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Abstract—Software product line approach has been 

successfully adopted in various software domains. In 

some fields, single SPLs are no longer sufficient to fulfill 

their requirements due to the large variability amount 

they include. Consequently, a set of separated SPLs is 

built to handle this issue and construct what is known by 

Multi Product Lines (MPL). However, the emergence of 

MPLs results in several challenges, namely: managing 

the reuse between SPLs, structuring the MPL model and 

distributed derivation. In this paper, we propose a new 

approach for SPLs composition. Our approach relies on 

two main concepts: the separation of concerns and the 

partial derivation. It is validated in the context of an e-

Learning MPL and an illustration is explained throughout 

the paper. The results show that our approach helps 

systemizing reuse within MPLs and structuring the MPL 

model. Moreover, SPLs are integrated early in the 

development process avoiding thus the distributed 

derivation challenges. 

 

Index Terms—Reuse, Multi Product Lines, Software 

Product Lines, Partial Derivation, Composition. 

 

I.  INTRODUCTION 

Reuse has been always a crucial interest of software 

engineering. One of the most promising reuse approaches 

is Software Product Line (SPL).  SPL approach 

systematizes reuse within a particular field by predicting 

potential reusable components, designing them to be 

easily adapted to several contexts, and making them 

available to be reused by final applications. This results 

in faster production processes with lower cost and effort 

of development. Nowadays, single SPLs are no longer 

sufficient to manage variability in some large fields due 

to their complexity and broadness. Consequently, several 

separated SPLs emerge focusing each one on a particular 

subfield what is known as Multi Product Lines (MPLs). 

MPL approach allows focusing on each subtopic of the 

MPL domain separately and thus provides customers with 

more specialized applications. However, adopting an 

MPL approach without planning for inter-SPLs reuse 

results in losing the reuse information among the SPLs of 

the MPL. Reuse between applications involves adapting 

the components to the new contexts. Reuse among SPLs 

is even more complex than it is between applications. An 

SPL encompasses various contexts, thus reusing a 

component by an SPL involves its adaptation to the set of 

contexts it includes and this results in multiplying the 

cost, time and effort of development. Moreover, when 

reusing several components, the whole process is 

repeated accordingly. Consequently, reuse among SPLs 

of an MPL is a complex and laborious operation, and 

solutions are needed to help systematizing the reuse in 

MPLs environments. 

In this paper, we tackle three main challenges 

encountered by MPL engineering which are: structuring 

the MPL model, managing reuse across separated SPLs 

and distributed derivation. We first report on challenges 

encountered by MPLs development then we propose a 

new approach allowing reuse management within MPLs. 

Our approach lies on the separation of concerns and the 

partial derivation concepts. Components to be reused by a 

set (or all) of MPL SPLs are produced by specialized 

SPLs. Those latter are partially derived and composed 

early in the development process avoiding thus several 

MPLs challenges. We focus in this paper on the partial 

derivation of SPL architecture. The proposition is 

validated for the e-Learning field. In fact, e-Learning will 

present an example on which we illustrate the various 

concepts of our proposition along the paper. Our 

contribution is then twofold; it can be of benefit to 

software engineers as well as to the product line and 

reuse community. We provide a method for structuring 

the MPL model and managing the reuse between SPLs. 

In addition, we describe techniques that allow preparing 

SPLs for early composition in the MPL development 

process. 

The paper is structured as follow: section 2 introduces 

the basic concepts for the studied research field, including: 

SPLs, MPLs, Component Based Product Lines (CBPLs) 

in addition to the e-Learning MPL. Section 3 comments 

on the related work. Section 4 presents our proposition 

illustrated by the e-Learning MPL case study. Section 5 
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presents a validation case study and section 6 discusses 

the obtained results. Finally, section 7 summarizes the 

paper and discusses future work. 

 

II.  BACKGROUND 

In order to clarify the research field of the paper, we 

present in this section the main concepts related to the 

studied issue. We first define MPLs and discuss their 

crucial challenges, then we present the CBPLs modeling 

approach adopted in this work and, finally, we introduce 

the context of our research work. 

A.  Multiple Product Lines 

An SPL is “A set of software-intensive systems sharing 

a common, managed set of features that satisfy the 

specific needs of a particular market segment or mission 

and that are developed from a common set of core assets 

in a prescribed way” [1]. SPL approach aims to 

systematize reuse throughout all the software 

development process: from requirements engineering to 

the final code and test plans. The purpose is to reduce 

time and cost of production and to increase software 

quality by reusing elements (core assets) which have been 

already tested and secured. These objectives can be 

realized by putting in common the various development 

artefacts, such as: requirement documents, design models, 

architectures, code (reusable components) and procedures 

of test and maintenance. Hence, SPL Engineering (SPLE) 

relies on a fundamental distinction between development 

for reuse and development with reuse [2] [3]. Domain 

engineering or “development for reuse” consists in 

developing the reusable elements (core assets) through 

the domain analysis, domain design and domain 

implementation processes. The main outputs of this 

process are: identification of SPL members (scoping) and 

extraction of similarity and variability between them. 

Application engineering or “development with reuse” 

consists in developing the final products, using core 

assets and specific requirements expressed by customers. 

This process is similar to the traditional development 

process; however, each step is facilitated by reusing the 

outputs of the first process. 

