
I.J. Information Technology and Computer Science, 2017, 3, 1-9
Published Online March 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.03.01

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

A Concave Hull Based Algorithm for Object

Shape Reconstruction

Zahrah Yahya
Faculty of Computing and Technological Science, Kolej Universiti Poly-Tech MARA, Kuala Lumpur, Malaysia

E-mail: zahrah@gapps.kptm.edu.my

Rahmita W Rahmat, Fatimah Khalid, Amir Rizaan
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia

E-mail: rahmita@upm.edu.my, fatimahk@upm.edu.my, amir@upm.edu.my

Ahmad Rizal
Faculty of Design and Architecture, Universiti Putra Malaysia

E-mail: rizalrahman@upm.edu.my

Abstract—Hull algorithms are the most efficient and

closest methods to be redesigned for connecting vertices

for geometric shape reconstruction. The vertices are the

input points representing the original object shape. Our

objective is to reconstruct the shape and edges but with

no information on any pattern, it is challenging to

reconstruct the lines to resemble the original shape. By

comparing our results to recent concave hull based

algorithms, two performance measures were conducted to

evaluate the accuracy and time complexity of the

proposed method. Besides achieving the most acceptable

accuracy which is 100%, the time complexity of the

proposed algorithm is evaluated to be (). All results

have shown a competitive and more effective algorithm

compared to the most efficient similar ones. The

algorithm is shown to be able to solve the problems of

vertices connection in an efficient way by devising a new

approach.

Index Terms—Convex hull, concave hull, vertices, shape

reconstruction.

I. INTRODUCTION

Many approaches are given to solve the problem of

polygon computing to approximate geometric shapes

based on a given point set in . Various methods are

designed specifically based on the nature of the output [1].

The objective of this research, is to connect the points or

vertices from the identified object faces that contain

disordered vertices of (). One of the challenging tasks

is to know which vertices to connect together as we have

no connectivity information. Typically, a line is drawn

from each vertex to every other remaining vertex to form

a polygon such as the ready function.

However, this does not allow the recognition of the real

object as can be seen in Figure 1. The main objective of

the proposed method in this paper is to imitate the source

drawing and reconstruct the shape. Given a set of points

(vertices) from two faces representing the dominant shape

of the object, the goal is to connect them ―connect-the-

dots‖ by finding the correct path to produce a

‗meaningful‘ object. The most relevant studies that could

address this issue are the ones done on hull computation.

Numerous algorithms were developed and improved over

the years to address the problem of hull computation and

detection [2]–[5]. The algorithm starts with the convex

hull computation and several works developed from this

process are still considered as state of the art. The

strategies to solve the problem in this paper are taken as a

basis on how to handle convex and non-convex objects.

(a) (b) (c)

Fig.1. A connection on (a) a sample object of our dataset, (b) vertices of

the object and (c), Line drawing between points in .

The computations of convex and concave hulls on the

set of points in two-dimensional planes are still a

challenge in many different areas. They have been widely

used in many fields such as computer graphics, image

processing, GIS, wireless tracking, pattern recognition

and artificial intelligence. It is important to understand

that numerous algorithms are designed based on very

different needs. The construction of hull from a given set

of points is used to detect convexity or concavity as can

be seen in Figure 2. The convex hull of a point-set is the

smallest convex space that contains all the points

belonging to that set. For a finite 2D point-set, the convex

hull can be defined as the smallest convex polygon

containing all the points. Meanwhile, concave hull is

described when the hull around one set of group of

objects is not required to have a convex shape. The shape

defined allows any angle between the points. Convex

hulls have several useful properties that can be suitable

2 A Concave Hull Based Algorithm for Object Shape Reconstruction

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

for a variation of recognition and representation tasks. A

convex hull can also be defined when the shape that

contains all the points does not have any angle that

exceeds 180 degrees between two adjacent points.

(a) Convex hull (b) Concave hull

Fig.2. Classification of convex and concave hull. Adapted from [6]

Graham‘s scan algorithm [4] for computing the convex

hull is used as a basic idea for connecting set of points in

a plane. The result of convex hull construction using

Graham‘s Scan shows that the enumeration is to extract

the extrapolation or the image boundary. The algorithm

does not enumerate points with same or value and

neglects the inner points. Figure 3 shows several results

for using Graham‘s Scan Algorithm. As seen in the figure,

the convex hull technique does not reflect the original

shape which mostly has a dataset of concave objects.

