
I.J. Information Technology and Computer Science, 2017, 11, 35-47

Published Online November 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.11.04

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

Empirical and Theoretical Validation of a Use

Case Diagram Complexity Metric

Sangeeta Sabharwal
Department of Computer Engineering, Netaji Subhas Institute of Technology, University of Delhi, INDIA

E-mail: ssab63@gmail.com

Preeti Kaur and Ritu Sibal
Department of Computer Engineering, Netaji Subhas Institute of Technology, University of Delhi, INDIA

E-mail: preetikaur1@rediffmail.com, ritusib@hotmail.com

Received: 28 June 2017; Accepted: 27 July 2017; Published: 08 November 2017

Abstract—A key artifact produced during object oriented

requirements analysis is Use Case Diagram. Functional

requirements of the system under development and

relationship of the system and the external world are

displayed with the help of Use Case Diagram. Therefore,

the quality aspect of the artifact Use Case Diagram must

be assured in order to build good quality software. Use

Case Diagram quality is assessed by metrics that have

been proposed in the past by researchers, based on Use

Case Diagram countable features such as the number of

actors, number of scenarios per Use Case etc., but they

have not considered Use Case dependency relations for

metric calculation. In our previous paper, we had

proposed a complexity metric. This metric was defined

considering association relationships and dependency

prevailing in the Use Case Diagram. The key objective in

this paper is to validate this complexity metric

theoretically by using Briand‟s Framework and

empirically by performing a Controlled experiment. The

results show that we are able to perform the theoretical

and empirical validation successfully.

Index Terms—Use Case Diagram, Complexity metric,

Empirical validation.

I. INTRODUCTION

The degree of conformance to the stakeholder‟s

requirements defines the software quality. One of the

major objectives in software development process is

software quality improvement. Software quality

measurement tries to quantify to what extent a software

possesses desirable features [13].

Researchers widely accept that during requirement

analysis phase of software development, the models that

are created have significant influence on the overall

quality of the software product that is realized in the end

[8, 43].

It has been observed that faults existing in the artifacts

of initial analysis phase of software development may

proliferate to the artifacts developed in later phases. A lot

more effort and resources would be required to correct

those faults occurring in the later phases of software

development [43]. Therefore artifact quality is an

important area of research.

Artifacts/models need to support complex and

changing requirements, therefore artifact/model quality

becomes a progressive area of requirements engineering

research [28]. Early and objective assessment of artifact

quality attributes may help in redesigning for better

resource allocation [17]. There is need to objectively

assess the artifact quality in order to improve

maintainability, understandability and similar quality

factors of the software.

Quantitatively the quality of software is measured

through Metrics. Metrics are known to be good indicator

of the software quality [4]. Different quality attributes

that define software product, processes and projects are

quantitatively measured through metrics. One such

quality attribute is the structural properties of conceptual

models/artifacts [8]. Structural complexity of various

analysis models/artifacts such as E-R diagram, class

diagrams, use case diagram, created during the initial

phases of software development have been used as

indicators of system quality. Investigation is required to

show how structural complexity of an artifact determines

the quality of artifact and also forms the basis for

software quality measurement research [9].

Metrics for measuring complexity focus on structural

complexity of different elements and their relationships.

Researchers have proposed a number of metrics for

measuring complexity [9, 10, 15, 17, 19, 20, 21, 26 and

28]. These metrics have been substantially validated

empirically to establish their practical utility.

Complexity of the system is one of the most important

attributes that forms the basis of metrics evaluation as it

gives information regarding the effort needed to

understand and implement the requirements [12].

Complexity measurement of a system also helps us in

prediction of software effort, maintenance and evaluation

of design components.

Complexity metrics have been used as indicative

parameter of the understandability of the diagrams. The

mailto:ssab63@gmail.com

36 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

artifact must be thoroughly understandable before

assessing other properties such as maintainability. To

understand the artifact, its properties such as design

format, comprehensibility and expression must be

unambiguous and self-evident.

 Use Case Diagrams are artifacts created during early

phases of software development that are significant for

formulating, corroborating and documenting the system

behavior [6]. Functional requirements of the system

under consideration are depicted with the help of Use

Case Diagram and may be considered as a contract

among the developer and the customer [6, 3]. Good

understandability of the Use Case Diagram is necessary

so as to have effective contribution of the artifact in

process of software development. The quality of

conceptual models or artifacts such as Use Case

Diagrams plays an important role in effective and right

implementation and execution of the system requirements.

Therefore it is crucial to ensure Use Case Diagram

quality and work should be done to achieve this.

Metrics derived from Use Case Diagram can act as an

effective means for assessing system complexity at the

time of early phase of software development. Other

important predictions about effort and cost required for

the software under consideration can also be done by

using the complexity metrics. Most of the Use Case

Diagram based metrics found in literature are computed

by counting different elements that constitute the Use

Case Diagram namely number of actors, number of use

cases, and number of scenarios per Use Case etc. Several

Use Case Diagram based metrics are present in the

literature [16, 21, and 27]. These metrics are computed on

the basis of features that could be counted from the Use

Case diagram, such as number of actors, number of Use

Cases and number of scenarios per Use Case etc. Use

Case dependency relation and its impact is not considered

while formulating those metrics.

A system is described and identified by its elements

and relationships among them [7]. Therefore,

relationships in the artifact also contribute towards the

system complexity. Complexity may be prevailing

because of the relation amongst the Use Cases and also

association amongst each actor and Use Case. The

relationships shown in the Use Case Diagram are not

incorporated in the metrics proposed by different authors

in literature. We have proposed a complexity metric

computed taking into consideration the structural

properties of Use Case Diagram in our earlier work [33].

This metric is defined by considering the concept of

relationships that exist among the Use Cases, and also

Use Case and actor association in the Use Case Diagram

[33]. We used Kaner‟s framework [23] to perform basic

theoretical validation and it was observed that some

association between the metric and understandability of

Use Case Diagram exists.

We present the extension of our earlier work in this

paper. The key objectives of this work are (1) to present

the empirical validation of the metric given in [33] and

investigate the relation of complexity metric and

understandability of Use Case Diagram and (2) To

validate the metric against the construct validity criteria

given by Briand [7]. Theoretical and empirical validation

done in this work shows that the investigated metric

qualifies as a complexity metric and is closely related

with one of the quality attributes i.e. understandability.

The organization of the paper is as follows. Discussion

about the related work is mentioned in Section II. We

explain the basic concepts of Use Case Diagram in

Section III. The approach used to calculate the proposed

Use Case Metric [33] is explained in section IV.

Validation of the proposed metric against the construct

validity criteria given by Briand framework [7] is shown

in section number V. Empirical validation and results are

shown in section VI. Validity evaluation details are given

in section VII. Finally, the paper is concluded along with

the future work in the last section.