Instead of the significant benefits they bring to 

software engineering, single SPLs are no longer sufficient 

in some environments due to the emerging of reuse across 

several interdependent SPLs what is known as Multiple 

Product Lines (MPL). An MPL is defined as a set of 

several self-contained but still interdependent product 

lines that together represent a large-scale or ultra-large-

scale system [4]. A crucial reason for introducing MPLs 

is the need for separating between several business 

purposes including different sets of commonalities and 

Variation Points (VPs). A more focused SPL scope 

allows stronger constraints on variability [5]. MPLs may 

also facilitate assets creation, in contrast to generic assets 

that are hard to develop and maintain. Yet, MPLs 

emergence has given rise to several challenges for SPLE: 

The distinction between SPLs within the same field 

results in losing the reuse information between them. 

MPLs need, then, to manage the reuse across the several 

SPLs they include [4] in order to reach larger scale reuse. 

Two solutions are conceivable: the direct inter-SPLs 

reuse or the development of a broad SPL including all the 

MPL subfields. If developers choose the direct reuse 

between separated SPLs they have to adapt components 

to fit the new requirements. This will draw them back to 

the problem of unplanned reuse. In this case, adaptations 

are limited and make the developers’ work laborious and 

error prone, this may push them to prefer developing 

components from scratch. Otherwise, developers may 

choose to systematize reuse between the separated SPLs 

by developing one SPL covering the whole MPL domain.  

This will result in a broad SPL covering several MPL 

subfields and thus several business purposes. However, 

numerous problems can arise from broadening the SPL 

scope [6], mainly: decreasing complete commonality 

(common components to all products) and in return 

increasing partial commonality (components common to 

a set of products), over-engineered SPL architecture and 

hard variability management due to the increased 

complexity of the SPL. Consequently, efficient methods 

are needed to manage inter-SPLs reuse within MPLs 

environments. 

Current MPLs tends to compose SPLs components at 

derivation time. So, instead of dealing with a single SPL 

derivation, developers must choose components to be 

reused from other SPLs, adapting them to the current 

reusing context and integrating them with the reusing 

application. This integration way known as distributed 

derivation [4] results in several problems. Reused 

components that are already developed using particular 

modeling and implementation techniques must be 

adapted to fit the new application requirements. 

Components to be reused must suit to not only one 

reusing product but to various products included in the 

various reusing SPLs. This results in multiplying the 

adaptation processes and thus delays the derivation and 

increases the costs and time of development. In addition, 

choosing the right reusable component from several 

competing SPLs is itself a problem that needs a decision 

process to be resolved. Furthermore, the integration 

activity may require reviewing the whole reusing SPL 

architecture, or imply important adaptations for the 

reused components. Consequently, the distributed 

derivation is a hard and laborious task to perform. 

MPLs are hard to be managed using a single model due 

to their size and complexity [4]. Thus, the MPL model 

needs to be decomposed into several models that can be 

managed efficiently by separated teams. Techniques are 

then needed to decompose the MPL model into small 

units more likely to be managed easily. Yet, 

dependencies between SPLs models must be considered 

since they belong to the same field and represent together 

a large-scale system. Those dependencies are involved 

thereafter to ease the composition of the MPL’s SPLs in 

order to obtain a complex system. Yet, SPLs composition 

approaches within MPLs are still immature [4]. 

In the next section, we propose an approach that 

benefits from MPLs advantages and aims to overcome 
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the before-discussed problems.  

B.  Component Based Product Lines 

CBPL engineering has been introduced to overcome 

the lack of maturity in SPLE by unifying the strengths of 

two complementary approaches: SPLs and Component-

Based Development (CBD) [7]. CBD is a reuse based 

approach for defining; implementing and composing 

loosely coupled independent components into systems [8]. 

It is used to ensemble software from existing components 

[9].  CBD supplies technologies for reuse in the small, 

while SPL approach intends reuse in the large. Putting 

them together allows reaching large scale reuse and 

flexibility at the same time. However, only few works 

have been done in this area, we distinguish among others: 

KobrA [10], koala [11] [12] and IASA extension [7]. In 

this paper we adopt the approach that has been proposed 

in our previous work [7].  

Guendouz and Bennouar [7] Extend the component-

based model IASA (Integrated Approach to Software 

Architecture) [13] in order to allow variability modeling. 

IASA was used to realize complex e-Government 

software systems, and was proved as a clear and easy 

specification language to design at a high level of 

abstraction using Aspect Oriented approach [14] [15]. 

IASA aims to provide the models and tools which have 

the ability to directly capture the architect’s mental model 

about a solution in the early step of a software elaboration 

process [16]. Hence, IASA architecture model of an SPL 

can be easily deduced from its feature model if this latter 

has been constructed considering composition links 

between features. Mapping the feature model to the 

architecture model increases the possibility of automating 

the development process thereafter. 

The IASA approach supports the Aspect Oriented 

Software Architecture (AOSA) specification through the 

distinction between two components kinds: aspect 

components and business components [16]. IASA allows 

the use of any component as an aspect component and 

any aspect component as a business component. 

Moreover, aspect components are not limited to represent 

technical concerns; they may be extended for other 

concerns such as Graphical User Interface (GUI).  

The extended IASA [7] supports both composition and 

variation. Composition is maintained through basic IASA 

concepts while variation is supported by the extended 

IASA concepts. The design according to IASA approach 

uses a component-oriented process which proceeds by 

successive refinement. An IASA component is seen from 

the outside as a black-box that communicates with the 

external world through Ports [16], which define the 

services it can provide or require. The internal view of a 

primitive component is inaccessible, while the structure 

of a composite component is well defined, it consists of 

three parts: Operative Part, Aspect Part, and Control Part. 

