
I.J. Information Technology and Computer Science, 2017, 10, 47-58
Published Online October 2017 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2017.10.05

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

Software Product Lines Composition through

Partial Derivation

Amina Guendouz
C.S. department, Saad Dahlab University, Blida, Algeria

E-mail: guendouz.amina@yahoo.fr

Djamal Bennouar
LIMPAF Lab, Bouira University, Algeria

E-mail: djamal.bennouar@univ-bouira.dz

Received: 31 May 2017; Accepted: 01 July 2017; Published: 08 October 2017

Abstract—Software product line approach has been

successfully adopted in various software domains. In

some fields, single SPLs are no longer sufficient to fulfill

their requirements due to the large variability amount

they include. Consequently, a set of separated SPLs is

built to handle this issue and construct what is known by

Multi Product Lines (MPL). However, the emergence of

MPLs results in several challenges, namely: managing

the reuse between SPLs, structuring the MPL model and

distributed derivation. In this paper, we propose a new

approach for SPLs composition. Our approach relies on

two main concepts: the separation of concerns and the

partial derivation. It is validated in the context of an e-

Learning MPL and an illustration is explained throughout

the paper. The results show that our approach helps

systemizing reuse within MPLs and structuring the MPL

model. Moreover, SPLs are integrated early in the

development process avoiding thus the distributed

derivation challenges.

Index Terms—Reuse, Multi Product Lines, Software

Product Lines, Partial Derivation, Composition.

I. INTRODUCTION

Reuse has been always a crucial interest of software

engineering. One of the most promising reuse approaches

is Software Product Line (SPL). SPL approach

systematizes reuse within a particular field by predicting

potential reusable components, designing them to be

easily adapted to several contexts, and making them

available to be reused by final applications. This results

in faster production processes with lower cost and effort

of development. Nowadays, single SPLs are no longer

sufficient to manage variability in some large fields due

to their complexity and broadness. Consequently, several

separated SPLs emerge focusing each one on a particular

subfield what is known as Multi Product Lines (MPLs).

MPL approach allows focusing on each subtopic of the

MPL domain separately and thus provides customers with

more specialized applications. However, adopting an

MPL approach without planning for inter-SPLs reuse

results in losing the reuse information among the SPLs of

the MPL. Reuse between applications involves adapting

the components to the new contexts. Reuse among SPLs

is even more complex than it is between applications. An

SPL encompasses various contexts, thus reusing a

component by an SPL involves its adaptation to the set of

contexts it includes and this results in multiplying the

cost, time and effort of development. Moreover, when

reusing several components, the whole process is

repeated accordingly. Consequently, reuse among SPLs

of an MPL is a complex and laborious operation, and

solutions are needed to help systematizing the reuse in

MPLs environments.

In this paper, we tackle three main challenges

encountered by MPL engineering which are: structuring

the MPL model, managing reuse across separated SPLs

and distributed derivation. We first report on challenges

encountered by MPLs development then we propose a

new approach allowing reuse management within MPLs.

Our approach lies on the separation of concerns and the

partial derivation concepts. Components to be reused by a

set (or all) of MPL SPLs are produced by specialized

SPLs. Those latter are partially derived and composed

early in the development process avoiding thus several

MPLs challenges. We focus in this paper on the partial

derivation of SPL architecture. The proposition is

validated for the e-Learning field. In fact, e-Learning will

present an example on which we illustrate the various

concepts of our proposition along the paper. Our

contribution is then twofold; it can be of benefit to

software engineers as well as to the product line and

reuse community. We provide a method for structuring

the MPL model and managing the reuse between SPLs.

In addition, we describe techniques that allow preparing

SPLs for early composition in the MPL development

process.

The paper is structured as follow: section 2 introduces

the basic concepts for the studied research field, including:

SPLs, MPLs, Component Based Product Lines (CBPLs)

in addition to the e-Learning MPL. Section 3 comments

on the related work. Section 4 presents our proposition

illustrated by the e-Learning MPL case study. Section 5

48 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

presents a validation case study and section 6 discusses

the obtained results. Finally, section 7 summarizes the

paper and discusses future work.

