
I.J. Information Technology and Computer Science, 2017, 2, 66-75
Published Online February 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.02.08

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

An analysis of the Intelligent Predictive String

Search Algorithm: A Probabilistic Approach

Dipendra Gurung
Department of Computer Science, Sikkim Manipal Institute of Technology, Majitar, 737136, India

E-mail: gurungdipendra99@gmail.com

Udit Kr. Chakraborty
Department of Computer Science, Sikkim Manipal Institute of Technology, Majitar, 737136, India

E-mail: udit.kc@gmail.com

Pratikshya Sharma
Department of Computer Science, Sikkim Manipal Institute of Technology, Majitar, 737136, India

E-mail: pratikshya2007@yahoo.co.in

Abstract—Due to the huge surge of digital information

and the task of mining valuable information from huge

amount of data, text processing tasks like string search

has gained importance. Earlier techniques for text

processing relied on following some predetermined

sequence of steps or some hard coded rules. However,

these techniques might soon prove to be inefficient as the

amount of data generated by modern computer systems in

increasing more and more. One solution to this problem

lies in the development of intelligent algorithms that

incorporate a certain degree of intelligence and unlike

traditional algorithm are able to cope up with changing

scenarios. This paper presents a string searching

algorithm that incorporates a certain degree of

intelligence to search for a string in a text. In the search

of a string, the algorithm relies on a chance process and a

certain probability at each step. An analysis of the

algorithm based on the approach suggested by A. A.

Markov is also presented in the paper. The expected

number of average comparisons required for searching a

string in a text is computed. Based on the varieties of

applications that are coming up in the area of text

processing and the related fields, this new algorithm aims

to find its use.

Index Terms—String matching, Probabilistic analysis,

Markov chain, State diagram.

I. INTRODUCTION

A lot of digital information is present in the form of

text. This makes text processing tasks like string

searching carry a lot of importance. It plays a significant

role in a number of applications that include text editing,

spell checking and correction. Moreover as a result of

huge amount of information generated by modern

systems and a similar volume of research data generated,

the importance of tasks like string searching has only

become two fold. Some recent areas in which string

searching is important include sentiment analysis, text

summarization and information retrieval systems. It also

has a lot of significance in the areas of bioinformatics and

bigdata.

A string search algorithm takes a text and a pattern, as

the inputs and finds the first or all the occurrences of the

pattern. Throughout this paper T is a text of length n and

P is a pattern of length m such that m << n.

The most fundamental method of searching for a string

in a text is to compare each character of the pattern and

the text starting from the first and sliding the pattern by

one position towards the right every time a mismatch

occurs. This approach is known as the brute force method.

Several other algorithms exist that have their own

advantages and shortcomings based on the type of the

text and the pattern. Some notable algorithms are the

Boyer Moore algorithm, Horspool algorithm, KMP

algorithm. Most of the algorithms work in two phases i.e.

the pre-processing phase and the matching phase. During

the pre-processing phase the pattern is processed and the

data gained is used in the matching phase to shift the

pattern in case of a mismatch.

The mentioned algorithms and their refinements have

been use in systems and some have proven to be

particularly efficient. However, with the advent of high-

throughput systems, biologists, physicists, scientists and

other researchers are joining the big-data club, and are

starting to grapple with massive data sets, encountering

challenges with extracting meaningful information and

handling, processing and storing them. Although all the

information eventually comes down to a collection of text,

it is the variety and the amount of information that might

prove to a bottleneck for the existing algorithms, that rely

on hard coded rules and predetermined steps.

Much of modern research in the computer science

domain is being focused on the development of

intelligent algorithms that employ intelligent decision

making to solve problems more efficiently. This paper

presents a string search algorithm that does not require

pre-processing like the existing algorithms and

 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach 67

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

incorporates a certain degree of intelligent decision

making while searching for a string. The algorithm uses

predictions based only on the features of the text and

finds the first occurrence of a pattern in a text. The paper

also presents an analysis of the algorithm. A simple

probabilistic approach has been taken to analyse the

performance of the algorithm. Several factors determine

the performance of a string search algorithm; however in

this paper only the number of character comparisons

made is taken into consideration to analyse the

performance.

During the search of a string, comparison of a

character provides vital information in determining the

next step, which may be a next comparison or a shift of

the pattern based on a match or a mismatch, which in turn

affects the overall performance of the algorithm. The total

number of character comparisons made thus proves to be

an effective metric in analysing the performance of a

string search algorithm. The analysis is based on a

Markov chain approach to determine the average number

of flips of a coin required to obtain consecutive heads.