The Fig. 1-a  sets out the basic IASA notations. 

The extended IASA [7] allows modeling variability at 

components as well as architecture levels; this is ensured 

by introducing the concepts of variable components and 

variable connectors. IASA extension represents 

variability as follow: 

 

 All of components and connectors may be 

annotated by: «Mdr» and «Opt» which means 

respectively: Mandatory and Optional. 

 We distinguish between four interfaces kinds: 

mandatory provided interface, mandatory required 

interface, optional provided interface and optional 

required interface as depicted in the Fig. 1-b. 

 A component that has a variety of implementations 

is represented by: component choice as shown in 

Fig. 1-b. 

 

The relationship between a component and a variable 

set of components is materialized by: Connector choice. 

Such as the number of components related by the 

connector is specified by a cardinality interval [n, m] 

where n, m ϵ N and m ≥ n, such as: n = m if the type of 

the relation is AND; m ≥ n if the type of the relation is OR; 

n = m =1 if the type of the relation is XOR or Alternative. 

 
 

Name_Cmp 

Name_Cmp 

Provided interface 

Required interface 

Internal view of IASA components  

a.   IASA basic notation  

Connector  
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Fig.1. The IASA notations. 

C.  The E-Learning MPL 

Our approach has been actually inspired by our 

experience in developing SPLs for e-Gov field in context 

of the project “Towards an SPL for e-Government 

applications”. The project was launched in January 2014 

by LIMPAF Laboratory at Bouira University, Algeria. 

The project aims to set up the technological and 

methodological bases to the development of an e-Gov 

product line. The objective of this product line is the fast 

production of software intended to the different Algerian 

government institutions (e-Administration, e-Justice, e-
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Voting, e-Meeting, e-Health, e-Education, etc.). The 

produced software should be compatible to ensure a high 

level interoperability between the various government 

institutions. However, building a single SPL for the 

whole domain is infeasible due to its broadness and 

complexity. Therefore, a set of separated SPLs has been 

built and each of them intends a particular e-Government 

subfield, this results in an e-Government MPL. 

Nevertheless, those SPLs must preserve interoperability 

and reuse information must be kept between them in 

order to get faster development processes and lower costs 

and development effort. In this paper we consider a sub-

set from the e-Government MPL which are the e-

Learning SPLs (e-University, e-Secondary, e-Primary, 

and e-PrivateLearning) to illustrate the proposed 

approach. The e-Learning case study is used throughout 

the paper to illustrate and validate our proposition. 

 

III.  RELATED WORK 

Only few works have been proposed to solve the 

problems encountered by MPLs engineering. In this 

section we report on the main propositions and we 

comment on them. 

Rosenmüller et al. [17] have altered the MPLs 

structuring problem. They propose to extend the feature 

model with explicit modeling of SPLs instances. The 

matter is to allow configuring an SPL using multiple 

instances of another SPL. In another work, Rosenmüller 

et al. [18] added the notion of composition model aiming 

to automate the configuration of MPLs. A composition 

model integrates multiple SPLs by describing for each 

SPL which instances of the other SPLs it uses. The work 

seeks to describe the implementation of MPLs on an 

abstract level basing on the involved SPL instances. 

However, when several SPLs and instances are involved 

in the composition process it became hard to manage at 

the same time three abstraction levels: MPL, SPL and 

SPL instances. Moreover, SPLs instances integration 

produces the problem known by distributed derivation 

(section 2.A) especially when numerous SPLs instances 

are needed for the composition of an SPL. 

Schröter et al. [19] [20] introduce multi-level interfaces 

to guaranty the correct collaboration between multiple 

SPLs. They distinguish between four interfaces: 

variability-model interfaces, syntactical product-line 

interfaces, behavioral product-line interfaces, and non-

functional property interfaces. Those interfaces aim to 

detach the direct dependency between SPLs and to enable 

modular analysis of MPLs correctness. They are defined 

as follow: - Variability-model interface: is a 

specialization of the reused SPL’s variability model - 

Syntactical interface: represent a view of an SPL’s 

reusable code artefacts without implementation detail - 

Behavioral interface: is an agreement on the behavior of 

different methods - Non-functional interface: represent 

non-functional properties of an SPL that other SPLs use. 

Apparently, the introduced interfaces represent views 

on what could be reused from an SPL within an MPL. 

They are defined as collaboration means between SPLs of 

an MPL. Authors do not mention how the interfaces are 

realized or how one SPL is reused by another one. 

Herman and Tim [21] propose to combine feature 

model with context variability model to model MPLs 

supporting several dimensions in context space. They use 

stage configuration to generate specialized feature models. 

The Context Variability Model captures the commonality 

and variability of the context. The context is the 

environment in which a product resides. The Context 

Variability Model is combined with a conventional 

feature model to create an MPL-Feature model.  However, 

this model needs more work at domain engineering stage 

and must be maintained over all the development process. 

Rabiser et al [22] present an approach that aims to 

improve awareness during MPLs derivation such as users 

configuring a system are informed about the decisions 

made in other systems. The approach is materialized by a 

decision board that allows users to publish their decisions 

and subscribe to other projects decisions. The paper in 

fact presents a simple approach to communicate the key 

decisions in multiple SPLs derivation processes without 

explicitly integrating the underlying variability models. 