Thus, concave hull is a better choice and is more

advanced to capture the concaveness of the shape of the

object [7].

Fig.3. Graham‘s Scan based on convex hull rules of our datasets

Fig.4. The smoothness of concave hull determined by threshold [7]

Concave hull computation is an active field in

computation geometry with different approaches to

compute the boundaries from point sets of the arbitrary

shape. There are many known algorithms for computing

convex hull but very few for computing concave hulls.

The techniques used to compute concave hulls are based

on nearest neighbor, kernel functions, using a convex hull

or Delaunay triangulation. A prominent algorithm for

concave hull computation is to construct non-convex or

simple polygons that characterize the shape from a set of

points in the plane. It is based on the Delaunay

triangulation of the points. The method first creates a

convex Delaunay triangulation with the entire vertex

connecting each other. Then, the algorithm removes the

edges that are smaller than a certain threshold value, but

still does not give any expected results. However, it is not

applicable in our work because the algorithm still

connects the most outer points. The smoothness of the

shape is based on the ‗digging method‘ and threshold

value in order to produce the appropriate depth as shown

in Figure 4. In conclusion, we abandoned the convex hull

approach because it cannot preserve the original object

shape.

The challenge in this work is of how to re-implement

hull based algorithms to utilize the concavity to

reconstruct an object shape. While any convex and

concave hull approach ignores some points, our work

inspects all points for a given object to be connected. By

comparing and analyzing the time complexity of the

previous algorithms we have realized the issue of high

time complexity. In this study, a technique for object

shape reconstruction is proposed by utilizing a ‗splitting

and recombination‘ approach to correctly connect the

vertices which also affects the detection of the object

shape. We have emphasized on a design to decrease the

time complexity in comparison with the best options.

Point and vertex is used interchangeably throughout this

paper.

This paper is organized as follows: section 2 presents

the related works. Section 3 describes the concave Hull

based algorithm developed for object shape

reconstruction. Section 4 introduces the implementation

undertaken. Section 5 presents some examples of the

obtained results, and discusses performance evaluation of

the implemented algorithm. Section 6 concludes with

some remarks and future work.

II. RELATED WORKS

Computing a set of points in a plane to represent a

shape has arisen in the computer vision and computer

graphics domain. It has been used to solve several

problems in pattern recognition, control theory, machine

learning, computational graphics, and structural health

monitoring and also signal classification. A shape

recognized from a set of points can easily be perceived by

a human brain, but the recognition is difficult for a

computer. Before related works are presented, it is

important to define the ideas about terminologies and the

difference of opinion. There are several hulls, however

we reviewed the concave hull category due to their wide

and various range of utilization.

Several methods are exploited to compute a shape or

boundary from arbitrary set of points. The main idea

behind the concave hull computation is based on the

nearest neighbor techniques, kernel functions or convex

hull, and its Delaunay triangulation [8]. A well-known

concave hull algorithms proposed by Edelsbrunnern et al.

[9] is defined as shapes obtained from Delaunay

triangulation that represent a set of points in the plane

parameterized by . For a finite set of points, the
approaches the generalization of convex hull. A related

notion, shape of the set of points constructed from

Voronoi diagrams is proposed by Melkemi & Djebali

[10]. This algorithm is presented for only 2D and could

be extended for 3D. By composing the Voronoi diagram

 A Concave Hull Based Algorithm for Object Shape Reconstruction 3

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

for where is an arbitrary finite points set, we

also join pair points and thus define the

 shape of . The pair points would only be

considered if in addition to these cells bordering each

other, they also border some common Voronoi cells that

contain a point of .

Galton & Duckham [1] proposed a non-convex hull

algorithm to characterize the boundary of a finite input

set in the plane based on Delaunay triangulation of the

points. These boundaries are commonly derived using

either polygon or hull-based methods or statistical

techniques. Also called non-convex footprint is

implemented in GIS for footprint delineating the area

occupied by a set of points and is extended in the work of

Moreira & Santos [11]. The algorithm requires ()
time to execute.

Moreira & Santos [11] proposed an algorithm based on

Jarvis march to compute the boundary of points set in 2D.