The rest of the paper is organized as follows. Section II

presents a description of some of the existing string

searching algorithm. Section III presents a description of

the Intelligent Predictive String Search Algorithm.

Section IV illustrates the algorithm with some examples.

Section V describes probabilistic analysis and Markov

chain. Section VI presents an analysis of the algorithm

based on the Markov Chain approach and finally the

paper is concluded in Section VII.

II. RELATED WORK

A. Boyer Moore Algorithm

The Boyer Moore algorithm is considered to be an

efficient algorithm and is extensively used. All the

algorithms prior to it attempted to find a pattern in a

string by examining the leftmost character. Boyer and

Moore believed that more information could be gained by

beginning the comparison from the end of the pattern

instead of the beginning [12]. This information often

allows the pattern to proceed in large jumps through the

text being searched [1]. The algorithm uses the bad

character heuristic and the good suffix heuristic to

determine the pattern shift in case of mismatch of a

pattern character.

During the matching phase if there is a mismatch

between the text character T[i] and the pattern character

P[j] and if T[i] does not occur anywhere else in the

pattern, then the pattern can be shifted completely by m

positions towards the right. If T[i] is present in the pattern

then the pattern is shifted until an occurrence of T[i] in

the pattern gets aligned with T[i] of the text. This is the

bad character heuristic.

The second type of shift is guided by a successful

match of the last k>0 characters of the pattern, P[j...m]

and corresponding characters, T[i...(i+k)] of the text.

P[j…m] is referred to as the suffix of size k of the pattern

and is denoted as suff(k). If there is no occurrence of

suff(k) in the pattern then it is shifted by its entire length.

However if there exists a prefix (beginning part of the

pattern) of size l<k that match suffix of the same size l

then the pattern is shifted by a distance equal to the

distance between the prefix and the suffix. On the other

hand if there is another occurrence of suff(k) not

preceded by the same character that caused the mismatch

then the pattern is shifted by a distance equal to suff(k)

and its rightmost occurrence [10]. This is the good suffix

heuristic. The shift distance is taken to be the maximum

of the distances obtained by the bad character heuristic

and the good suffix heuristic.

The Boyer Moore algorithm has the property that the

longer the pattern is, the faster it performs. However the

algorithm suffers from the phenomenon that it tends to

work inefficiently on small alphabets like DNA. The skip

distance tends to stop growing with the pattern length

because substrings re-occur frequently [15]. Also, the

pre-processing for the good suffix heuristic is difficult to

understand and implement [16]. Furthermore, it suffers

from the need for very large tables or state machines and

thus requires extra space [15]. It also requires extra time

for processing the pattern.

B. Horspool Algorithm

The good suffix heuristic of the Boyer Moore

algorithm is complicated and difficult to implement,

Horspool suggested a refinement that uses only the bad

character heuristic while achieving performance similar

to that of the Boyer-Moore algorithm. The Boyer Moore

algorithm uses the bad character of the text that caused a

mismatch to determine the pattern shift distance. On the

contrary Horspool’s bad character heuristic uses the

rightmost character of the current text window. During

the matching phase, if T[i] and P[j] do not match and T[l]

is the rightmost character of the current text window then

the pattern is inspected to find the rightmost occurrence

of T[l] in it. If no occurrence of T[l] exists in P, the

pattern is shifted completely by its length m, otherwise

the pattern is shifted until T[l] gets aligned to its

rightmost occurrence in P.

Like the Boyer Moore algorithm, the Horspool

algorithm gets faster for longer patterns. However as it

uses only the bad character heuristic, it has a poorer worst

case performance [17].

C. KMP Algorithm

The Knuth Morris Pratt or the KMP algorithm begins

the comparison from the leftmost character of the pattern.

The following example explains the algorithm.

Fig.1. KMP Algorithm [16]

68 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

At the first attempt the characters through position 0-4

or the prefix ABCAB of the pattern have matched.

Comparison C-D at position 5 yields a mismatch. In order

to determine the shift of the pattern let us define the term

border. A border of a string is a substring that is both

proper prefix and proper suffix of the string. In the above

example the border of the matching prefix ABCAB is AB.