So it does not present a solution neither to the inter-SPLs 

reuse within MPLs nor to the MPLs model structuring 

challenges. 

Dhungana et al [23] propose an approach that 

organizes an SPL into a set of interrelated model 

fragments describing the variability of particular parts of 

the system. Model fragments help structuring the 

modeling space and provide support for evolution. This 

work is important in terms of structuring the modeling 

space and merging models. The proposition is actually 

targeted to single SPLs environment, yet in MPLs 

environments decomposing the system into fragments 

that define reusable assets is not enough for managing 

complexity. Moreover, the work has no relation with 

variability management across MPLs which is a crucial 

issue tackled by our work. 

 

IV.  SPLS COMPOSITION 

SPLs composition process consists in three main steps: 

separation of concerns, partial derivation and composition 

as depicted in the Fig. 2. Separation of concerns step 

decomposes the MPL into two SPLs kinds: MPL sub-

SPLs and crosscutting SPLs. Partial derivation activity 

aims to prepare the crosscutting SPLs to be integrated 

with their reusing SPLs, while SPLs composition results 

in complete SPLs ready to be derived using traditional 

methods in order to produce final applications. 

A.  Separation of Concerns 

As stated before, the MPL model needs to be well 

structured to allow better variability management across 

their SPLs. If we analyze existing MPLs we find that 

their sub-SPLs share some commonalities even if they are 

separated. Considering for example the set of e-learning 

SPLs, we find that e-Learning applications can be 

implemented in a variety of settings: for schools and 

universities to complete or enhance classroom learning, 
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for corporations to provide training and certification for 

their employees, and for organizations to provide e-

Learning courses to a larger learners population virtually 

anywhere in the world. Each e-learning subfield 

encompasses various applications that are characterized 

by common and variable features. For instance 

universities produce applications for the various faculties 

that may include variable courses and interaction tools as 

well as different tests and exercises kinds. Therefore, 

separated SPLs can be built for the various e-Learning 

sub-fields: e-University, e-Secondary, e-Primary, e-

PrivateLearning SPLs. However, all of those SPLs still 

have in common some crucial features such as: security, 

GUI, user management, document management, 

evaluation and search. 

 

 

Fig.2. SPLs composition process. 

In order to structure the MPL model, we propose to 

separate between features that are common to all (or a set 

of) MPL SPLs and those that are specific to each sub-

SPL (intended to the basic business sub-field 

functionalities). We see the common features as 

crosscutting concerns for the MPL, since they reply to 

transversal needs for a set or all MPL SPLs. Yet, even if 

crosscutting-features are common to some (or all) sub-

SPLs they still may vary in their sub-features and their 

reuse requires adaptations to fulfill the new needs. Thus, 

crosscutting-features can in turn be derived themselves 

from dedicated SPLs that we call: crosscutting SPLs. 

Separation of concerns at SPLs level helps structuring the 

MPL models. We distinguish between two kinds of 

models: the MPL sub-SPLs models and the crosscutting 

SPLs models. The integration of those SPLs is discussed 

in the next sections. 

Crosscutting SPLs aim, on the one hand, to systematize 

reuse throughout the various MPL SPLs by defining the 

MPL crosscutting-features, and devoting an SPL for each 

of them. On the other hand, SPL development often gives 

more emphasis to business functionalities. Ignoring 

secondary (especially technical) functionalities decrease 

the systems’ performances, given that a weakness in the 

SPL design can cause problems throughout all its 

members. Improving these functionalities is one of 

crosscutting SPLs’ advantages. Since they will be created 

by specialized developers and tested in different contexts; 

crosscutting SPLs will provide the MPL by high quality 

components which will participate in improving the 

derived applications’ quality. In addition, the MPL SPLs 

development processes will be simplified by reusing the 

core assets derived from the crosscutting SPLs. 

Crosscutting SPLs are defined by analyzing the MPL 

sub-SPLs (if they exist or the MPL subfields) and 

extracting the main common features among them. Hence, 

all of GUI, evaluation, user management, security SPLs 

represent crosscutting SPLs for the e-Learning MPL, 

while: e-University, e-Primary, e-PrivateLearning, e-

Coaching are the sub-SPLs of the e-Learning MPL. For 

instance: the evaluation crosscutting SPL aims to provide 

various test kinds to evaluate the learners' understanding 

for the provided online courses. Yet, the evaluation 

components needed for primary applications differ from 

those needed by an e-University SPL. E-University 

applications require more advanced test types, such as: 

allowing diagrams design, supporting more languages 

and special mathematics symbols. In contrast, the 

evaluation component may not be needed in other 

contexts such as a Self-paced learning SPL. 

B.  Partial Derivation 

Partial derivation is a transformation procedure that 

takes as input the core assets of an SPL to be reused 

(crosscutting SPL) and generates a partially derived SPL 

ready to be integrated with its reusing SPL (MPL sub-

SPL). Partial derivation consists in modifying a set of 

VPs included within the reusable SPL’s core assets in 

order to fit the reusing SPLs’ requirements. Ultimately, 

the partial derivation can alter a set of VPs or in some 

cases all the SPL VPs may be modified to meet the new 

needs. As we will have a full SPLs composition (not only 

the code is composed), all artefacts types to be composed 

must be partially derived from requirements models to 

the architecture and implementation code. The set of 

partially derived artefacts will be completely derived 

thereafter as a part of the reusing SPL. 

