches to the bottom right 

corner, visualizing the overall model as a result. 

 

 

Fig.12. The system interface for object shape reconstruction algorithm for a sample object from our dataset 

 

V.  EXPERIMENTS, RESULTS AND DISCUSSION 

The object shape reconstruction algorithm can 

successfully obtain its objective in constructing the final 

shape from two set of faces with disorganized vertices. 

As explained in the introduction of this chapter, there are 

several experiments which have attempted to solve the 

connection problem. A challenge for all of these studies 

is to find the connection as there is no clue about how the 

points should be connected. Generally, the connections 

between vertices are made through incremental 

construction based on the   axis and angle evaluation for 

each prior vertex to the next vertex. These connections 

between the set of points should preserve the original 

shape of the object. We name the technique as the 

splitting and recombination technique due to the reason 

that we first split the vertices and then recombine to 

create the shape. It is used to gratify the process of the 

connection. A sample of the experiment results are 

presented in Table 2.   

Table 2. Sample output of the vertices connection experiments 

 
 

To evaluate and validate the proposed object shape 

reconstruction algorithm, experiments are conducted on a 

computer with specifications of Windows 7 Professional, 

8G-RAM and 3.2 GHz CPU. We have also gone through 
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a series of performance evaluations to make sure that the 

proposed algorithm is precise and correct. We evaluated 

the accuracy of the output and computational/time 

complexity by modeling the computation/time usage of 

the proposed algorithm. This would give us estimates to 

know how fast the algorithm could deliver the output if 

the numbers of vertices which are the inputs are 

considerable. 

A.  Performance Evaluation (Accuracy) 

One of the metrics evaluated is the accuracy of the 

proposed algorithm. The performance of the proposed 

algorithm is evaluated against the well-known concave 

hull algorithm based on the precision metric. Precision 

can be defined as the exactness of measurement. Equation 

(6) is used to compute the precision: 

 

          
  

     
                         (6) 

 

Let    (True Positive) represent the correct shape 

detected. FP (False Positive) is when we are unable to 

detect the true or correct shape (falsely detect). Our 

algorithm does not include a method to detect false or 

incorrect shapes. The algorithm either detects a correct 

shape (  )  or does not detect (  ) by its inefficiency. 

Based on this description there is no recall to be 

estimated. We defined the accuracy which is the 

closeness of a measurement to the true value and could 

conclude the precision we reach as accuracy. The more 

precise the proposed algorithm detects the shapes, the 

more accurate it is. 

 

The evaluation process starts by creating a set of 

ground truth images. By ground truth image we mean the 

original image that shows the shape of the object and 

which would later be used as a benchmark for the 

validation. For evaluation, the ground truth is compared 

with the proposed algorithm and also to the closest 

algorithm to this work which is concave hull by Park & 

Oh [7]. We use a modified version of the concave hull 

algorithm to suit the objective and performance of our 

algorithm. Comparing the original images, our results and 

the results of modified concave hull algorithm, we could 

reach a conclusion on how efficient, complete and 

accurate our algorithm is. A visual example of the ground 

truth, modified concave hull and the proposed algorithm 

compared together is shown in Figure 13. Using the 

entire image dataset, the accuracy of both methods has 

been demonstrated and evaluated. The results show that 

both algorithms achieved the same accuracy which is 

100%. In other words, both algorithms accurately detect 

all the shapes of the ground truth. We must note that the 

concave hull is modified to be competitive with the 

nature of our work. If we compare with the unmodified 

concave algorithm we see a result of only 52% correct 

identified shapes. This points out the competitiveness of 

the proposed algorithm while it has taken a completely 

new approach. The resulted accuracy is not unusual in the 

context of shape identification. Though the same 

accuracy could be achieved by modifying the concave 

algorithm, we will later show that the proposed algorithm 

has complete benefits in its new approach in terms of 

time complexity and thus performance. 

 

Fig.13. A sample visual comparison of the results between ground truth images, modified concave algorithm and the proposed algorithm 

 

B.  Performance Evaluation (Time Complexity) 

The time complexity models the time taken by an 

algorithm as the input size rises considerably. It is usually 

expressed using the big   notation to classify algorithms 

by how they performed on input data size they are 

working on [15]. It is measured by estimating the number 

of elementary operations performed by an algorithm; 

either in loops or other functions. Based on the evaluated 

model, the algorithm could be compared with other 

algorithms to determine the most efficient in terms of the 

time or computations needed to finish the entire process. 

We have computed the time complexity of the 

Concave hull algorithm proposed by Park & Oh [7] for a 
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2-dimensional dataset. It utilizes a convex hull algorithm 

to generate a list. Convex hull has a  (     ) complexity. 

For the next three steps the algorithm digs through the 

concave list. The authors have mentioned that the overall 

complexity of their algorithm is  (     ). Referring to 

our algorithm in Figure (11), we show 5 distinct stages. 

We computed the complexity of each stage and conclude 

as follows: 

 

T1: List initialization: Radix Sort has been used to sort 

the entire list due to its efficiency. Normally Radix Sort 

complexity is computed by:  (  ) where   is our word 

size. (For example 123 has a word size of 3 while 23 has 

a word size of 2 because of the number of digits 

composing the number). In our case, the vertices are not 

scattered in long distance and so our word size   might 

not even exceed 3.  

T2: Seed point identification: Simple initialization, 

 ( ) 
T3: Region splitting: Goes through the whole list and 

assigns based on centroid  ( ) 

T4: Vertices connection (Walking): Walks through all 

the edges using the  -array,  (  ) 
T5: Face connection: Goes once through all the 

vertices and inserts edges,   ( ) 
 

Therefore, the total estimated time complexity is 

 (  ) where   is estimated to be between 7 and     ( ). 
In the worst case scenario where are vertices are scattered 

in very far apart distances the time complexity would 

reach  (     ) but it would still be smaller. This is far 

from possible based on the nature of our work. Based on 

mathematical evidence,  (  )  has less complexity in 

comparison with  (       )  by Park and Oh [7]. A 

graph shown in Figure 14 shows a visual comparison of 

the complexities of the two algorithms when many 

vertices are given as inputs. The        represents the 

number of computations which each computation is a unit 

of time. The        represents the number of vertices 

given as input to both algorithms. 

 

 

 
Fig.14. A time complexity comparison of the proposed algorithm with [7] 

 

VI.  CONCLUSION 

This proposed algorithm producing the correct shape 

on finite vertices of a face object has several advantages. 

The main advantage is that the final procedure could 

accurately and efficiently complete the automatic 

reconstruction of object from sketch. It is also an 

automated algorithm with no user intervention required 

through the whole process of object shape reconstruction. 

In addition, to get the final output only a second of time 

is needed for our examples. This is due to the  (  ) 
computation/time complexity of the proposed algorithm. 

The computation/time complexity model shows that the 

proposed algorithm is more efficient in this aspect 

compared to any available concave hull algorithm. The 

lines are also accurately identical to the original object 

because the edges are drawn based on the vertices. One 

limitation is that the algorithm is highly dependent on 

accurate vertex detection. If a vertex is missed then the 

resulting shape would not produce the actual model.    
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