The width of the prefix and its border is 5 and 2

respectively. The shift distance is determined by the

difference between the width of the matching prefix and

its border, which is 3 [16]. The pattern is shifted by three

positions towards the right. This shift aligns the pattern

with its occurrence in the text.

The KMP algorithm works efficiently on short patterns.

However the performance of the KMP algorithm

degrades for longer patterns as the possibility of character

mismatch increases.

As observed, all of the algorithms discussed rely on

pre-processing the pattern and using the pre-computed

values for searching a string. The predictive algorithm

does not require pre-processing the pattern. It attempts to

be more efficient and find application in areas in which

the existing algorithms fail to perform.

III. THE ALGORITHM

The main idea of the algorithm is to get rid of the need

of preprocessing the pattern to be searched and in doing

so also get rid of the complex computations involved. It is

based on the idea that during the comparison of the

characters of the text and the pattern, the type of

mismatch that may occur provides valuable information

in predicting the next possible case which might again

lead to either a match or mismatch. This knowledge

gained at each comparison of the text and pattern

characters is used to determine shifts of the pattern across

the text.

Let us consider that the leftmost characters of the

pattern P and the text T are aligned. Also, let us make the

assumption that the text consists of words separated by a

blank space and the search is made for complete words

and not their substrings. The following two observations

can be made on examining the first character char1 of the

text.

If char1 is a blank space, then it is certain that the

occurrence of pattern does not start at this position in the

text. However the next position might be a possible

beginning of the pattern.

If char1 is different from the corresponding character of

the pattern, then there are two possibilities. The next

character might be another character of the same word or

it might be a blank.

If the first case arises then the pattern can be shifted by

one position towards the right whereas if the second case

arises the pattern can be shifted by two positions.

Assuming the first character of the pattern match with

that of the text, the m
th

 character charm of the text is

inspected. The following observations can be made.

If charm is a blank space, it becomes certain that the

pattern does not occur at the current alignment as clearly

the text string is shorter than the pattern.

If charm is different from the corresponding pattern

character, then the next character of text is examined. The

following lists the observations that can be made on

examining the next text character.

If the next character is a blank space, then the current

word aligned is equal in length with the pattern and as

charm is different from the corresponding pattern

character, it is certain that the pattern does not occur at

the current position. Hence it would be safe to slide the

pattern by m positions towards the right.

However, if the next character is not a blank space, a

shift is made by two positions.

As seen from the observations made, useful

information can be gained by a simple examination of the

text and using the same, the pattern shift distance can also

be calculated.

Base on the observations made earlier, two rules can be

formulated to determine a shift of the pattern in case of a

character mismatch. The two rules are named as the

Alphabet-Blank mismatch rule and the Alphabet-

Alphabet mismatch rule.

The algorithm has been designed to find the first

occurrence of a pattern in a given text and as mentioned

earlier the algorithm works in just a single phase i.e. the

matching phase unlike other existing algorithms that

work in two phases i.e. the preprocessing phase and the

matching phase. Each character comparison is based on a

chance process which may either lead to a match or

mismatch. In case of a mismatch, the shift distance is

predictively determined based on the type of mismatch.

Fig.2. Schematic diagram for the algorithm

Fig. 2. illustrates an instance of the algorithm. At the

beginning, the leftmost ends of the text and the pattern

are aligned. At each alignment of the pattern, the

algorithm works on the portion of the text with size equal

to the length of the pattern. This is known as the text

window. The comparison starts with the leftmost

character of the pattern and the text. If a match is found

the rightmost character of the pattern is compared with

the rightmost character of the current window. If this

leads to a match, the remaining characters are compared

from right to left.

The two rules described earlier are applicable only

when there is a mismatch of the leftmost or the rightmost

character of the pattern. In case of mismatch at any other

position the pattern is shifted by its entire length. The

following describes the steps of the algorithm

 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach 69

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Algorithm_predictive_search(T,P)

1: Align T and P

2: Repeat steps 3 to 5 until a match is found or until the

 end of T is reached.