II. RELATED WORK

Cyclomatic Complexity metric proposed by McCabe

[28] measures the logical complexity of the program.

Quality of class was measured by Chidamber and

Kemerer [15] in metric suite proposed by them for object

oriented software. Halstead [20] proposed a metric to

determine effort by considering program source code.

Henry and Kafura [22] proposed an Information Flow

Metrics to quantify information flow level and coupling

among different program modules. Function Point

Analysis metric was proposed by Albrecht [3] to measure

functionality using function points. A set of metrics based

on coupling was proposed by Yin and Winchester [36].

Object oriented design metrics proposed by Lorenz and

Kidd [26], selected features like class size, and

inheritance for complexity evaluation. Inheritance metrics

based on polymorphism and information hiding were

proposed by Brito and Carapuça [11].

Entropy distance was also used to define structure

complexity measure for class diagram and was proposed

by Yuming et al. [37]. The complexity of the class

diagram was measured by Kang et al. [24] by using

weighted class dependency graph and entropy distance.

Relational complexities between classes were defined as

the basis for structural software metrics by

Khanahmadliravi et al. [25]. Maintenance cost estimation

for a program was done through spatial metrics proposed

by Chhabra et al. [14]. Structural complexity model was

proposed by Zhou et al. [38] that used entropy distance to

quantify complexity. An event based approach to

compute the complexity was also proposed by Singh et al.

[32].

Complexity metrics available in literature based on Use

Case Diagram are very few. Complexity metrics

proposed by Marchesi [27], Henderson-Sellers et al. [21],

Douglass [16], evaluate the system complexity by

considering Use Case Diagram. They used only the

countable features of the use case diagram like no. of

actors, no. of activities per use case, no. of scenarios etc.

Use case quality metrics proposed by Cherfi et al. [13]

use entropy and cohesion among use cases as complexity

measure and apply these metrics for use case refinement.

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 37

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

Yavari et al. [35] proposed use case complexity metrics

to find use case weight on the basis of use case type,

priority, goals, scenarios, related entity database and

business rules. Sellami et al. [41] have proposed a

measurement technique by using set of scenarios and take

into account the relationships among the use cases to

some extent. A metric called use case point given by

Karner [46] classified the use cases into groups based on

subjectively determined size or complexity and then used

for other kind of estimations. Use case metrics proposed

by Aljohani and Qureshi [47] based on counting modified

use cases and classes were used to assess, manage and

mitigate risks occurring due to changing requirements.

To the best of our knowledge, Use Case Diagram

dependency relations are not precisely and accurately

incorporated in computing complexity metrics that are

already present in literature. In this paper we validate the

complexity metrics proposed by us in [33] which is based

on the dependency relations existing in Use Case

Diagram.

III. USE CASE DIAGRAM

Functional requirements of the system under

consideration are depicted through Use Case Diagram

which constitutes actors, Use Cases and their

relationships as shown through fig1.

Fig.1. Use Case Diagram symbols [6]

Use Case: Illustrates the functional requirements given

by all stakeholders.

Actor: User of the system is called actor and it can be a

person, device or other system.

Dependency: Two Use Cases may be semantically

related and implementation of Use Cases may be

interdependent. Broadly two kinds of dependencies are

there in the Use Case Diagram called include dependency

and extend dependency [6].

Include dependency is between two Use Cases in

which the behavior of dependent Use Case is explicitly

included inside the base Use Case [6].

Extend dependency is between any two Use Cases in

which dependent Use Case behavior is implicitly

incorporated in the base Use Case and dependent Use

Case cannot stand alone [6].

Association Relationship: An actor and Use Case is

connected using straight connecting line called

association between the two [6].

Generalization: is a relationship in which different

actors or Use Cases are generalized as one actor or Use

Cases respectively. The concept of inheritance is shown

through generalization in Use Case Diagram [6].

IV. PROPOSED METRIC

In our earlier work [33], we had proposed a complexity

metric taking into consideration the dependency

relationships and associations that are part of the Use

Case Diagram. In this section, approach about computing

this metric is explained.

A. Template Used

Use Case template describes Use Cases and Actor

template describes Actor.

Template for Use Case the components in the Use Case

Template are as follows:

Use Case ID: It is a distinctive number associated with

every Use Case.

Use Case Name: It is the title or name to recognize a

particular Use Case.

Use Case Description: It is a short narrative to describe

the requirement a particular Use Case is representing and

is written in simple natural language.

Type: There are two types of Use Cases i.e. Main and

Dependent. Use Case that is linked to the actor by

association relationship is known as Main Use Case. The

Dependent Use Case depends on the Main Use Case and

through include or extend dependency main Use Case

calls dependent Use Case.

NScenario: this shows number of Scenarios and

alternate scenarios of a particular Use Case.

Initiator Vector: This is a set containing actors and Use

Cases that can call a particular Use Case by means of

association or dependency relationships.

Trigger Vector: This is a set containing Use Cases that

can be called by particular Use Case by means of

include/extend dependencies.

Template for Actor the components in Actor Template

are as follows:

Actor Identification: Each actor is assigned an

alphanumeric identification which is unique.

Actor Name: It is the title or name of the actor that is

interacting with the system.

Actor Description: This is a short written narrative

describing the actions an actor can perform.

Trigger Vector: An actor can call Use Cases through

association relation. The set of such Use Cases is called

trigger vector.

B. Definitions

Definitions which are used for computing Use Case

Diagram metric are introduced in this section.

Initiator Use Case Matrix (Minit): Minit matrix identifies

actors or Use Cases that initiate a particular Use Case.

The matrix entry at position aij in Minit indicates that jth

Use Case or actor is the initiator of ith Use Case. The

integer value at the position aij is the

dependency/association strength between i and j. Minit

matrix has n×m dimensions that represents n Use Cases;

m actors and main Use Cases.

Trigger Use Case Matrix (Mtrig): The entry at position

 Use Case

Actor

Dependency

<<include>>

<<extend>> Association

38 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

aij in the matrix Mtrig shows that a particular Use Case or

actor i, triggers j Use Case. The integer value at the

position aij is the dependency/association strength

between i and j. Mtrig matrix has n×m dimensions that

represents n Use Cases and actors; m main and dependent

Use Cases.

The value assigned at the position aij shown in

Initiator/ Trigger matrices is 1, 2 or 3. This value depends

on the relationship that exists between an actor and main

Use Case or the dependency relation existing between

various Use Cases, and is described below:

 If association is present between an Actor and a

Use Case then value given at position aij is 3, as

this Use Case will always be called by the actor.

 If there is include dependency between the Use

Cases then value given at position aij is 2, as in this

case main Use Case will always call the dependant

Use Case.

 If there is extend dependency between the Use

Cases then value given at position aij is 1, as in this

case main Use Case may or may not call the

dependant Use Case.