Partial derivation is comparable to the specialization 

concept that was introduced by Czarnecki et al [24] [25]. 

They define specialization as the transformation process 

that takes a feature diagram and yields another feature 

diagram, such as the set of configurations denoted by the 

latter diagram is a true subset of the configurations 

denoted by the former diagram. Successive specialization 

processes result in a final configuration, this method is 

called staged configuration [24]. Specialization defers 

from partial derivation in two crucial ways. On the one 

side, the purpose of introducing specialization is to allow 

handling applications derivation through several 

configuration stages what is needed in the case of 

software supply chains. Final applications derivation step 

is then decomposed into several specialization stages 

each one is performed by a particular actor, whereas 

partial derivation aims to prepare the reusable SPLs for 

integration with the reusing SPLs during the domain 

engineering phase. On the other side, specialization is 

defined to be applied particularly on the feature models 

what is clear from its definition, while partial derivation 

is applied to all the artefacts extracted from the reusable 

SPLs domain engineering (including requirements 

models, architecture and final code). 
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Unlike specialization, the resulting model from a 

partial derivation procedure does not describe necessarily 

a sub-set of the systems set described by the original 

model. In some cases, the partially derived model is 

extended by adding new functionalities or VPs to fulfill 

the particular needs of the reusing field. This is due to the 

fact that the resulted model is integrated with the entire 

reusing SPL (with all its covered contexts) not a 

particular final application. We can then distinguish 

between two partial derivation categories: restriction and 

expansion techniques. The partial derivation of a model 

can include transformations from both categories. 

 

 Restricting a model means altering the model in a 

way that restricts the choices set covered by the 

resulted model.  The set of transformations that 

could be done in this category are: - to restrict a 

choice VP - to change a VP type from optional to 

mandatory - to restrict an attribute by assigning a 

value - to omit a VP or a feature (eventually a 

component). 

 Expanding a model means to modify this model in 

such a way that expand the choices set covered by 

the resulted model. The set of transformations 

included in this category are: - to extend a choice 

VP – to change a VP type from mandatory to 

optional – to add a VP or a feature (eventually a 

component). 

 

Those techniques are applied to all the artefacts types 

of an SPL. In this paper we focus on the partial derivation 

of the SPL architecture. Hence the partial derivation 

techniques are illustrated basing on the architectural 

model “IASA extension” (see the section 2.B). 

Restriction Techniques: 

●  Restricting a Choice VP: A choice VP allows 

several configuration possibilities unlike optional and 

mandatory VPs that allow only two resolution 

possibilities. It describes the variation of a set of related 

elements and may limit the options by a cardinality 

interval. Restricting a choice VP means reducing the 

configuration possibilities enabled by the VP. This can be 

done by removing an option or an options-set from the 

elements described by the VP or by reducing the related 

cardinality interval. For the architecture model we 

distinguish between: 

 

1. Restricting a choice component by removing one 

or several implementation possibilities. A special 

case of this operation is when no implementation 

choice is left. As a result, a choice component with 

no implementation is completely removed from 

the architecture. 

2. Restricting a choice connector by excluding a 

component or a set of components from the 

choices related to the connector. If the components 

group size is s and its cardinality is [n, m] such as 

n ≤ s, when removing one grouped component the 

new components group size will be s - 1 and its 

new cardinality interval will be [n, min(m, s-1)] 

where min(n, nʹ) takes the minimum of the two 

natural numbers n and nʹ. Special cases occur 

when it remains a single component from the 

components choices set or when no component 

remains. If no component choice remains then the 

connector is no longer useful and it must be 

removed from the architecture. If the connector is 

related to a single component and the cardinality 

interval is [1, 1] the choice connector is replaced 

by a mandatory connector. In the case of [0, 1] 

interval, the relation choice connector is changed 

into optional connector.  

3. Restricting a choice connector by reducing the 

choices number described by the interval. A 

choice connector with cardinality [n, m] may be 

reduced to [nʹ, mʹ] where nʹ ≥ n and mʹ ≤ m. 

Special cases occur when getting [1, 1] or [0, 0] 

intervals. If we obtain [1, 1] interval and the 

connector is related to more than one component, 

the connector type is called Alternative. If we 

obtain [0, 0] interval, the connector is completely 

omitted whatever is the number of components it 

is related to. 
 

●  Changing a Variability Type from Optional to 

Mandatory: A functionality may become obligatory for 

particular reusing contexts. For the architecture model, an 

optional component may be changed to mandatory type if 

its existence is obligatory in the final reusing applications. 

This is also valid to both of optional interfaces and 

connectors. 

●  Removing a Functionality: A restriction operation 

may be done by removing a functionality. In architecture 

model we may: omit a component with all its interfaces 

and connections, omit a particular interface from a 

component, or omit a connection between two 

components. Omitting a component from a component-

group and omitting a set of components cases correspond 

to what is described by restricting a choice VP. 