3: Compare P[0] and T[i]

4: if mismatch

 a: Alphabet-blank

 Re align P[0] to T[i+1]

 b: Alphabet-alphabet

 Re align P[0] to T[i+2]

5: if match compare P[m] to T[i+m]

 a: if match

 Compare remaining characters from

 right to left

 b: if mismatch

 1: Alphabet-blank

 Re align P[0] to T[i+(m-1)+1]

 2: Alphabet-alphabet

 a: if T[i+(m+1)] is blank

 Realign P[0] to

T[i+(m-1)+2]

 b: else

 Realign P[0] to

T[i+2]

__

Line 4 handles a mismatch of the leftmost character of

the pattern. If i is the position of mismatch in the text then

in case of an alphabet-blank mismatch the leftmost

character of the pattern is aligned to (i + 1)
th

 character of

the text and the (i + 2)
th

 character in case of an alphabet-

alphabet mismatch. Line 5 handles a mismatch of the

rightmost character of the pattern. In case of an alphabet-

blank mismatch, the pattern is shifted by its length to

make an alignment with the (i + m)
th

 character of the text.

In case of an alphabet-alphabet mismatch, the next

position is checked for a blank space. If it is a blank space,

the pattern is shifted such that the leftmost character is

aligned with the (i + m + 1)
th

 character of the text, else

the pattern is shifted to the (i + 2)
th

 position.

IV. EXAMPLE

The following examples illustrate the algorithm for

different cases, namely, when the pattern is present at

different locations in the text, for different lengths of the

pattern and for different categories of mismatch.

Fig.3. Pattern search using the algorithm

In the above example an average length pattern

BCAAB is present at the end of the text. The algorithm

directly begins with the matching by aligning the pattern

BCAAB and the text. The leftmost comparison B-B

yields a match. Hence the rightmost character of the

pattern and the corresponding character of the current

window are tried for a match. As this leads to an

alphabet-blank mismatch, the pattern is shifted by its

length. At the next alignment, the comparison A-B causes

an alphabet-alphabet mismatch. As a result the pattern is

shifted by two positions. The next comparison causes an

alphabet-blank mismatch and thus a shift of one position

is made. This shift aligns the pattern with its occurrence

in the text as seen in the figure. The number of

comparisons made is nine.

The above example gives an insight into the average

case performance of the algorithm as it illustrates the

general cases of mismatch that occur during comparison

of characters and the resulting pattern shift that take place.

As seen from Fig. 3, an alphabet-blank mismatch is

encountered at the rightmost position of the pattern and

the resulting shift of the pattern made, which is one of the

best possible shift. The example also shows an alphabet-

alphabet mismatch which is the most common type of

mismatch that occurs. It also shows an alphabet-blank

mismatch at the leftmost position which results in a shift

of one position.

The next example illustrates the performance of the

algorithm when searching for a normal length pattern

present within the text.

Fig.4. An average length pattern present within the text

The first comparison A-B leads to an alphabet-alphabet

mismatch. As a result the pattern is shifted by two

positions. The next causes an alphabet-blank mismatch

and hence a shift of one position is made. The next

comparison Q-B causes an alphabet-alphabet mismatch

and so does the following comparison. The pattern is

finally aligned with its occurrence in the text as a result of

the shift made due to an alphabet-blank mismatch. The

total number of comparisons made is twelve.

In the example shown in Fig. 4, it can be observed that

no more than shifts of two positions are made. This is

because the leftmost comparison always leads to an

alphabet-alphabet mismatch resulting in a shift of just

two places. If such a situation arises then the algorithm

enters its worst case. Moreover, the situation becomes

even worse if the pattern is located at the end of the text

or is not present at all.

The next examples depict the performance of the

algorithm for short length patterns present at different

locations in the text.

70 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Fig.5. A short pattern present within the text

In the above example a short pattern, CF is present

within the text. The first comparison C-C leads to a match.

Therefore the next comparison D-F is made. It causes an

alphabet-alphabet mismatch and as it is the rightmost

comparison, the next character of the text is inspected.

Since it is a blank space, the pattern is shifted by its

length plus one which brings it to the next alignment as

shown in Fig. 5. The number of comparisons made up to

this stage is two. The next comparison A-C causes an

alphabet-alphabet mismatch and as a result the pattern is

shifted by two positions. Similar is the case for the next

comparison F-C. The following comparison causes an

alphabet-blank mismatch and as it is the leftmost

comparison, the pattern is shifted by one position. This

shift aligns the pattern with its occurrence in the text. The

total number of comparisons made is seven.

In the following example the pattern CF is present at

the end of the text.

Fig.6. A short pattern present at the end of the text

The first comparison A-C causes an alphabet-alphabet

mismatch leading to a shift of two positions and so does

the next comparison D-C. The next comparison causes an

alphabet-blank mismatch causing a shift of one position.