It employs a nearest neighbor, and angles

properties which are depending on the previous computed

point. The algorithm can work with most of the scenario.

However, in some cases it produces boundaries that do

not contain all the samples in the dataset. Thus, pre-

processing is needed to remove outliers in order to

produce an accurate result.

Duckham et al. [12] proposed a technique called

 algorithm to generate a characteristic hull-based

method. They applied this method for boundaries shaping

the countries and also alphabet letters using datasets of

known distribution. The algorithm is based on

Delaunay triangle which receives dot patterns as input

and produces a polygon as an output. A length parameter

 is introduced between the shortest and longest boundary

edges. No digging can occur when the is longer than the

longest boundary edge. The concavity degrees rise when

the edge is shorter than the shortest boundary edge. This

method is to delineate the polygonal regions as an

alternative to a minimum convex polygon (MCP) and is

considered as one of the time-efficient concave hull

algorithms with a time complexity of () [13].

Another approach for concave hull method is a method

starting with convex hull followed by ‗a digging‘ method

which is presented by Park & Oh [7]. The algorithm first

starts with the concave list from the concave point and

the ‗dig‘ process is based on the list in order to find the

nearest point. This study also includes the evaluation

criteria for convex and concave hull algorithms. It has a

time complexity of () , where it takes

computations longer than the Duckham algorithm in all

times. The algorithm also uses a threshold parameter to

determine an occurrence of the digging process that may

result to convex or concave. The authors also suggested

that the lower threshold value will result to a more

concave hull, whereas a higher threshold value results to

convex hull. However, their algorithm never entirely

captures the actual shapes of the datasets as the digging

only occurs on the shorter edges. By digging at the long

edges the algorithm would have a more close simulation

of finding the desired shape but still it will not be able to.

Methirumangalath et al. [14] proposed an unified

algorithm to compute geometric shape by a given set of

point in . The algorithm is based on Delaunay

triangle and is capable to deal with many prominent

features such as sharp corners, concavities and thin

regions. However, the algorithm requires parameter

tuning for boundary detection if the input point is very

sparse. Additionally, it also suffers dealing with noise

input like other approaches that use Delaunay triangle in

their algorithm. Table 1 refers to different concave hull

algorithms and their time complexity.

Table 1. A time complexity comparison of concave hull algorithms

Algorithms Time complexity

 Galton & Duckham [1] ()

 Moreira & Santos [11] ()

 Duckham et al. [12] ()

 Park & Oh [7] ()

 Methirumangalath et al. [14] ()

III. THE PROPOSED METHODS

The aim of the algorithm is to create edges or connect

unorganized vertices in each face () and () and

between the two faces in order to define the original

shape. Figure 5 shows a set of vertices of an object

comprising of two faces that provides no connection

information. Each face is a representative of a side of a

symmetric object.

(a) (b) (c)

Fig.5. Two-dimensional vertices represents an object: (a) object vertices,

(b) vertices of face 1 () and (c) vertices of face 2 ()

The proposed approach is based on the points or

vertices which are elements of in the plane. The first

step is to determine the Seed Point as the connection

determinant for the initial and subsequent vertices

construction. The second step is region splitting which is

to divide the faces into two parts based on the centroid of

the face vertices. In the third step, the vertices in each

region are connected and complete face connection is

completed in the fourth step where the edges are added

between faces. The procedure used in this algorithm is

illustrated in the flow shown in Figure 6.

4 A Concave Hull Based Algorithm for Object Shape Reconstruction

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

Fig.6. The procedure of the proposed method

A. Seed Point Identification

This is the first stage where certain elements are

determined for accurate shape identification. Based on

our method, each face must be divided into two regions

which are referred as the upper region () and the lower

region () based on the centroid of the face vertices. The

Seed Point () is a starting point for connecting vertices

and needs to be declared beforehand. If a wrong seed

point is selected, it may result in misconnecting and thus

produce the wrong shape. To determine the , a

minimum value is initialized and is resided in the first

index of the upper region (), meaning that the regions

would change to include the seed point at the upper

region () automatically. Later, the remaining vertices

are computed for the region division. Figure 7 shows the

seed point being dedicated to the upper region and the

region classification represented in equation (1).