Initiator Effect (IE): The summation of all

dependencies on an ith Use Case because of its initiator

Use Cases/actors is called Initiator Effect.

Trigger Effect (TE): The summation of all Use Case

dependencies on the ith Use Case because of Use Cases

triggered by it is called as Trigger Effect.

Combined Initiator Effect (CIE): The summation of IE

in the matrix Minit is called Combined Initiator Effect

Combined Trigger Effect (CTE): The summation of TE

in the matrix Mtrig is called Combined Trigger Effect.

C. Procedure

In this section we explain the approach for calculating

the Use Case metric. It consists of following steps.

(1) Make Use Case Diagrams for software to be

developed.

(2) Document Use Cases with the help of Use Case

Template and Actors with the help of Actor

Template.

(3) Develop the matrix Minit i.e. Initiator Use Case

Matrix.

(4) Develop the matrix Mtirg i.e. Trigger Use Case

Matrix.

(5) (a) Compute Combined Initiator Effect (CIE) from

Initiator Matrix (Minit)

IE (i) is the initiator effect for the ith Use Case and is

given by

IE(i)= ∑)))

))
 ∑)))

)))

 (1)

(b) Combined Initiator effect (CIE) for the Use Case

Diagram is

1
()

n

i
CIE IE i




where i is the use case/actor (2)

Compute Combined Trigger Effect (CTE) from

Trigger Matrix (Mtrig).

TE (i) is the trigger effect due to a Use Case /actor and

is given by

TE(i)=∑)))

))

 ∑ ()))

)))

 (3)

Combined Trigger Effect (CTE) for the Use Case

Diagram is

1
()

n

i
CTE TE i




where i is the use case/actor (4)

(6) Calculate the Use Case Diagram complexity by

summing up CTE with CIE

 (5)

(7) Add the complexity of all Use Case Diagrams

created for the system under consideration, to get the

system complexity from the viewpoint of Use Case

Diagram.

1
[()]

n

sys usecasediagramk
C C k




where n is the total no.of Use Case Diagrams (6)

D. Case Study

We now illustrate the proposed approach for Library

management system given in Fig. 2. The diagram has

three actors i.e. Librarian L1, Student S1, and Supplier S2.

The Main Use Cases having multiple scenarios are

1,2,3,4,5,6,7,8,9 given in Table 3. and dependent Use

Cases are 10,11,12,13,14,15. For simplicity we have

assumed that for dependent Use Cases number of

scenarios will be one.

Table 1. Use Case template for “search book” use case.

Use Case ID: (1)

Use Case Name: Search book

Use Case Description: The functional requirement of

searching a list of books in library management

system is shown by the search book use case.

Type: Main use case

Nscenarios: 1

Initiator Vector: {L1, S1}

Trigger Vector: {nil}

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 39

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

Fig.2. Use Case Diagram of Library Management System

We demonstrate the Use Case and Actor template used

to document the actors and use cases with the help of one

example only due to space constraints. In Library

management system, search book Use Case represented

in the Use Case template form is shown in table 1.

In Library management system, actor Librarian is

represented in the Actor template form as follows.

Table 2. Actor template for actor “Librarian”.

Actor ID: (L1)

Actor Name: Librarian

Actor Description: Librarian is an actor which interacts with the

system. It maintains the member and book records. It also issues

and returns book.

Trigger Vector: Use Case {1,2,3,4,5,6}

Use Case Diagram dependencies are shown in matrices

Minit and Mtrig.

Initiator Use Case Matrix (Minit) is shown in Fig 3. Use

Case 1 is initiated by actors L1 and S1 through

association relationship so, row indicating Use Case 1 has

entry 3 for both the columns corresponding to actors L1

and S1. Similarly Use Case 10 is initiated by Use Case 2

through include dependency so, row indicating Use Case

10 has entry 2 for column corresponding to Use Case 2.

Use Case 13 is initiated by Use Case 6 through extend

dependency so, row indicating Use Case 13 has entry 1

for column corresponding to Use Case 6. In the same way

all the other entries are completed in matrix Minit.. Rows

meant for actors are omitted in the matrix Minit for cases

where actors do not initiate other actors. Columns meant

for dependent Use Cases are omitted in Minit matrix as

dependent Use Cases are not initiators of other Use Cases.

Trigger Use Case Matrix (Mtrig) is shown in Fig 4.

Actor L1 triggers the Use Cases 1, 2, 3, 4, 5, 6 through

association relationship so, row indicating actor L1 has

entry 3 for the columns corresponding to Use Cases 1, 2,

3, 4, 5, and 6 respectively. Use Case 2 is triggering Use

Cases 10 and 11 through include dependency so, row

indicating Use Case 2 has entry 2 for both the columns

corresponding to the Use Cases 10 and 11. Use Case 6 is

triggering Use Cases 13 and 14 through extend

dependency and Use Case 12 through include

dependency so, row indicating Use Case 6 has entry 1

for the columns corresponding to the Use Cases 13, 14

and 2 for column corresponding to Use Case 12. In the

same way the matrix Mtrig is completed. Columns meant

for actors are omitted in the matrix Mtrig because actors

are unable to trigger other actors. Rows meant for

Search

books (1)

Maintain

member record

(2)

Add

books(3)

Remove

books (4)

Issue

book (5)

Return

book (6)

Add

member

(10)

Update

book

records (12)

Calculate

fine (13)

Reissue

book (14)

Ask for

orders (7)

Supply

books (8)

Send

bills (9)

Update

account

details (15)

<<extend>>

<<include>

>

<<include>>

<<include>

>

<<include>>

<<include>>

<<extend>>

>

<<include>>

<<include>>

Student
(S1)

Librarian
(L1)

Supplier
(S2)

Remove

member (11)

<<include>>

40 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

dependent Use Cases are also omitted in the matrix Mtrig

as the dependent Use Cases cannot trigger other Use

Cases.

Use Case diagram TE and IE values are calculated

using the formula given in section IV part C and are

shown in Table 4. Complexity of the Use Case Diagram

of the case study considered in this work i.e. Library

management system is now the summation of CTE and

CIE which is equal to 156. Since the selected case study

shows requirements through single Use Case Diagram

only, so the system complexity is also 156. In some other

case, if a system has more than one Use Case Diagram,

similar procedure may be carried out for calculating the

complexity metric for each Use Case Diagram. Individual

metric values thereafter may be summed to obtain the

overall system complexity from the Use Case Diagram

perspective.