The next comparison C-C leads to a match whereas the

next comparison D-F causes a mismatch, leading the

pattern to be shifted by two positions. The next

comparison A-C also results is a shift of two positions.

The following comparison C-C leads to a match but the

next comparison E-F causes a mismatch, which results in

the pattern being shifted by its length. The next

comparison F-C leads to a mismatch resulting in a shift of

two positions. As the next comparison leads to an

alphabet-blank mismatch a shift of one position is made.

This shift aligns the pattern with its occurrence in the text.

The total number of comparisons made is twelve.

Experimental results have shown that the algorithm is

able to achieve performance comparable to that of the

Boyer Moore algorithm. Moreover, it is important to note

that this performance is achieved without the pattern

being preprocessed as in case of the Boyer Moore

algorithm.

Taking into consideration the text and the pattern used

in Fig. 5, the following illustrates the performance of the

Boyer Moore algorithm.

Fig.7. Pattern search using Boyer Moore algorithm

The first comparison D-F causes a mismatch. As D

does not occur anywhere in the pattern, it is shifted by its

length. The next comparison A-F also causes a mismatch

and since A is not present in the pattern, it is shifted by its

length. The next comparison F-F however causes a match.

However the comparison of the preceding characters B-C

causes a mismatch. As a result the pattern is shifted by its

length. The next comparison causes a mismatch and as a

blank space is not present in the text; the pattern is shifted

by its length. This shift aligns the pattern with its

occurrence in the text. The total number of comparisons

made is seven. It was observed in Fig. 5, that the total

number of comparisons made by the Predictive algorithm

was also seven. It has been particularly observed that for

shorter patterns the performance achieved by the

Predictive algorithm is comparable to that of the Boyer

Moore algorithm.

The following table shows a comparison of the

predictive algorithm with the Boyer Moore and the KMP

algorithm. The comparisons are made on the basis of the

number of character comparisons each algorithm makes

for searching each word of the text A TEST OF THE

PROPOSED ALGORITHM.

Table 1. Comparison of the proposed algorithm with KMP and Boyer

Moore algorithm

Pattern

Number of comparisons

Boyer

Moore
KMP

Intelligent

Predictive

A 1 1 1

TEST 5 6 5

OF 6 9 6

THE 7 15 10

PROPOSED 11 22 16

ALGORITHM 12 33 18

As seen from the table the Intelligent Predictive

algorithm achieves performance comparable to that of the

Boyer Moore algorithm and better than that of the KMP

algorithm.

 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach 71

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

V. PROBABILISTIC ANALYSIS AND MARKOV CHAIN

A probabilistic algorithm is an algorithm where the

result or the way the result is obtained depends on chance.

Some algorithms are by nature stochastic whereas in

other cases the problem to be solved is deterministic but

can be transformed into a stochastic one and solved by

applying a probabilistic algorithm [14]. Probabilistic

analysis is the use of probability in the analysis of

problems [11]. A probabilistic analysis is performed

using knowledge regarding the distribution of inputs or

making assumptions regarding the same. Therefore, in the

process averaging the performance over all possible

inputs.

Markov chain was introduced in 1906 by Andrei

Andreyevich Markov. It is a stochastic and a type of a

chance process in which the next step depends only on

the current state. The steps preceding the current one do

not have an impact on the next state. A Markov chain is

characterized by a set of states and transition probabilities

between the states.

Markov chain can be formally defined as a sequence of

n finite or countably finite trials. At each trial a

probabilistic experiment is performed. The outcome of

the experiment determines the state of the system at that

time. The states are mutually exclusive, exhaustive and

finite. Let X be an event that denotes the state of the

system after each trial, then Xn = k, is an event that

denotes the state k of the system at time n [1]. Xn is a

random variable and has a probability distribution

 (1)

The Markov property states that the probability of

moving to the next state depends only on the present

states and not on the previous states.

 (2)

In other words, the events X1 through Xn-2 have no

influence on the event Xn. Only the event Xn-1 makes an

influence on the event Xn. The system makes a transition

from state i to j with the probability Pij = P(Xj = xj | Xi =

xi), known as the state transition probability. The

transition probabilities form a transition probability

matrix [5]. Given a transition matrix,

. (3)

Fig.8. Markov Chain Example

A Markov chain for the same can be represented by a

sequence of directed graphs where the edges are labeled

by probabilities of transition from one state to another.