Expansion Techniques: 

●  Extending a Choice VP: It means increasing the 

configuration possibilities enabled by the VP. This can be 

done by adding an option or an options-set to the 

elements described by the VP or by extending the related 

cardinality interval. For the architecture model we can 

distinguish: 

 

1. Adding a new implementation (or a set of 

implementations) to the implementations group of 

a choice component. A component with a single 

implementation may turn into a choice component 

if new implementations are introduced; 

2. Adding a component or more to the components 

choice group related to a choice connector; 

3. Extending the options number interval described 

by a choice connector.  The choice connector 

cardinality interval [n, m] may be extended to [nʹ, 

mʹ] where     nʹ ≤ n and mʹ ≥ m and consistency is 
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preserved (nʹ ≥ 0 and mʹ ≤ s). A simple connector 

may change into choice connector if it must be 

related to more than one component. 
 

●  Changing a Variability Type from Mandatory to 

Optional: A variability type may be changed if needed by 

the reusing SPL. A mandatory component may become 

optional and this results in extending the configuration 

possibilities of the model. This is valid also for 

mandatory interfaces and connectors. The IASA 

extension architecture style allows dealing with each 

variable architecture element separately which allows 

more complete and explicit variability representation.   

●  Adding a Functionality: In the case of specific new 

requirements by the reusing SPL, the reused SPL can be 

extended by new functionalities. An architecture model 

can be then, expanded by adding a new component or a 

component set. Related interfaces and connectors are 

changed or added accordingly. Moreover, new interfaces 

and connectors may also be added to the model if needed. 

The cases of adding new component implementations or 

extending connector cardinality are described by 

extending a choice VP. 

C.  SPLs Composition 

SPLs composition means the integration of the 

crosscutting-SPLs that have been partially-derived to be 

reused by a particular domain with the SPL of this 

domain. This operation takes as input an MPL sub-SPL in 

addition to the partially derived crosscutting-SPLs for this 

sub-SPL and yields an SPL ready to be completely 

derived to produce final applications. SPLs composition 

can be performed simultaneously with the sub-SPL 

domain engineering, such as each partially-derived 

artifact is merged with its correspondent reusing artifact 

at development time. Yet, SPLs can be integrated 

subsequently since the crosscutting-SPLs core assets base 

is available for reuse.  

Sub-SPLs must plan for reuse in order to decrease the 

risk of encountering integration challenges. Moreover, 

the used languages are recommended to be compatible in 

order to ease the integration step, yet they could be 

adapted using a unified language, for example, before 

integration. Several works have studied the merging of 

SPLs models: Morin et al. [26] [27] present an approach 

to safely integrating aspects models with variability into 

existing models. Abele et al. [28] provides an overview 

on a variability management tool called CVM framework. 

Among other capabilities, the tool allows composing 

feature diagrams from several related SPLs. Alférez et al. 

[29] propose the Variability Modeling Language for 

Requirements (VML4RE), a multi-view composition 

language for SPL requirements. VML4RE language 

supports the composition of elements defined in separate 

and heterogeneous requirement models using a set of 

operators. Dhungana et al. [30] present an approach to 

facilitate variability models integration. They provides a 

unified perspective to users configuring products in multi 

product line environments, by making the internal 

technical aspects of using variability models for 

configuration transparent to the stakeholders performing 

the configuration. 

Reused components concern generally particular 

functionalities from the reusing SPL. Those components 

are represented by black boxes that will be replaced by 

partially-derived components thereafter. We suggest 

differentiating those black boxes components by 

annotating them in the architecture model by «CC_cmp» 

(i.e. CrossCutting SPL component). During the partial 

derivation step, the crosscutting components are extracted 

from the crosscutting SPLs according to the reusing SPL 

requirements. Only needed interfaces and sub-

components are kept. At composition step, the CC_cmps 

are replaced by the partially derived components and 

connections are performed to link the reused components 

with the reusing SPL reference architecture components. 

The CC_cmps may represent aspect components or 

business components to the reusing SPL architecture. 

However, this does not influence the composition 

operation. For instance, in the e-Learning MPL, security 

and GUI crosscutting SPLs components will take the 

place of aspect components while evaluation and user 

management crosscutting SPLs components will 

represent business components.  

During this step the need for a composition model 

arises. A composition model helps the developer to know 

what is expected to be reused from the crosscutting SPLs 

repository and how it will be composed with the reusing 

SPL. Composition model has been defined by 

Rosenmüller et al. [18] as the description of how an MPL 

is composed from a set of SPLs instances i.e. the 

composition model describes dependencies between 

concrete SPL instances. For our approach, composition is 

performed for each sub-SPL with its reused crosscutting 

SPLs. Hence, each sub-SPL needs a composition model 

to represent its dependencies with the crosscutting SPLs 

it is reusing. In fact, in our approach we have not to 

invent a new model in order to describe the composition 

dependencies since the reference architecture model does 

the job. As stated before, components to be extracted 

from other SPLs are integrated in the SPL architecture as 

CC_cmps, thus, their connections with the various SPL 

components are defined by the reference architecture of 

this SPL. 

 

V.  VALIDATION 

As stated before, we can distinguish between several e-

Learning SPLs: e-University, e-Secondary, e-Primary, e- 

PrivateLearning and e-Coaching SPLs. The crosscutting 

SPLs for the e-Learning MPL include but are not limited 

to: GUI, Evaluation, User Management, Security, and 

Statistics SPLs. In this section we will focus on a 

particular crosscutting SPL to illustrate the main 

techniques of our proposition. A functionality that is 

usually needed in e-Learning applications is the 

evaluation. Evaluation aims to estimate the learner 

comprehension of the provided online courses. Schools 

and universities can use it to help students reaching better 

courses understanding or to perform online exams in 
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special classes, and by the way getting a faster way to 

assess students’ answers when using automatic scoring 

functionality. Enterprises and corporations may use 

evaluation tests to help trainees appreciating their 

understanding of online training. 