Table 3. Scenarios per Use Case for the Library management system

Main Use Case No. No. of Scenarios(assumed)

1 1

2 2

3 1

4 1

5 2

6 3

7 1

8 1

9 2

Table 4. TE, IE for the Library management system

Use Case id/Actor id TE IE Use Case id/Actor id TE IE

L1 30 0 8 2 3

S1 18 0 9 2 6

S2 12 0 10 0 2

1 0 6 11 0 2

2 4 6 12 0 10

3 2 3 13 0 1

4 2 3 14 0 1

5 2 12 15 0 2

6 3 18 --- --- ---

7 0 3 --- --- ---

 CTE=78 CIE=78

 Actors Main Use Cases IE

 L1 S1 S2 1 2 3 4 5 6 7 8 9

Use Cases

1 3 3 0 0 0 0 0 0 0 0 0 0 6

2 3 0 0 0 0 0 0 0 0 0 0 0 6

3 3 0 0 0 0 0 0 0 0 0 0 0 3

4 3 0 0 0 0 0 0 0 0 0 0 0 3

5 3 3 0 0 0 0 0 0 0 0 0 0 12

6 3 3 0 0 0 0 0 0 0 0 0 0 18

7 0 0 3 0 0 0 0 0 0 0 0 0 3

8 0 0 3 0 0 0 0 0 0 0 0 0 3

9 0 0 3 0 0 0 0 0 0 0 0 0 6

10 0 0 0 0 2 0 0 0 0 0 0 0 2

11 0 0 0 0 2 0 0 0 0 0 0 0 2

12 0 0 0 0 0 2 2 2 2 0 2 0 10

13 0 0 0 0 0 0 0 0 1 0 0 0 1

14 0 0 0 0 0 0 0 0 1 0 0 0 1

15 0 0 0 0 0 0 0 0 0 0 0 2 2

 CIE=78

Fig.3. Matrix Minit for Use Case Diagram of Fig. 2

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 41

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

 Main Use Cases Dependent Use Cases TE

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Actors

L1 3 3 3 3 3 3 0 0 0 0 0 0 0 0 0 30

S1 3 0 0 0 3 3 0 0 0 0 0 0 0 0 0 18

S2 0 0 0 0 0 0 3 3 3 0 0 0 0 0 0 12

Use

Cases

1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0 0 0 2 2 0 0 0 0 4

3 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

4 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

5 0 0 0 0 0 0 0 0 0 0 0 2 0 0 0 2

6 0 0 0 0 0 0 0 0 0 0 0 2 1 1 0 4

7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

8 0 0 0 0 0 0 0 0 0 0 0 2 0 2 0 2

9 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 2

 CTE=78

Fig.4. Matrix Mtrig for Use Case Diagram of Fig.2

V. THEORETICAL VALIDATION OF METRIC

The usefulness of the complexity metric discussed in

this work is acceptable only when it is validated. Several

approaches for validation of complexity metrics by

Briand [7], Weyuker [34], Yin [36], Zhou [38] are

present in the literature. In this section we will describe

theoretical validation of our proposed Use Case Diagram

metric [33] using Briand‟s framework properties of which

are shown in Table 5.

Table 5. Briand‟s Framework properties [7]

Property No. Property Description

#1 Non Negativity

#2 Null Value

#3 Symmetry

#4 Module Monotonicity

#5 Disjoint Module Additivity

Briand‟s Framework [7] provides theoretical basis for

software measurement and has the following concepts:

System and Modules: A system „S‟ is defined as a

pair <E, R>, where „E‟ is the set of elements of S, and „R‟

is a binary relation on E(R ⊆ E × E) which represents

relation between S‟s elements [7].

Considering system S as <E, R>, a subsystem m=<Em,

Rm> is a module of S if and only if Em ⊆E, Rm ⊆ (Em ×

Em) and Rm ⊆ R [7]. The elements of the module are

connected to the elements of the rest of the system by

relationships. In our approach Use Case diagram

represents the system to be built and it qualifies the

definition of „System‟.

Elements of the „system‟ are Actors and Use Cases

described by the attributes existing in these „elements‟.

Relations are present between actors and Use Cases,

also among Use Cases.

The proposed Use Case Diagram complexity metric

described in section IV is theoretically validated for

Briand‟s framework of five properties shown in Table 5

and is discussed as follows:

Property #1 Non Negativity: For the system S=<E, R>,

the complexity depicted by the Use Case diagram is

nonnegative [7]. The complexity of the system is greater

than zero i.e. Complexity(S) ≥0.

The complexity of the system i.e. Use Case diagram in

the proposed work is calculated by assigning weights to

the association and dependency relationships which are

always positive, therefore the complexity cannot be

negative and is always positive.

Property #2 Null Value: For the system, S=<E, R>, if

there are no relations i.e. R is null then the Complexity of

the system is null [7]. So, Complexity (S) = 0

The complexity in the proposed work is calculated by

assigning weights to the association and dependency

relationships. If no relationships exist in the Use Case

diagram then R is null so, complexity of the system called

S will also be nil.

Property #3 Symmetry: For the system, S=<E, R>, the

definition of the Complexity of system is not influenced

by the convention applied while expressing the

relationships among its components i.e.

Complexity (S) = Complexity (S-1)

The complexity measure in the proposed work is not

sensitive to relationship direction. It is not dependent on

the convention used to depict the relationships. Therefore

the complexity measure will continue to remain

unchanged regardless of the convention followed.

Property #4 Module Monotonicity: The complexity of

the system S=<E, R> is greater than or equal to the sum

of the complexities of its two sub systems not having

shared relationships [7].

Complexity (S) ≥ [Complexity (S1) + Complexity (S2)]

To illustrate this property we consider a Room

reservation system shown in Fig. 5 having two

subsystems User U1 and its Use Cases, and Manager M1

and its Use Cases. Complexity of U1 and M1 is 32 each.

Sum of the complexity of these two sub systems is 64

which is equal to the complexity of Room reservation

system. Therefore, the proposed work fulfills condition

for property #4.

Property #5 Disjoint Module Additivity: For the system

S=<E, R>, the complexity of the system is equal to the

sum of the complexities of its two disjoint sub systems

[7].

42 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

Complexity(S) = [Complexity (S1) + Complexity (S2)]

Use Case metric does satisfy property #5. This can be

explained through example of the Room reservation

system shown in Fig. 5. Complexity of both the

subsystems U1 and M1 is 32. Sum of the complexity of

these two sub systems is 64. This is equal to the

complexity of Room reservation system which is 64.

Hence, the complexity of Room reservation system is

sum of its two sub systems.

Fig.5. Use Case Diagram for Room Reservation System

Table 6. No. of Scenarios for each Use Case for Room

Reservation System

Main Use Case Number of Scenarios (assumed)

1 2

2 1

3 1

4 1

5 1

6 2

From above discussion it is concluded that the Use

Case Diagram metric satisfies all the properties

recommended by Briand [7]. Therefore we can also

conclude that the proposed complexity metric is

theoretically sound and also satisfies construct validity

criteria.