VI. ANALYSIS

Given a text and a pattern, the problem of string

searching is deterministic in nature as a string search

algorithm will always make the same number of

comparisons and will always produce the same result. In

order to analyse its performance using the Markovian

approach, the problem of string searching can be

transformed into a stochastic one by making the

following assumption. Let the comparison of pattern and

text characters be an experiment € and X be an event such

that the characters match. Let us suppose P(X) = p, then

P(X’) = 1 – p, is the probability that a mismatch occurs.

The sample space consists of sequences {x1, x2, …., xm}

where each x is X or X’ depending on whether a match or

mismatch occurred. For each alignment of the pattern,

until a match is found, there will be k<m independent

repetitions of € (k denotes the number of comparisons

made until a mismatch is found for each alignment of the

pattern). The alignment that yields a match will have m

independent repetitions of €. The total repetitions of the

experiment may be denoted as,

 + m. (4)

The aim of the analysis is to determine the average

number of comparisons that is needed to find the first

occurrence of a pattern in a text. The matching phase

begins by aligning the leftmost ends of the pattern and the

text and comparing the characters for a match. The

comparison stops only when all the characters of the

pattern match with that of the text. A simple approach to

determine the average number of comparisons required to

find a match of the pattern can be made by assuming the

problem of pattern matching to be similar to that of a coin

tossing experiment of obtaining consecutive heads, each

match denoting a head and a mismatch denoting a tail.

The coin flipping experiment restarts each time a tail is

obtained. Similarly, the algorithm realigns the pattern and

restarts the comparison of characters of the pattern

whenever a mismatch occurs.

During the matching phase of the algorithm, if a match

has occurred, then the next character is inspected for a

match. Any prior mismatch will not cause the pattern to

be shifted in this case nor does a prior match influence

the next comparison. Similarly if a mismatch has

occurred, the pattern is shifted based on the two shift

rules and the matching restarts with the leftmost character

of the pattern. No prior match will cause the next

character to be inspected for a match nor will a previous

mismatch have an influence on the shift of the pattern.

Moreover, at each step during the matching phase a

prediction is made and either a comparison or shift is

made based on a certain probability.

The comparison of characters of the text and the

pattern form a chain of linked events which satisfy the

72 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Markov property. In the coin tossing experiment the

average number of coin flips required to obtain

consecutive heads is determined by first computing the

average number of flips required to obtain one head. This

result is then used to determine the same for two

consecutive heads. Similarly, the result is used to obtain

the value for three consecutive heads and so on and so

forth.

A similar approach is used to determine the average

number of comparisons for finding a match of a pattern.

The number of comparisons made would also depend on

the features of the text like the frequency of occurrence of

characters. However in this analysis the same has not

been taken into consideration. Given a pattern of length

m and a random text, this analysis tries to determine the

performance of the algorithm in the worst possible case.

A worst case arises when at each alignment of the pattern,

(m – 1) characters of the pattern match whereas the last

comparison causes a mismatch. Such a case would cause

a large number of comparisons to be made if the pattern

is located at the end of the text or is not present at all.

To begin with the analysis the following assumption is

made. Let the states of the Markov chain correspond to

the characters of the pattern. For the i
th

 pattern character,

the state is denoted as PCi (1 ≤ i ≤ m). Let C1 denote the

average number of comparisons required to get a match

of the first character of the pattern.

Fig.9. Comparison of first character [13]

As depicted in Fig. 9 above, if the comparison leads to

a mismatch, which has the probability (1 – p), the pattern

is shifted and the comparison is restarted. In this process,

one comparison is wasted and the number of comparisons

yet to be made is still C1. Thus, this gives (1 – p)(1 + C1),

whereas if a match is found, the probability is p and the

number of comparisons made is 1. This gives p.1.

The expected number of comparisons is,

 (5)

On simplifying the above equation,

C1 = (6)

On getting a match of the first character, the last

character of the pattern is inspected for a match. The

following figure depicts the comparisons.

Fig.10. Comparison of the first and mth characters of the pattern [13]

Let C2 denote the average number of comparisons

required to find a match of the first and the last character

of the pattern. As depicted in the Fig. 10, if this

comparison leads to a mismatch, the pattern is shifted

according to the shift rules and the comparison restarts

and as a result two comparisons are wasted, one for the

comparison of the last pattern character and the other for

the first character, although the first comparison had led

to a match. At this stage, the number of comparisons to

be made is still C2. This gives p(1 – p)(2 + C2). On the

other hand, if the last character matches, the goal is

accomplished in two comparisons. This gives p
2
.2.