 () () (1)

(a) (b)

Fig.7. (a) The original location of seed point in () (b) Seed point ()
being dedicated to the upper region ()

B. Region Splitting

There are two sets: face and containing all the

vertices corresponding to the object which is

also expressed in equation (2). The algorithm is to find

the upper region () and lower region () based on the

remaining vertices after seed point has been identified.

Later these two regions are merged together in order to

have complete connection in the object face.

 ∑

 (2)

 [] ∑

For every face, two regions are partitioned based on

the centroid of or . In equation (3) we

show that the remaining vertices which are less than ̅

(also same for ̅) are assigned to and the rest are kept

in . The centroid of vertices in respect to ̅ are

accumulated in the second equation of (3). The y-values

of the vertices, yi for 0 ≤ i < n, are used to split the region

into horizontal strips while x-values in vertical strips.

Figure 8 illustrates the visualization of the object face

with the division of two regions.

 () {
 (() ̅)

 (() ̅)
 (3)

 ̅
∑

(a) (b) (c)

Fig.8. (a) An imaginary lines shows the centroid of (b) and (c) that

splitting the regions

C. Vertices Connection

The idea of traversal strategy between vertices in this

phase is based on an incremental construction approach

which is a method of computing the convex hull of a

finite set of vertices. While convex hull method chooses

the anchor point from the lowest coordinate, the

algorithm sets the least coordinate as the starting point.

To reduce the complexity of the disorganization, the

connection is broken into two regions which are upper

 A Concave Hull Based Algorithm for Object Shape Reconstruction 5

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

region () and lower region () as described in the

previous section. The algorithm is operated by a ―walking‖

procedure. It walks clockwise for upper regions while

counterclockwise for lower regions.

For a formulated description of the procedure, let be

the point in with the minimum or the

leftmost vertex and let () be the remaining

vertices in . Starting from , the connection is made

based on until the rightmost vertex. This is

explained in equation (4) where we start from our seed

point and by incrementally differentiating the values.

The same procedure is performed on the lower region but

with the exception of the direction. In case the next two

vertices to be connected have the same value, the

smallest angle of the vertex is chosen based on equation

(5), where is to find angle in radians between two

points () . After each of these two regions is

complete, they are concatenated into a complete face by

connecting the corresponding first and last vertex in both

regions.

() ∑() (]

(4)

 | () (

)| (5)

Figure 9 shows the process of creating a combination

of faces as a result of the algorithm. In Figure 9 (a) two

regions of are shown which will be unified to a single

face in figure (b). The same is shown for the in figure

(c) and figure (d). Figure (e) shows the combination of

the faces together as the result of our algorithm for this

stage.

(a) (b) (c)

(d) (e)

Fig.9. (a) Two regions of face one (b) the unified single face one (c) two

regions of the second face (d) the unified single face two (e) the

connection of each face

D. Face Connection

In continuance of the previous step, every vertex of a

face is connected to form the original shape. The results

for now would be in a 2D form. To achieve the complete

object, these faces are connected. New edges are inserted

to each corresponding vertex of each region and face as

shown in Figure 10.

Fig.10. The two faces is concatenated for a complete geometric object

E. Overall Algorithm

Input: Face Vertices //Two faces of the

object contain same number of vertices

Result: Polygon/object connection //Set of edges form

object shape

/*1. List Initialization*/

The whole list is sorted (radix sort) as two arrays: -array

and -array

/*2. Seed Point Identification*/

The minimum value from the -array is initialized as the

Seed Point ()
The () is resided as the first index in the -array

/*3. Region Splitting*/

Get the centroid of of the vertices from -array

 all of the vertices
 ()

 end

/*4. Vertices Connection*/

The walking procedure is based on the and

the smallest angle between two vertices (() ())
 //clockwise for and counter clockwise for

We start from and go one by one through the -array.

 all of the in the and of -array

 () ()
 Insert new edge ()
 () ()

 (()) (())
 Insert new edge ()
 end

Connect the first index of to the first index of and

Connect the last index of to the last index of

/*5. Face Connection*/

The connection is based on the clockwise movement

 all of the vertices
 Insert new edges (()
 ())

 Insert new edges (()
 ())
 end

Fig.11. The proposed pseudo code for object shape reconstruction

6 A Concave Hull Based Algorithm for Object Shape Reconstruction

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

IV. IMPLEMENTATION

A Graphical User Interface (GUI) is designed to run

the entire algorithm and to test the experiments for

producing the results. The data structure and coded

blocks were built based on each process indicated in the

proposed methodology section. The implementation is to

ensure that the overall algorithm is efficient enough to

connect the vertices within the faces and to connect both

faces accurately. Visual Basic 6.0 has been chosen as the

development environment at this stage. Figure 12 shows

the system GUI for object shape reconstruction process.