VI. EMPIRICAL VALIDATION

We have investigated the relationship between Use

Case Diagram complexity metric and Use Case Diagram

understandability. A controlled experiment was

performed to show the empirical validity of the proposed

metric and is discussed in this section. Following steps

were taken to perform the experiment:

(1) The goal of the experiment is built from the GQM

template [44].

(2) Controlled Experiment is performed starting with

hypothesis formulation.

(3) Variable selection i.e. dependent variable and

independent variables are selected.

(4) Data collection is done that includes selection of

subjects and selection of objects.

(5) Data analysis technique is described along with the

experiment results.

A. Controlled Experiment Description

In this section, empirical validation of the proposed

metric carried out through controlled experiments, is

presented. Controlled experiments help us to formulate

hypothesis and provide insight into the relationships

among different variables and also help us to measure the

relationship among the variables [35]. Controlled

experiment involves hypothesis construction, variable

identification and categorization, data collection,

implementing analysis technique and finally the results.

Table 7. Goal of the controlled experiment

Analyze Use Case Diagram Structural Complexity

For the

purpose of
Evaluation

With

respect to

How effectively the Metric can be used as

Understandability indicator of Use Case Diagram

From the

point of

view

Information Systems designer

In the

context of

M.Tech, B.Tech students of Information Systems

and Information Technology Department, NSIT,

Delhi University

Controlled experiment was performed by following

suggestions provided by Briand et al. [11, 12]. GQM

template given in [44] was also followed for the goal

definition of this controlled experiment shown in table 7.

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 43

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

B. Construct Hypothesis

Identification and definition of hypothesis is important

for any empirical study. It specifies what aspects of the

research problem need to be investigated. Hypothesis

constructed for the proposed work is as follows:

Hypothesis: Significant correlation is there between the

Use Case Diagram Complexity Metric and

Understandability of Use Case Diagram

Null Hypothesis: No correlation exists between the Use

Case Diagram Complexity Metric and Understandability

of Use Case Diagram

C. Variables

Variables are the focus of any study or experiment.

Variables used in the proposed work are independent and

dependent variables.

Independent Variable

Independent Variable or predictor variable is not

changed by other variables and causes change in

other/dependent variables. The independent variable in

the proposed work is the Use Case Diagram Complexity

metric defined in section IV.

Dependent Variable

Dependent variables depend on independent variables.

In this study Understandability is the dependent variable.

Empirical validation is done to examine how the

independent and dependent variables are related in this

study. Therefore, in this work the main aim is to study

and explain the relationship between Use Case Diagram

Metric with the subject‟s ratings given for

Understandability. High understandability of the Use

Case Diagram facilitates all stakeholders to easily

understand the requirements of the software to be

developed and give meaningful feedback. Also, it may

result in better understanding of domain requirements and

finally implementation of better quality software based on

these requirements.

In literature, it is found that understandability is

calculated subjectively and objectively through

experiments. The experiments based on subjective

evaluation is done by rating understandability on a scale

whereas objective evaluation is done by subjects, who

performed one or more exercises on models. In our

experiment, dependent variable was rated on an ordinal

scale i.e. Likert Scale with range 1 to 3. Subjective rating

of understandability of Use Case Diagram is given by the

subjects according to their thinking and viewpoint.

Therefore dependent variable is the perceived Use Case

Diagram understandability.

D. Data collection

Data collection is an important part of controlled

experiment performed to find relation between the

dependent and independent variable.

Objects

Twenty-six Use Case Diagrams from easy to

understand domains were collected and controlled

experiment was conducted. Use Case Diagrams were

having variations in the metric value as they were from

different domains from student projects done in the

Computer Engineering Department and Information

Technology Department of NSIT.

Subjects

The subjects in our work were the students of under

graduate and post graduate course. It is observed in

literature that in many empirical studies, the experiments

were conducted using Students as subjects [35]. As actual

industrial studies require a lot of time, resources and

experts of the field, pilot studies are carried out by

researchers with students as subjects in Universities.

The subjects of our controlled experiment were a total

of forty students of Postgraduate course i.e. M.Tech in

Information Systems at Computer Engineering

Department and under graduate students of Sixth

semester Information Technology Departments at Netaji

Subhas Institute of Technology, University of Delhi. The

students who participated in the experiment had studied

the course of Software Engineering and were comfortable

doing this exercise. They had knowledge of

Requirements Engineering and Use Case Diagram

concepts. A brief introduction about the experiment was

also given as they were not familiar with this kind of

exercise. The subjects were given sufficient time to

complete the exercise. The average of subject‟s

understandability rating was taken. For each Use Case

Diagram, the metric value was calculated manually by

performing simple arithmetic calculations. Likert Scale

(ordinal scale) was used to rate the understandabilty i.e.

the dependent variable. The rating was done on a scale of

1 to 3 by the subjects based on the ease with which they

could understand the Use Case Diagram as shown in table

8.

Table 8. Scale used

Simple and easily

understandable

Moderately

understandable

Difficult to

understand

1 2 3

E. Data Analysis Technique and Experimental Results

Data collected and summarized for each Use Case

Diagram is shown in table 9. Metric value for all Use

Case Diagrams is given along with the Understandability.

This section describes the analysis done on data and

methodologies used to study the correlation with

reference to the independent and dependent variables of

this experiment. For testing the hypothesis proposed in

section VI Statistical Correlation and Regression

techniques were used with the help of SPSS statistical

tool. These techniques are suitable and are found useful

to investigate the relationship between dependent variable

i.e. understandability and independent variable i.e. Use

Case Diagram Metric, in this work.

Correlation Technique and Results

Correlation technique measures the relationship

44 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

between dependent and independent variable in the study.

To evaluate the correlation between variables, the

significance of the correlation needs to be calculated. The

significance value calculated for each correlation is

indicator of accuracy of the correlation. Correlation

coefficient measures association between two variables,

and has ranges from –1 and 1. We have measured three

types of correlations in this study: Pearson correlation,

Kendall‟s Tau and Spearman Rho. The data set

considered for the study was small, therefore in this study,

parametric as well as non-parametric tests were done to

avoid assumptions about the data normality.

Table 9. Collected Data

Use Case

Diagram no.

Use Case

Metric value

Understan-

dability rating

Use Case

Diagram no.

Use Case

Metric value

Understan-

dability rating

1 156.00 2 14 106.00 2

2 109.00 2 15 126.00 3

3 100.00 2 16 174.00 3

4 132.00 3 17 123.00 2

5 131.00 3 18 92.00 1

6 64.00 1 19 114.00 2

7 100.00 2 20 70.00 1

8 59.00 1 21 90.00 2

9 98.00 2 22 100.00 2

10 80.00 2 23 59.00 1

11 66.00 1 24 98.00 2

12 76.00 2 25 80.00 2

13 121.00 2 26 66.00 1

Table 10 gives the results showing the implementation

of correlation analysis on the data i.e. Use Case Metric

and Understandability of the Use Case Diagram.