Furthermore, if the first comparison is wasted on a

mismatch, it will cause (1 – p)(1 + C2) to be added to the

total number of comparisons to be made. The expected

number of average comparisons is,

 (7)

On simplifying the equation,

C2 = (8)

Similarly C3, the expected number of average

comparisons required to find the match of the first, m
th

and (m – 1)
th

 characters can be determined. Fig. 11.

depicts this case.

Fig.11. Comparison of the first, mth and (m – 1)th characters [13]

 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach 73

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Fig.12. Comparison of all characters of the pattern [13]

C3 is represented by the following equation,

 (9)

On simplifying,

C3 = (10)

A similar approach can be used to determine the

average number of comparisons required to find a match

of the pattern. Fig. 12 depicts the case.

Cm, the average number of comparisons required to

find a match of the pattern is,

(11)

Cm = (12)

The result is,

 (13)

or

Cm = (14)

Observation 1:

Fig. 12 represents a possible worst case scenario in

which all but the last character of the pattern match for

every alignment of the pattern. Such a situation would

rarely occur but in case it occurs and moreover if the

pattern is present at the end of the text or not present at all,

a large number of comparisons would be made. In fact,

all the characters of the text would be scanned. The

number of comparisons that would be made in this case is

represented by (14). However, it is important to note that

the above observation is without taking into consideration

the length of the text because as mentioned earlier the

analysis is based on the coin flipping experiment of

obtaining consecutive heads. Also, the value of p depends

on the frequency of occurrence of English characters,

which varies with characters.

It would also not be incorrect to state that Fig. 12

represents a possible average case in which the pattern is

present somewhere within the text and less than (m – 1)

characters of the text are scanned at every alignment of

the pattern until a match is found. However (14) depicts

the worst possible case and moreover it would not be

possible to perform the average case analysis without

considering the length of the text.

Observation 2:

Generally, given a text containing words separated by a

blank space, the algorithm makes a skip of two places

when an alphabet-alphabet mismatch occurs. Also in case

the last character of the pattern coincides with a blank

space, the pattern is shifted by its entire length. Hence on

an average the number of comparisons made before an

occurrence of a pattern is found would be approximately

close to (n/2). The shift of one made due to an alphabet-

blank mismatch is compensated by a shift of m places

when the last character of the pattern coincides with a

blank space. Moreover, the number of blank spaces in

any text is comparatively less than the number of

characters. This also justifies the observation.

Observation 3:

The best case occurs when the rightmost character of

the pattern collides with a blank space in the text every

time. Fig. 13 depicts such a case. For every alignment the

leftmost character of the pattern matches with the

corresponding character of the text whereas the rightmost

character coincides with a blank space. In such a case the

pattern is shifted by m positions every time. As a result

the number of comparisons made is close to (n/m).

74 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Fig.13. Best case of the algorithm

VII. CONCLUSION

This paper presented an algorithm that incorporates the

concept of predictive decision making, which is new to

string matching in comparison to other areas of computer

science. As the algorithm is based on a chance process a

simple probabilistic approach was taken to determine the

number of character comparisons made in the worst

possible case. A Markovian approach was followed as the

mechanism of character comparisons satisfied the

Markov property. It was also seen that the performance of

the algorithm is comparable to that of the Boyer Moore

algorithm particularly for shorter patterns and better than

that of the Knuth Morris Pratt algorithm.

However the analysis was done without taking into

consideration the length of the text. As a result the

analysis could not be extended to the average case of the

algorithm. Elaborating on the concept of predictive

decision making to enable search of substrings in a text

and the probabilistic analysis of the algorithm in the

average case has been left for further research.

REFERENCES

[1] Boyer, R. S.; Moore, J. S. A fast string searching

algorithm. Commun. ACM 20, pp. 762-772, 1977.

[2] Donald E. Knuth, James H. Morris, Vaughan R. Pratt,

Fast Pattern Matching In Strings in: Siam, Vol. 6, No. 2,

pp. 323-350, June 1977.

[3] R. Nigel horspool, Practical fast searching in strings in:

Software-Practice and Experience, vol. 10, pp. 501-506,

1980.