The elements of each process have been segregated to

show the progress in each stage for algorithm validation.

In the top left corner it shows the visualized raw data as

input and through the stages it reaches to the bottom right

corner, visualizing the overall model as a result.

Fig.12. The system interface for object shape reconstruction algorithm for a sample object from our dataset

V. EXPERIMENTS, RESULTS AND DISCUSSION

The object shape reconstruction algorithm can

successfully obtain its objective in constructing the final

shape from two set of faces with disorganized vertices.

As explained in the introduction of this chapter, there are

several experiments which have attempted to solve the

connection problem. A challenge for all of these studies

is to find the connection as there is no clue about how the

points should be connected. Generally, the connections

between vertices are made through incremental

construction based on the axis and angle evaluation for

each prior vertex to the next vertex. These connections

between the set of points should preserve the original

shape of the object. We name the technique as the

splitting and recombination technique due to the reason

that we first split the vertices and then recombine to

create the shape. It is used to gratify the process of the

connection. A sample of the experiment results are

presented in Table 2.

Table 2. Sample output of the vertices connection experiments

To evaluate and validate the proposed object shape

reconstruction algorithm, experiments are conducted on a

computer with specifications of Windows 7 Professional,

8G-RAM and 3.2 GHz CPU. We have also gone through

 A Concave Hull Based Algorithm for Object Shape Reconstruction 7

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

a series of performance evaluations to make sure that the

proposed algorithm is precise and correct. We evaluated

the accuracy of the output and computational/time

complexity by modeling the computation/time usage of

the proposed algorithm. This would give us estimates to

know how fast the algorithm could deliver the output if

the numbers of vertices which are the inputs are

considerable.

A. Performance Evaluation (Accuracy)

One of the metrics evaluated is the accuracy of the

proposed algorithm. The performance of the proposed

algorithm is evaluated against the well-known concave

hull algorithm based on the precision metric. Precision

can be defined as the exactness of measurement. Equation

(6) is used to compute the precision:

 (6)

Let (True Positive) represent the correct shape

detected. FP (False Positive) is when we are unable to

detect the true or correct shape (falsely detect). Our

algorithm does not include a method to detect false or

incorrect shapes. The algorithm either detects a correct

shape () or does not detect () by its inefficiency.

Based on this description there is no recall to be

estimated. We defined the accuracy which is the

closeness of a measurement to the true value and could

conclude the precision we reach as accuracy. The more

precise the proposed algorithm detects the shapes, the

more accurate it is.

The evaluation process starts by creating a set of

ground truth images. By ground truth image we mean the

original image that shows the shape of the object and

which would later be used as a benchmark for the

validation. For evaluation, the ground truth is compared

with the proposed algorithm and also to the closest

algorithm to this work which is concave hull by Park &

Oh [7]. We use a modified version of the concave hull

algorithm to suit the objective and performance of our

algorithm. Comparing the original images, our results and

the results of modified concave hull algorithm, we could

reach a conclusion on how efficient, complete and

accurate our algorithm is. A visual example of the ground

truth, modified concave hull and the proposed algorithm

compared together is shown in Figure 13. Using the

entire image dataset, the accuracy of both methods has

been demonstrated and evaluated. The results show that

both algorithms achieved the same accuracy which is

100%. In other words, both algorithms accurately detect

all the shapes of the ground truth. We must note that the

concave hull is modified to be competitive with the

nature of our work. If we compare with the unmodified

concave algorithm we see a result of only 52% correct

identified shapes. This points out the competitiveness of

the proposed algorithm while it has taken a completely

new approach. The resulted accuracy is not unusual in the

context of shape identification. Though the same

accuracy could be achieved by modifying the concave

algorithm, we will later show that the proposed algorithm

has complete benefits in its new approach in terms of

time complexity and thus performance.