Parametric correlation is based on Pearson correlation

and non-parametric correlation is performed by means of

Kendall‟s Tau and Spearman Rho. The coefficient values

are given in table 10.

Table 10. Correlation with Understandability

Understandability
Kendall‟s

Tau

Spearman‟s

Rho

Pearson

Correlation

Use Case Metric 0.723 0.832 0.798

The Use Case Diagram Complexity Metric has positive

correlation with understandability at the significance

level of <0.05 as shown in the table. The correlation

value ranges between 0.723 and .832 which is between

+1 and -1. Therefore, we accept the hypothesis stated in

section VI part B and discard the null hypothesis.

Ordinal Regression Technique and Results

Regression is a statistical measure or technique to

determine strength of relationship between dependent and

independent variables. For predicting an ordinal variable,

a type of regression analysis called Ordinal regression is

used. Ordinal regression is implemented to predict an

ordinal dependent variable when one or more

independent variables are known.

In this work the dependent variable i.e.

understandability was rated on a scale as ordinal

categorical variable. Ordinal regression was used in this

study as the dependent variable was not continuous but

categorical as well as ordinal. Therefore, Ordinal

regression technique was selected to investigate the

relationship among the independent variable Use Case

Diagram Metric and dependent variable

Understandability in this study. To evaluate the predictive

model performance accuracy is used. Accuracy is the

measure of the percentage of correct predictions.

Accuracy is defined as:

Accuracy= (correct prediction/total number of Use

Case Diagrams to be predicted)* 100

Popularly used significance level of 0.05 is chosen for

hypothesis testing in our work.

Ordinal regression based Model fitting information is

shown in table 11. Chi square statistic at the significance

level of <0.05 indicates that the final model provides

evident rise over the baseline intercept-only model.

Therefore, improved predictions are provided by the

model when it is combined with predictor Use Case

Diagram metric.

Table 11. Model fitting information

Model
-2 Log

Likelihood
Chi-Square df Sig.

Intercept Only 49.846

Final 23.975 25.872 1 .000

Link Function: Logit

Table 12. Parameter estimates

 Estimate
Std.

Error
Sig.

Threshold [VAR1 = 1.00]

 [VAR1 = 2.00]

Location

9.262

15.888

0.120

3.152

4.895

0.039

0.003

0.001

0.002

In table 12 the parameter estimates are shown. Positive

values of Use Case Diagram metric coefficient estimate

show that large value of the metric increases the

probability of higher rating for understandability and

accept the hypothesis stated in section VI part B and

discard the null hypothesis. This is indicated by the

significance level=0.00 which is less than 0.05.

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 45

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

The Classification results are shown in table 13. The

accuracy of the regression model is about 88% and this

value significantly supports the investigation that the Use

Case Diagram metric is capable of predicting

understandability of Use Case Diagram.

Table 13. Classification results

 Predicted response category

Expected

Understandability

 1 2 3

1 6 0 0

2 1 14 1

3 0 1 3

Significant correlation exists between complexity

metric derived on the basis of Use Case Diagram and the

subject‟s/participant‟s rating of the understandability of

the diagram. Understandability can be taken as objective

indicator for the quality attribute. Therefore we accept the

proposed hypothesis and reject the null hypothesis.

VII. VALIDITY EVALUATION

In this section we discuss factors that act as threats to

the validity of the empirical study that was performed and

presented in this paper. Different measures taken to

reduce their effects are also mentioned in this section.

Construct validity- Construct validity denotes the

degree to which a test measures, what it claims to be

measuring. Also, it shows whether the variables selected

here actually measure the concepts they intend to

quantify. In this study, Use Case Diagram metric was

taken as the independent variable whose construct

validity was shown by means of theoretical validation

done using Briand‟s framework [7]. Subjective

assessment for the dependent variable was conducted

through the use of Likert‟s Scale. Subjective assessment

in this work is based on subject‟s intellect and perspective,

and may act as a risk to construct validity of the

dependent variable. For deeper understanding we need to

perform more experiments in future.

Internal validity- Lack of Knowledge of the domain

may act as a threat to the internal validity in controlled

experiments. The Use Case Diagrams selected for this

work were from different domains and were simple and

general. Therefore, selected Use Case Diagrams were

easily understood by the subjects. We selected Use Case

Diagrams with sufficient variation in the metric values of

different diagrams. The subjects were given a brief

explanation about the domain also. Therefore, the domain

knowledge does not act as a threat to the internal validity

in this work.

To eliminate learning effects, tests were given in no

particular order to the student subjects. To reduce

possibility of fatigue effect, the subjects were given

sufficient time to perform the tests. The subjects were the

students of UG and PG courses who had prior knowledge

of software engineering, data modeling and data base

courses, but performed this kind of experiment for the

first time. So, another threat to internal validity called

persistence effect was also avoided. There was voluntary

participation of the students in this research. The subjects

were asked to perform this exercise individually without

discussing among them.

External validity- To transform an approach to real

software engineering practice, greater external validity is

required. In this study a collection of Use Case Diagrams

which are prototype models of the real problems were

used to perform the experiments. But more elaborate

empirical studies are required on the real problems to

establish this approach as a software engineering practice.

Also, experiments with professionals and practitioners

with larger real life problems must be done in order to

make this approach widely acceptable. However, as this

was a simple experiment which did not require great

expertise, students performing this experiment were

found sufficient.

Conclusion validity- Conclusion validity may be

established by replicating this study and experiments with

professionals and practitioners with larger real life

problems.

VIII. CONCLUSIONS AND FUTURE WORK

Validation of the proposed Use Case Diagram

complexity metric [33] is performed empirically through

controlled experiments in this paper. Data analysis is

done through statistical correlation and ordinal regression

techniques. Results show that the metric is strongly

related and associated to the understandability of the Use

Case Diagram. Ordinal regression based model accuracy

is 88%, which is considerably high. Therefore, we are

able to conclude that the Use Case Metric is objective

indicator for the quality attribute understandability.

The theoretical validation of the proposed Use Case

Diagram metric [33] is done using Briand‟s framework in

order to prove theoretical soundness of the metric, and to

be categorized as complexity metric. All the properties of

the Briand‟s framework are satisfied by the proposed

metric. Therefore we can conclude that the proposed Use

Case Diagram metric [33] is empirically and theoretically

validated.

We understand that this kind of experiment is giving us

preliminary results. Replicating this study and

experiments with professionals and practitioners with

larger real life problems in a more controlled

environment is required in future to further support the

empirical evaluation and conclusions.

In future, work will also be done to enhance the Use

Case Diagram metric by incorporating more attributes.

We would also like to investigate in more depth the work

presented here by validating the metric for Distance

Framework given by Poels and Dedene. We also propose

to extend this approach for the estimation of maintenance

and testing effort.