[4] Timo Raita, Tuning The Boyer-Moore-Horspool String

Searching Algorithm in: Software-Practice And

Experience, Vol. 22(10), pp. 879-884, October 1992.

[5] Gleb Gribakin, Probability and Distribution Theory,

Chapter 4 Markov Chains, 110SOR201, 2002.

[6] Nimisha Singla, Deepak Garg, String Matching

Algorithms and their Applicability in various Applications

in: International Journal of Soft Computing and

Engineering (IJSCE) ISSN: 2231-2307, Volume-I, Issue-6,

pp.156-161, January 2012.

[7] Emma Haddi, Xiaohui Liu, Yong Shi, The Role of Text

Pre-processing in Sentiment Analysis: International

Conference on Information Technology and Quantitative

Management, pp. 234-231, 2013.

[8] Vivien Marx, Biology: The big challenges of big data,

Nature 498, doi:10.1038/498255a, pp. 255–260, June

2013.

[9] Dipendra Gurung, Udit Kr. Chakraborty, Pratikshya

Sharma, Intelligent Predictive String Search algorithm:

Proceedings of International Conference on

Communication, Computing and Virtualization (ICCCV)

2016, Elsevier Procedia Computer Science, Volume 79,

2016, Pages 161–169.

[10] Olaronke G. Iroju, Janet O. Olaleke, "A Systematic

Review of Natural Language Processing in Healthcare",

I.J. Information Technology and Computer Science, 2015,

08, pp. 44-50.

[11] Anany Levitin: Introduction to The Design and Analysis

of Algorithms, 2nd edition, ISBN: 9780321358288,

published by Pearson Education, Inc., 2007.

[12] Thomas H. Cormen, Charles E. Leiserson, Ronald L.

Rivest and Clifford Stein, Introduction to Algorithms,

third edition, MIT press.

[13] Suranga Hettiariachchi, Wesley Kerr: Boyer-Moore String

Matching algorithm, Technical paper downloaded from

http://cs.eou.edu/CSMM/surangah/research/boyer/boy.pdf

[14] https://www.cs.cornell.edu/~ginsparg/physics/info295/mh

.pdf

[15] Probabilistic algorithms, Spring 2001 course,

http://users.abo.fi/atorn/ProbAlg/Abstract.html

[16] http://www.cs.utexas.edu/~moore/best-ideas/string-

searching/index.html

[17] http://www.inf.fh-flensburg.de/lang/algorithmen/pattern/

indexen.htm

[18] http://www.boost.org/doc/libs/1_54_0/libs/algorithm/doc/

html/the_boost_algorithm_library/Searching/BoyerMoore

Horspool.html

http://cs.eou.edu/CSMM/surangah/research/boyer/boy.pdf
http://users.abo.fi/atorn/ProbAlg/Abstract.html
http://www.boost.org/doc/libs/1_54_0/libs/algorithm/doc/html/the_boost_algorithm_library/Searching/BoyerMooreHorspool.html
http://www.boost.org/doc/libs/1_54_0/libs/algorithm/doc/html/the_boost_algorithm_library/Searching/BoyerMooreHorspool.html
http://www.boost.org/doc/libs/1_54_0/libs/algorithm/doc/html/the_boost_algorithm_library/Searching/BoyerMooreHorspool.html

 An analysis of the Intelligent Predictive String Search Algorithm: A Probabilistic Approach 75

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 2, 66-75

Authors’ Profiles

Dipendra Gurung is a Masters degree

student in Computer Science and

Engineering in Sikkim Manipal Institute of

Technology, India. His research interests

include Natural Language Processing and

Information Security.

Udit Kr. Chakraborty is an Associate

Professor in the Department of Computer

Science and Engineering in Sikkim Manipal

Institute of Technology, India. His research

interests include Algorithms, Theory of

Computation, Soft Computing and Natural

Language Processing.

Pratikshya Sharma is an Assistant

Professor in the Department of Computer

Science and Engineering in Sikkim Manipal

Institute of Technology, India. His research

interests include Remote Sensing & GIS,

Image processing.

How to cite this paper: Dipendra Gurung, Udit Kr.

Chakraborty, Pratikshya Sharma,"An analysis of the Intelligent

Predictive String Search Algorithm: A Probabilistic Approach",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.9, No.2, pp.66-75, 2017. DOI:

10.5815/ijitcs.2017.02.08