II. BACKGROUND

In order to clarify the research field of the paper, we

present in this section the main concepts related to the

studied issue. We first define MPLs and discuss their

crucial challenges, then we present the CBPLs modeling

approach adopted in this work and, finally, we introduce

the context of our research work.

A. Multiple Product Lines

An SPL is “A set of software-intensive systems sharing

a common, managed set of features that satisfy the

specific needs of a particular market segment or mission

and that are developed from a common set of core assets

in a prescribed way” [1]. SPL approach aims to

systematize reuse throughout all the software

development process: from requirements engineering to

the final code and test plans. The purpose is to reduce

time and cost of production and to increase software

quality by reusing elements (core assets) which have been

already tested and secured. These objectives can be

realized by putting in common the various development

artefacts, such as: requirement documents, design models,

architectures, code (reusable components) and procedures

of test and maintenance. Hence, SPL Engineering (SPLE)

relies on a fundamental distinction between development

for reuse and development with reuse [2] [3]. Domain

engineering or “development for reuse” consists in

developing the reusable elements (core assets) through

the domain analysis, domain design and domain

implementation processes. The main outputs of this

process are: identification of SPL members (scoping) and

extraction of similarity and variability between them.

Application engineering or “development with reuse”

consists in developing the final products, using core

assets and specific requirements expressed by customers.

This process is similar to the traditional development

process; however, each step is facilitated by reusing the

outputs of the first process.

Instead of the significant benefits they bring to

software engineering, single SPLs are no longer sufficient

in some environments due to the emerging of reuse across

several interdependent SPLs what is known as Multiple

Product Lines (MPL). An MPL is defined as a set of

several self-contained but still interdependent product

lines that together represent a large-scale or ultra-large-

scale system [4]. A crucial reason for introducing MPLs

is the need for separating between several business

purposes including different sets of commonalities and

Variation Points (VPs). A more focused SPL scope

allows stronger constraints on variability [5]. MPLs may

also facilitate assets creation, in contrast to generic assets

that are hard to develop and maintain. Yet, MPLs

emergence has given rise to several challenges for SPLE:

The distinction between SPLs within the same field

results in losing the reuse information between them.

MPLs need, then, to manage the reuse across the several

SPLs they include [4] in order to reach larger scale reuse.

Two solutions are conceivable: the direct inter-SPLs

reuse or the development of a broad SPL including all the

MPL subfields. If developers choose the direct reuse

between separated SPLs they have to adapt components

to fit the new requirements. This will draw them back to

the problem of unplanned reuse. In this case, adaptations

are limited and make the developers’ work laborious and

error prone, this may push them to prefer developing

components from scratch. Otherwise, developers may

choose to systematize reuse between the separated SPLs

by developing one SPL covering the whole MPL domain.

This will result in a broad SPL covering several MPL

subfields and thus several business purposes. However,

numerous problems can arise from broadening the SPL

scope [6], mainly: decreasing complete commonality

(common components to all products) and in return

increasing partial commonality (components common to

a set of products), over-engineered SPL architecture and

hard variability management due to the increased

complexity of the SPL. Consequently, efficient methods

are needed to manage inter-SPLs reuse within MPLs

environments.

Current MPLs tends to compose SPLs components at

derivation time. So, instead of dealing with a single SPL

derivation, developers must choose components to be

reused from other SPLs, adapting them to the current

reusing context and integrating them with the reusing

application. This integration way known as distributed

derivation [4] results in several problems. Reused

components that are already developed using particular

modeling and implementation techniques must be

adapted to fit the new application requirements.

Components to be reused must suit to not only one

reusing product but to various products included in the

various reusing SPLs. This results in multiplying the

adaptation processes and thus delays the derivation and

increases the costs and time of development. In addition,

choosing the right reusable component from several

competing SPLs is itself a problem that needs a decision

process to be resolved. Furthermore, the integration

activity may require reviewing the whole reusing SPL

architecture, or imply important adaptations for the

reused components. Consequently, the distributed

derivation is a hard and laborious task to perform.