Fig.13. A sample visual comparison of the results between ground truth images, modified concave algorithm and the proposed algorithm

B. Performance Evaluation (Time Complexity)

The time complexity models the time taken by an

algorithm as the input size rises considerably. It is usually

expressed using the big notation to classify algorithms

by how they performed on input data size they are

working on [15]. It is measured by estimating the number

of elementary operations performed by an algorithm;

either in loops or other functions. Based on the evaluated

model, the algorithm could be compared with other

algorithms to determine the most efficient in terms of the

time or computations needed to finish the entire process.

We have computed the time complexity of the

Concave hull algorithm proposed by Park & Oh [7] for a

8 A Concave Hull Based Algorithm for Object Shape Reconstruction

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

2-dimensional dataset. It utilizes a convex hull algorithm

to generate a list. Convex hull has a () complexity.

For the next three steps the algorithm digs through the

concave list. The authors have mentioned that the overall

complexity of their algorithm is (). Referring to

our algorithm in Figure (11), we show 5 distinct stages.

We computed the complexity of each stage and conclude

as follows:

T1: List initialization: Radix Sort has been used to sort

the entire list due to its efficiency. Normally Radix Sort

complexity is computed by: () where is our word

size. (For example 123 has a word size of 3 while 23 has

a word size of 2 because of the number of digits

composing the number). In our case, the vertices are not

scattered in long distance and so our word size might

not even exceed 3.

T2: Seed point identification: Simple initialization,

 ()
T3: Region splitting: Goes through the whole list and

assigns based on centroid ()

T4: Vertices connection (Walking): Walks through all

the edges using the -array, ()
T5: Face connection: Goes once through all the

vertices and inserts edges, ()

Therefore, the total estimated time complexity is

 () where is estimated to be between 7 and ().
In the worst case scenario where are vertices are scattered

in very far apart distances the time complexity would

reach () but it would still be smaller. This is far

from possible based on the nature of our work. Based on

mathematical evidence, () has less complexity in

comparison with () by Park and Oh [7]. A

graph shown in Figure 14 shows a visual comparison of

the complexities of the two algorithms when many

vertices are given as inputs. The represents the

number of computations which each computation is a unit

of time. The represents the number of vertices

given as input to both algorithms.

Fig.14. A time complexity comparison of the proposed algorithm with [7]

VI. CONCLUSION

This proposed algorithm producing the correct shape

on finite vertices of a face object has several advantages.

The main advantage is that the final procedure could

accurately and efficiently complete the automatic

reconstruction of object from sketch. It is also an

automated algorithm with no user intervention required

through the whole process of object shape reconstruction.

In addition, to get the final output only a second of time

is needed for our examples. This is due to the ()
computation/time complexity of the proposed algorithm.

The computation/time complexity model shows that the

proposed algorithm is more efficient in this aspect

compared to any available concave hull algorithm. The

lines are also accurately identical to the original object

because the edges are drawn based on the vertices. One

limitation is that the algorithm is highly dependent on

accurate vertex detection. If a vertex is missed then the

resulting shape would not produce the actual model.

REFERENCES

[1] A. Galton and M. Duckham, ―What is the region occupied

by a set of points?,‖ in Geographic Information Science,

Springer, 2006, pp. 81–98.

[2] T. M. Chan, ―Optimal output-sensitive convex hull

algorithms in two and three dimensions,‖ Discrete

Comput. Geom., vol. 16, no. 4, pp. 361–368, 1996.

[3] K. L. Clarkson and P. W. Shor, ―Applications of random

 A Concave Hull Based Algorithm for Object Shape Reconstruction 9

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 3, 1-9

sampling in computational geometry, II,‖ Discrete

Comput. Geom., vol. 4, no. 1, pp. 387–421, 1989.

[4] R. L. Graham, ―An efficient algorith for determining the

convex hull of a finite planar set,‖ Inf. Process. Lett., vol.

1, no. 4, pp. 132–133, 1972.

[5] R. A. Jarvis, ―On the identification of the convex hull of a

finite set of points in the plane,‖ Inf. Process. Lett., vol. 2,

no. 1, pp. 18–21, 1973.

[6] E. Rosén, E. Jansson, and M. Brundin, ―Implementation

of a fast and efficient concave hull algorithm,‖ 2014.