An evaluation crosscutting-SPL allows producing a 

variety of evaluation components intended for the various 

e-Learning sub-fields. It includes several questions types 

ranging from basic simple questions intended to primary 

schools, to more advanced questions targeted –for 

example- to e-Learning applications specialized in 

particular subjects such as: languages, architecture, 

computer science or mathematics. Moreover, evaluation 

components may comprise other functionalities such as: 

homework, score estimation, production of report cards 

and certificates that vary from an institution to another. 

Fig. 3 depicts the evaluation crosscutting-SPL feature 

model. 
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Fig.3. The evaluation crosscutting-SPL feature model. 
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Fig.4. The reference architecture of the evaluation crosscutting SPL. 

The reference architecture of the evaluation 

crosscutting-SPL is presented by Fig. 4. The evaluation 

component provides at least one obligatory interface 

which is test interface that allow handling online tests 

functionality. It may provide other optional interfaces for 

homework, report cards and certification functionalities. 

Fig. 5 shows the internal structure of the component 'test'. 

An OnlineTest_Cmp instance may include one or more 

questions of various kinds. The question components 

themselves may have various implementations according 

to the context as in the case of mathQst_Cmp. The model 

presents a set of questions components, more questions 

kinds can be introduced, as we can go in more detail for 

each question type. For example, drawing tools may 

provide curves and tables tools for mathematic 

applications, modeling tools for computer science 

applications, and graphs for statistics applications and so 

on.  

The partial derivation of the evaluation crosscutting-

SPL architecture to be reused by the e-Primary SPL 

results in the same reference architecture as in Fig. 4. 

However, the internal structure of components is altered. 

For instance, the partial derivation of the test component 

for e-Primary SPL results in the model reported in Fig. 6. 
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Fig.5. The internal structure of the component 'test'. 
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Fig.6. Partially derived test component. 

E-Primary applications usually need some basic 

questions such as: Short Answer Questions (SAQ) and 

Order questions, therefore the corresponding components 

takes mandatory type instead of optional. Only basic 

mathematic questions are required then the MathQst_cmp 

component is replaced by BasicMathQst_cmp component. 

Furthermore, new components can be added to the 

application such as: match the items, fill with the correct 

word, conjugation questions and others. Differently, if we 

derive partially the evaluation SPL to be reused in e-

Coaching SPL the HomeWork_Cmp is omitted. In the 

case of partially deriving the evaluation SPL for an e-

Math SPL which produces specialized applications in 

providing mathematic courses, the resulted partially 
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derived SPL do not need essayWrite_cmp and order_cmp 

components, yet it requires choosing 

AdvancedMathQst_cmp implementation for 

MathQst_cmp. 

The composition model of e-University SPL with its 

crosscutting SPLs corresponds to its reference 

architecture as shown by the Fig. 7. All of 

DownloadOfficialDocs, AddModule, DataValidation and 

Communication components are annotated by CC_cmp 

and will be replaced by the relative partially derived 

crosscutting SPLs respectively Official Documents, 

Additional Module, Data Validation and Communication 

crosscutting SPLs. Official Documents SPL provides 

functionalities for documents authentication, download, 

archiving and so on. Additional modules encompasses 

SPLs producing components that do not represent the 

core of e-Learning applications but that can be added to 

those applications when needed, such as: research, poll, 

statistics SPLs. Data Validation SPL aims for developing 

validation components that will be integrated in e-

learning applications to ensure the correctness and 

reliability of the provided information. Communication 

SPL should provide e-Learning institutions by 

communication components that fit their different needs 

such as: supporting several data formats, communication 

protocols, and basically to provide efficient security 

means. Those crosscutting SPLs are partially derived 

according to the reusing SPL requirements (in this case e-

University SPL) and are composed with the other SPL 

components according to the reference architecture. 
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Fig.7. The reference architecture of e-University SPL. 

 

VI.  RESULTS AND DISCUSSION 

The validation case study shows a small part from the 

project on which we are working (section 2.C). The 

proposed approach brings several benefits to the project. 

On the one hand, the separation of concerns allows us to 

organize the e-Gov MPL, to differentiate between the 

reusable SPLs (crosscutting SPLs) and the e-Gov MPL 

SPLs and to better structure the MPL model for 

simplifying the SPLs integration thereafter. The 

separation of concerns provides in fact a good method for 

systematizing reuse within an MPL by isolating the 

reusable components in specialized SPLs (crosscutting 

SPLs).  On the other hand, the partial derivation helps us 

to avoid delaying the SPLs composition until getting the 

application level, where it is likely to have incompatible 

instances derived from separate SPLs. The early 

integration of partially derived SPLs avoids this problem, 

and the resulted composed SPLs will be derived as 

ordinary SPLs. In contrast to reusing instances, the SPLs 

partial derivation provides better means for reusing SPLs 

in a wider way. In the rest of this section, we discuss 

some crucial points related to our approach. 

In conventional SPLs environments, the derivation of a 

final application implies usually a single user working on 

the derivation of a single variability model. Otherwise, 

MPLs environments include several sub-systems and 

multiple users are involved to derive the various 

variability models. Thus, multiple derivation processes 

are handled simultaneously for the various MPL sub-

SPLs and this activity is known as distributed derivation. 