MPLs are hard to be managed using a single model due

to their size and complexity [4]. Thus, the MPL model

needs to be decomposed into several models that can be

managed efficiently by separated teams. Techniques are

then needed to decompose the MPL model into small

units more likely to be managed easily. Yet,

dependencies between SPLs models must be considered

since they belong to the same field and represent together

a large-scale system. Those dependencies are involved

thereafter to ease the composition of the MPL’s SPLs in

order to obtain a complex system. Yet, SPLs composition

approaches within MPLs are still immature [4].

In the next section, we propose an approach that

benefits from MPLs advantages and aims to overcome

 Software Product Lines Composition through Partial Derivation 49

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

the before-discussed problems.

B. Component Based Product Lines

CBPL engineering has been introduced to overcome

the lack of maturity in SPLE by unifying the strengths of

two complementary approaches: SPLs and Component-

Based Development (CBD) [7]. CBD is a reuse based

approach for defining; implementing and composing

loosely coupled independent components into systems [8].

It is used to ensemble software from existing components

[9]. CBD supplies technologies for reuse in the small,

while SPL approach intends reuse in the large. Putting

them together allows reaching large scale reuse and

flexibility at the same time. However, only few works

have been done in this area, we distinguish among others:

KobrA [10], koala [11] [12] and IASA extension [7]. In

this paper we adopt the approach that has been proposed

in our previous work [7].

Guendouz and Bennouar [7] Extend the component-

based model IASA (Integrated Approach to Software

Architecture) [13] in order to allow variability modeling.

IASA was used to realize complex e-Government

software systems, and was proved as a clear and easy

specification language to design at a high level of

abstraction using Aspect Oriented approach [14] [15].

IASA aims to provide the models and tools which have

the ability to directly capture the architect’s mental model

about a solution in the early step of a software elaboration

process [16]. Hence, IASA architecture model of an SPL

can be easily deduced from its feature model if this latter

has been constructed considering composition links

between features. Mapping the feature model to the

architecture model increases the possibility of automating

the development process thereafter.

The IASA approach supports the Aspect Oriented

Software Architecture (AOSA) specification through the

distinction between two components kinds: aspect

components and business components [16]. IASA allows

the use of any component as an aspect component and

any aspect component as a business component.

Moreover, aspect components are not limited to represent

technical concerns; they may be extended for other

concerns such as Graphical User Interface (GUI).

The extended IASA [7] supports both composition and

variation. Composition is maintained through basic IASA

concepts while variation is supported by the extended

IASA concepts. The design according to IASA approach

uses a component-oriented process which proceeds by

successive refinement. An IASA component is seen from

the outside as a black-box that communicates with the

external world through Ports [16], which define the

services it can provide or require. The internal view of a

primitive component is inaccessible, while the structure

of a composite component is well defined, it consists of

three parts: Operative Part, Aspect Part, and Control Part.

The Fig. 1-a sets out the basic IASA notations.

The extended IASA [7] allows modeling variability at

components as well as architecture levels; this is ensured

by introducing the concepts of variable components and

variable connectors. IASA extension represents

variability as follow:

 All of components and connectors may be

annotated by: «Mdr» and «Opt» which means

respectively: Mandatory and Optional.

 We distinguish between four interfaces kinds:

mandatory provided interface, mandatory required

interface, optional provided interface and optional

required interface as depicted in the Fig. 1-b.

 A component that has a variety of implementations

is represented by: component choice as shown in

Fig. 1-b.

The relationship between a component and a variable

set of components is materialized by: Connector choice.

Such as the number of components related by the

connector is specified by a cardinality interval [n, m]

where n, m ϵ N and m ≥ n, such as: n = m if the type of

the relation is AND; m ≥ n if the type of the relation is OR;

n = m =1 if the type of the relation is XOR or Alternative.