[7] J.-S. Park and S.-J. Oh, ―A new concave hull algorithm

and concaveness measure for n-dimensional datasets,‖ J.

Inf. Sci. Eng., vol. 29, no. 2, pp. 379–392, 2013.

[8] T. Ebert, J. Belz, and O. Nelles, ―Interpolation and

extrapolation: Comparison of definitions and survey of

algorithms for convex and concave hulls,‖ in

Computational Intelligence and Data Mining (CIDM),

2014 IEEE Symposium on, 2014, pp. 310–314.

[9] H. Edelsbrunner, D. G. Kirkpatrick, and R. Seidel, ―On

the shape of a set of points in the plane,‖ Inf. Theory IEEE

Trans. On, vol. 29, no. 4, pp. 551–559, 1983.

[10] M. Melkemi and M. Djebali, ―Computing the shape of a

planar points set,‖ Pattern Recognit., vol. 33, no. 9, pp.

1423–1436, 2000.

[11] A. Moreira and M. Y. Santos, ―Concave hull: A k-nearest

neighbours approach for the computation of the region

occupied by a set of points,‖ 2007.

[12] M. Duckham, L. Kulik, M. Worboys, and A. Galton,

―Efficient generation of simple polygons for

characterizing the shape of a set of points in the plane,‖

Pattern Recognit., vol. 41, no. 10, pp. 3224–3236, 2008.

[13] S. Meintjes, ―Multi-objective optimisation of a

commercial vehicle complex network,‖ University of

Pretoria, 2013.

[14] S. Methirumangalath, A. D. Parakkat, and R.

Muthuganapathy, ―A unified approach towards

reconstruction of a planar point set,‖ Comput. Graph.,

2015.

[15] I. Chivers, J. Sleightolme, "An Introduction to Algorithms

and the Big O Notation", Introduction to Programming

with Fortran, Springer, 2015, pp.359-364

Authors’ Profiles

Zahrah Yahya, Ph D. obtained her Bsc in

Information Technology and Msc IT from

Universiti Utara Malaysia in 2003 and 2007

respectively. She received her PhD in

Computer Science from Universiti Putra

Malaysia. She is currently a senior lecturer in

Kolej Universiti Poly-Tech MARA. Her

research interests are image processing, 3D modeling and

computer vision.

Rahmita Wirza O.K Rahmat, Ph D.

obtained her B.Sc. and M.Sc. degrees in

Science Mathematics from University

Science Malaysia in 1989 and 1994

respectively. She received her PhD in

Computer Assisted Engineering from

University of Leeds, U.K. She is currently an

Associate Professor at Faculty of Computer Science and

Information Technology, UPM.

Fatimah Khalid, Ph D. received her Bsc in

Computer Science from UTM in 1993 and

her Msc IT in 1998 from UKM. She received

her PhD in Computer Science from UKM in

2008. Currently, she is an Associate Professor

at FSKTM, UPM. Her research interests are

Computer vision and Image Processing.

Ahmad Rizal Abd Rahman, Ph D. obtained

his BDes. Industrial Design from ITM. He

obtained his Msc. Industrial Design Eng.,

from Brunel Univ., West London, UK and

PhD from Sheffield Hallam University, UK in

Practice Led Design Research. Currently he is

a Senior Lecturer at Faculty of Design and

Architecture, UPM. His research interests are Design Research

and Localization.

Amir Rizaan Abdul Rahiman, Ph D.

received his Diploma in Computer Science

and Bachelor in Computer Science from

UPM in 1998 and 2000 respectively. He

obtained his Master in Computer Science in

2 004 from UTM. He received his PhD in

Computer Science from USM in 2011.

Currently he is a Senior Lecturer at Faculty

of Computer Science an Information Technology, UPM. His

research interests are Multimedia Applications, Flash-based

Systems and Software Engineering.

How to cite this paper: Zahrah Yahya, Rahmita W Rahmat,

Fatimah Khalid, Amir Rizaan, Ahmad Rizal,"A Concave Hull

Based Algorithm for Object Shape Reconstruction",

International Journal of Information Technology and Computer

Science (IJITCS), Vol.9, No.3, pp.1-9, 2017. DOI:

10.5815/ijitcs.2017.03.01