In such a case the communication is needed between the 

involved users in order to guarantee awareness about the 

decisions made in the deferent sub-SPLs [22]. If final 

applications should be integrated in order to produce a 

complete system, compatibility is needed among the 

components to be integrated, otherwise adaptation 

challenges will be encountered. Furthermore, competitive 

SPLs producing similar products may delay the 

derivation processes of an SPL reusing their outputs. If 

components needed by an SPL are provided by several 

other MPL SPLs, choosing the right component for reuse 

requires a whole decision process that results in 

lengthening the production operation. In our approach we 

act differently, instead of waiting until the derivation 

phase and facing up the afore-mentioned challenges we 

suggest the early integration of MPL SPLs. SPLs to be 

reused are partially derive according to the reusing SPL 

and are composed during the domain engineering of the 

reusing SPL. The matter is to move from distributed 

derivation to traditional derivation since at derivation 

time reused components belong already to the reusing 

SPL.  

For composing the various SPLs artefacts 

(requirements models, architecture model, code, etc.) we 

assumed that our approach is applied in an homogeneous 

environment, such as the same modeling languages and 

implementation techniques are used. Having the same 

language will help widely in the well performance of the 

composition activity. Moreover, it allows reaching final 

results in shorter development time and avoids long 

procedure of adaptation, transformation into common 

language and communication between stakeholders. On 

the other side, in the case of heterogeneous SPLs 

environments adaptations must be performed to carry out 

the composition phase. This can be done by transforming 

all SPLs models into a unified language or choosing the 
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language that have been adopted by most of the SPLs. 

Some propositions have been suggested in this area 

(section 4.C); yet considerable research work is still 

needed in order to provide SPLs developers by 

standardized languages and technologies. 

The key step of our contribution is the partial 

derivation. This activity allows the early and full 

integration of SPLs artefacts. A major task to perform 

would be the automation of the partial derivation step. 

The partial derivation automation relies on two concepts: 

transformation rules and traceability. Transformation 

rules correspond to the various partial derivation 

techniques defined beforehand (section 4.B). Those 

techniques can be formalized for each SPL artefact. 

Moreover, traceability must be kept among artefacts to 

automate the passage through the various abstraction 

levels. For instance, when features are mapped to the 

architecture the feature model partial derivation results in 

a configuration that can be used for automating the 

architecture model partial derivation. Nevertheless, this 

task cannot be fully automated since there are some 

partial derivation activities requiring the involvement of 

users. Those activities stand mainly in the expansion 

partial derivation techniques. When adding a new 

element to the architecture, developer must interfere to 

define the properties of the new element and its 

dependencies with respect to the architecture. 

Our approach seems spending more time at the MPL 

domain engineering. That is true because planning for 

reuse; analyzing crosscutting common features and 

building the set of crosscutting SPLs requires more time 

than it is the case for traditional MPLs (direct 

development of MPL sub-SPLs).  However, the aim of 

our approach is to avoid longer and hard decision and 

adaptation procedures during the application engineering 

phase. The matter is that the SPLs base (crosscutting 

SPLs and sub-SPLs) once built will allow the fast 

production of final applications, while in the conventional 

case time is wasted for each new application derivation.  

Finally, we note that both of separation of concerns 

and partial derivation activities are autonomous from 

each other, i.e. each of them can be used independently. 

For instance, separation of concerns can be used in an 

MPL environment for structuring the MPL model. It can 

be also adapted for decomposing a single SPL into a set 

of sub-SPLs and thus moving from single SPL to MPL 

approach. On the other side, partial derivation can be 

adopted for the merging of two separated SPLs aiming 

inter-SPLs reuse even if they do not belong necessarily to 

the same MPL. 

 

VII.  CONCLUSION AND FUTURE WORK 

In this paper we have presented an approach that helps 

managing reuse across SPLs, avoids distributed 

derivation challenges and eases the composition of SPLs 

within an MPL. The key idea is to plan for reuse from the 

very beginning avoiding thus several problems 

encountered during MPLs derivation. At first step, the 

MPL is organized into two SPLs kinds: sub-SPLs and 

crosscutting SPLs that produce reusable components for 

the sub-SPLs. Then, the crosscutting SPLs are partially-

derived according to the reusing SPLs requirements. 

Finally, the partially-derived SPLs are merged with the 

reusing SPLs. The aim is to systematize reuse across 

MPL SPLs, prevent late derivation challenges by 

composing SPLs at early development stages, and thus 

gain in terms of time, cost, and effort of development. 

The approach is validated in the context of a MPL for e-

Learning applications, and a discussion is presented in 

lights of the approach evaluation. 

The presented approach steps are in fact uncoupled 

techniques i.e. they may be used separately in other 

contexts. For instance, separation of concerns may be 

used to structure the MPLs models or to transform a 

single SPL into an MPL. On the other side, if developers 

prevent reusing an SPL (an SPLs set) by another SPL, 

and that this latter is under development, partial 

derivation technique can be used to ease the SPLs 

integration and to avoid the derivation challenges. 

Our approach tackles some MPLs development issues; 

nevertheless more research work is still needed in this 

area. In the future we aim to: define the partial derivation 

techniques for the various SPL core assets, and to 

formulate the proposed activities in order to allow the 

automation of the partial derivation process. It would be 

also important to test our approach in other MPLs 

environments than e-Government to reach further 

improvements. 
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