REFERENCES

[1] B. Anda, D. Sjoberg, M. Jorgensen. 2001 Quality and

Understandability of Use Case Models. In Proceedings of

ECOOP 2001 European Conference, Springer-Verlag,

46 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

London, 402-428. DOI: 10.1007/3-540-45337-7_21

[2] B. Anda, H. Dreiem, D. Sjoberg, M. Jorgensen. 2001.

Estimating Software development Effort based on Use

Cases-Experiences from Industry. The Unified Modeling

Language. Modeling Languages, Concepts, and Tools.

Lecture Notes in Computer Science Vol. 2185, 487-502.

DOI: 10.1007/3-540-45441-1_35

[3] A. Albrecht. Measuring Application Development

Productivity. 1979. In Proceedings of Proceedings of IBM

Application Development Symposium.

[4] V.R. Basili, L. Briand, W. Melo. 1996. Validation of

Object-Oriented Design Metrics as Quality

Indicators.IEEE Transactions on Software Engineering,

Vol. 22, No. 10, 751-761. DOI: 10.1109/32.544352

[5] V.R. Basili.2007. Role of Controlled Experiments in

Software Engineering Research. Empirical Software

Engineering Issues, LNCS 4336, Springer-Verlag, Berlin,

33-37. DOI: 10.1007/978-3-540-71301-2_10

[6] G. Booch, I. Jacobson, J.Rumbaugh. 2001. The Unified

Modeling Language User Guide. Addison Wesley.

ISBN:978-0321267979

[7] L. Briand, S. Morasca, V. Basili. 1996. Property Based

Software Engineering Measurement. IEEE Transactions

on Software Engineering. Vol. 22, issue 1, 68-86. DOI:

10.1109/32.481535

[8] L. Briand, S. Morasca, V. Basili. 1997. Response to:

Property Based Software Engineering Measurement:

Refining additive Properties. IEEE Transactions on

Software Engineering. Vol. 23, issue 3,196-197. DOI:

10.1109/TSE.1997.585509

[9] L. Briand, J. Wust, S. IkoNomovski, H. Lounis. 1999.

Investigating Quality Factors in Object-Oriented Designs:

an Industrial Case Study. In Proceedings of 21st

International Conference on Software Engineering, CA,

345-354. DOI: 10.1145/302405.302654

[10] L. Briand, J. Wust. 2002. Empirical Studies of Quality

Models in Object-Oriented Systems. Advances in

Computers, Vol. 59, Academic Press, 97-166. DOI:

10.1016/S0065-2458(02)80005-5

[11] R. Brito, F. Carapuça. 1994. Object-Oriented Software

Engineering: Measuring and controlling the development

process. In Proceedings 4th Interntional Conference on

Software Quality, US, 1-8.

[12] D. N. Card, W. W. Agresti. 1988. Measuring Software

Design Complexity. The Journal of Systems and Software.

Elsevier Science Inc, 185-197.

[13] S. Cherfi, J. Akoka, I. Wattiau. 2006. Use Case Modeling

and Refinement: A Quality-Based Approach. In

Proceedings 25th International Conference on

Conceptual Modeling, 84-97. DOI: 10.1007/11901181_8

[14] J.K Chhabra, K. K. Aggrawal, Y. Singh.2003 Code and

Data Spatial Complexity: Two Important Software.

Information and Software Technology, Elsevier Science,

Vol. 45, 539-546. DOI: 10.1016/S0950-5849(03)00033-8

[15] S. Chidamber, C.Kemerer. 1994. A Metric Suite for

Object Oriented Design. IEEE Transactions on Software

Engineering, Vol. 20, No. 6, 476-493. DOI:

10.1109/32.295895

[16] B. Douglass.2004 Computing Model Complexity. Borland:

White Paper, I-Logix.

[17] N. Fenton, M. Neil. 2000. Software Metrics: Roadmap. In

Proceedings of International Conference on Software

Engineering. Ireland, 357-370. DOI:

10.1145/336512.336588

[18] M. Georgiades, S. Andreou.2012. Formalizing and

Automating Use Case Model Development. The Open

Software Engineering Journal, Vol. 6, 21-40. DOI:

10.2174/1874107X01206010021

[19] M. Genero, G. Poels, M. Piattini. 2007. Defining and

Validating Metrics for Assessing the Understandability of

Entity-Relationship Diagrams. Data and Knowledge

Engineering Elsevier Journal, Vol. 64, 534-557. DOI

10.1016/j.datak.2007.09.011

[20] M. Halstead.1977. Elements of Software Science.

Elsevier- Science Inc. New York, USA.

ISBN:0444002057

[21] B. Henderson-Sellers, D. Zowghi, T. Klemola, S.

Parasuram. 2002 Sizing Use Cases: How to Create a

Standard Metrical Approach. In Proceedings of 8th

International Conference on Object-Oriented. Information

Systems. 409-421. DOI: 10.1007/3-540-46102-7_43

[22] S. Henry, D. Kafura. 1981. Software Structure Metrics

Based on Information Flow. IEEE Transactions. Software

Engineering, Vol. 7, 510-518. DOI:

10.1109/TSE.1981.231113

[23] C. Kaner and W. Bond. 2004. Software Engineering

Metrics: What Do They Measure and How Do We Know?

In Proceedings of 10th International Software Metrics

Symposium, METRICS, 1-12.

[24] D. Kang, B. Xu, J. Lu, W. Chu. 2004. Complexity

Measure for Ontology Based on UML. In Proceedings of

IEEE, Workshop on Future Trends of Distributed

Computing, 222-228. DOI:

10.1109/FTDCS.2004.1316620

[25] N. Khanahmadliravi, H. R. Khataee. 2012. Estimating

Quality of an Object Oriented Software System Using

Graph Algorithm. International Journal of Computer and

Electrical Engineering, Vol. 4, No. 4, 467-470.

[26] M. Lorenz, J. Kidd. 1994. Object-Oriented Software

Metrics: A Practical Guide. Englewood Cliffs, New Jersey

- USA. 1994. ISBN-13: 978-0131792920

[27] M. Marchesi. 1998. OOA Metrics for the Unified

Modeling Language. In Proceedings of Euromicro

Conference on Software Maintenance and Reengineering,

67-73. DOI: 10.1109/CSMR.1998.665739

[28] T. J. McCabe. 1976. A Complexity Measure. IEEE

Transactions on Software Engineering, Vol. 2, 308-320.

DOI :10.1109/TSE.1976.233837

[29] C. L. McClure. 1978. A Model for Program Complexity

Analysis. In Proceedings of 3rd international conference

on Software Engineering, 149-157.

[30] H. Nelson, G. Poels, M. Genero. 2012. A Conceptual

Modeling Quality Framework. Software Quality Journal,

Vol. 20, 201-228. DOI: 10.1007/s11219-011-9136-9

[31] S. Singh, S. Sabharwal, J. Gupta.2009. Events-An

Alternative to Use Case as starting point in Object-

Oriented Analysis. In Proceedings of 2nd International

Conference on Emerging Trends in Engineering &

Technology, USA, 1004-1010. DOI:

10.1109/ICETET.2009.94

[32] S. Singh, S. Sabharwal, J. Gupta. 2011. Deriving System

Complexity Metric from Events and its Validation.

International Journal of Software Engineering and

Knowledge Engineering, Vol. 21, No. 8, 1097-1121. DOI:

10.1142/S021819401100561X

[33] S. Sabharwal, R. Sibal, P. Kaur P.2014. Deriving

Complexity Metric Based on Use Case Diagram and its

Validation. In Proceedings of IEEE ISSPIT. DOI:

10.1109/ISSPIT.2014.7300571

[34] E. J. Weyuker.1998. Evaluating Software Complexity

Measures. IEEE Transactions on Software Engineering,

Vol. 14, No. 9. 1357 – 1365. DOI: 10.1109/32.6178

[35] Y. Yavari, M. Afsharchi, M. Karami. 2011. Software

Complexity Level Determination Using Software Effort

 Empirical and Theoretical Validation of a Use Case Diagram Complexity Metric 47

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 11, 35-47

Estimation Use Case Points Metrics. In Proceedings of

5th Malaysian Conference in Software Engineering, 257-

262. DOI: 10.1109/MySEC.2011.6140680

[36] B. H Yin, J. W. Winchester. 1978. The Establishment and

Use of Measures to Evaluate the Quality of Software

Designs. In Proceedings of Software Quality Assurance

Workshop on Functional and Performance, New York –

USA. 45-52. DOI: 10.1145/800283.811099

[37] Z. Yuming, X. Baowen. 2003. Measuring Structural

Complexity of UML Class Diagrams. Journal of

Electronics. Vol. 20. No.3, 227-231. DOI:

10.1007/BF02687710

[38] Y. Zhou, B. Xu. 2005. Measuring Structural Complexity

for Class Diagram: An Information Theory Approach. In

Proceedings of 5th ACM Symposium on Applied

Computing, USA, 1679-1683. 10.1145/1066677.1067057

[39] R. Hurlbut. 1997. A Survey of Approaches for Describing

and Formalizing Use Cases. Technical Report: XPT-TR-

97-03, Expertech Ltd.

[40] B. Anda, D. Sjoberg, M. Jorgensen. 2002. Towards an

Inspection Technique for Use Case Models. In

Proceedings of SEKE 2002, 127-134.

10.1145/568760.568785

[41] A. Sellami. and H. Ben-Abdallah. 2009. Functional Size

of Use Case Diagrams: A Fine –Grain Measurement. In

Proceedings of 4th International Conference on

Software Engineering Advances, 282-28, 2009. DOI:

10.1109/ICSEA.2009.96

[42] M. Genero. 2001. Using Metrics to Predict OO

Information Systems Maintainability. Lecture Notes in

Computer Science vol. 2068, 388-401. ISBN:3-540-

42215-3

[43] G. Krishna, R. Mall. 2010. Model- Based Software

Reliability Prediction. Information Systems, Technology

and Management Communications in Computer and

Information Science, Vol. 54, 145-155. DOI:

10.1007/978-3-642-12035-0_15

[44] V. R. Basili and H. D. Rombach. 1988. The TAME

Project: Towards Improvement-Oriented Software

Environments. IEEE Transactions on Software

Engineering, Vol. 14, No. 6, 758-773, DOI:

10.1109/32.6156

[45] J. Chhabra, V. Gupta. 2009. Evaluation of Code and Data

Spatial Complexity Measures. In Proceedings of

Contemporary Computing. IC3 2009. Communications in

Computer and Information Science, Springer, Berlin,

Heidelberg Vol. 40. 604-614. DOI: 10.1007/978-3-642-

03547-0_57

[46] G. Karner. 1993. Metrics for Objectory. Diploma Thesis,

University of Linkoping, Sweden.

[47] Mohammad D. Aljohani, M. Rizwan J. Qureshi. 2016.

Management of Changes in Software Requirements

during Development Phases. International Journal of

Education and Management Engineering(IJEME), Vol.6,

No.6, pp.12-26, 2016.DOI: 10.5815/ijeme.2016.06.02

[48] S. Koussoube, A. Ayimdji, L.P. Fotso. An Ontology-

Based Approach for Multi-Agent Systems

Engineering.2013. International Journal of Education and

Computer Science, Vol. 1, 42-55 DOI:

10.5815/ijmecs.2013.01.06

[49] A. Abran. 2003. COSMIC Measurement Manual-Version

3.0. The COSMIC Implementation Guide for ISO/IEC

19761. Retrieved from

www.cosmicon.com/portal/public/mm4.pdf

[50] Lauretta O. Osho, Muhammad B. Abdullahi, Oluwafemi

Osho. 2016. Framework for an E-Voting System

Applicable in Developing Economies. International

Journal of Information Engineering and Electronic

Business (IJIEEB), Vol.8, No.6, pp.9-21, 2016. DOI:

10.5815/ijieeb.2016.06.02

[51] B. W. Boehm, J. R. Brown, and M. Lipow. 1976.

Quantitative Evaluation of Software Quality. In

Proceedings of 2n International Conference on Software

Engineering, San Francisco, California, United States.

592–605.

Authors’ Profiles

Sangeeta Sabharwal did her M.Tech in

Computer Science and Ph.D. from University

of Delhi, India. Presently she is a Professor

in the Division of Computer Engineering at

NSIT, University of Delhi, India. She has

around 25 years of teaching and research

experience in the field of software

engineering. Her areas of interest are

Requirement engineering, Object oriented analysis, Model

based testing, Web application testing, Search based software

engineering and meta-modeling.

Preeti Kaur did her M.Tech in Information

Systems and pursuing Ph.D. from University

of Delhi, India. Currently she is working as

Associate Professor in the Division of

Computer Engineering at NSIT, University

of Delhi, India. Her research interests

include Requirement engineering, Object

oriented analysis and design, Agile software

development.

Ritu Sibal did her Ph.D. from University

of Delhi, India. Presently she is

As so c i a t e Professor in the Division of

Computer Engineer ing at NSIT,

University of Delhi, India. She has more

than 20 years of experience of teaching and

research in the field of software

engineering. Her areas of interest are
Software engineering, Agile software development, Software

testing.

How to cite this paper: Sangeeta Sabharwal, Preeti Kaur, Ritu

Sibal, "Empirical and Theoretical Validation of a Use Case

Diagram Complexity Metric", International Journal of

Information Technology and Computer Science(IJITCS), Vol.9,

No.11, pp.35-47, 2017. DOI: 10.5815/ijitcs.2017.11.04