Name_Cmp

Name_Cmp

Provided interface

Required interface

Internal view of IASA components

a. IASA basic notation

Connector

Pointcut

Component

External

component

b. Variabiliy Extensions of IASA

Mandatory provided interface Optional provided interface

Mandatory required interface Optional required interface

Component Choice
Connector Choice

«Choice»

:Component_

Cmp

:1_Cmp :2_Cmp :n_Cmp

Operative Part

(Business components)

Aspect Part

(Tracing, Logging, Exception)

Control Part

(Controller)

«Choice»

:Connector_Cnt

[n..m]

«type»

:1_Cmp

«type»

:2_Cmp

«type»

:m_Cmp

:Component_

Cmp

Fig.1. The IASA notations.

C. The E-Learning MPL

Our approach has been actually inspired by our

experience in developing SPLs for e-Gov field in context

of the project “Towards an SPL for e-Government

applications”. The project was launched in January 2014

by LIMPAF Laboratory at Bouira University, Algeria.

The project aims to set up the technological and

methodological bases to the development of an e-Gov

product line. The objective of this product line is the fast

production of software intended to the different Algerian

government institutions (e-Administration, e-Justice, e-

50 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

Voting, e-Meeting, e-Health, e-Education, etc.). The

produced software should be compatible to ensure a high

level interoperability between the various government

institutions. However, building a single SPL for the

whole domain is infeasible due to its broadness and

complexity. Therefore, a set of separated SPLs has been

built and each of them intends a particular e-Government

subfield, this results in an e-Government MPL.

Nevertheless, those SPLs must preserve interoperability

and reuse information must be kept between them in

order to get faster development processes and lower costs

and development effort. In this paper we consider a sub-

set from the e-Government MPL which are the e-

Learning SPLs (e-University, e-Secondary, e-Primary,

and e-PrivateLearning) to illustrate the proposed

approach. The e-Learning case study is used throughout

the paper to illustrate and validate our proposition.

III. RELATED WORK

Only few works have been proposed to solve the

problems encountered by MPLs engineering. In this

section we report on the main propositions and we

comment on them.

Rosenmüller et al. [17] have altered the MPLs

structuring problem. They propose to extend the feature

model with explicit modeling of SPLs instances. The

matter is to allow configuring an SPL using multiple

instances of another SPL. In another work, Rosenmüller

et al. [18] added the notion of composition model aiming

to automate the configuration of MPLs. A composition

model integrates multiple SPLs by describing for each

SPL which instances of the other SPLs it uses. The work

seeks to describe the implementation of MPLs on an

abstract level basing on the involved SPL instances.

However, when several SPLs and instances are involved

in the composition process it became hard to manage at

the same time three abstraction levels: MPL, SPL and

SPL instances. Moreover, SPLs instances integration

produces the problem known by distributed derivation

(section 2.A) especially when numerous SPLs instances

are needed for the composition of an SPL.

Schröter et al. [19] [20] introduce multi-level interfaces

to guaranty the correct collaboration between multiple

SPLs. They distinguish between four interfaces:

variability-model interfaces, syntactical product-line

interfaces, behavioral product-line interfaces, and non-

functional property interfaces. Those interfaces aim to

detach the direct dependency between SPLs and to enable

modular analysis of MPLs correctness. They are defined

as follow: - Variability-model interface: is a

specialization of the reused SPL’s variability model -

Syntactical interface: represent a view of an SPL’s

reusable code artefacts without implementation detail -

Behavioral interface: is an agreement on the behavior of

different methods - Non-functional interface: represent

non-functional properties of an SPL that other SPLs use.

Apparently, the introduced interfaces represent views

on what could be reused from an SPL within an MPL.

They are defined as collaboration means between SPLs of

an MPL. Authors do not mention how the interfaces are

realized or how one SPL is reused by another one.

Herman and Tim [21] propose to combine feature

model with context variability model to model MPLs

supporting several dimensions in context space. They use

stage configuration to generate specialized feature models.

The Context Variability Model captures the commonality

and variability of the context. The context is the

environment in which a product resides. The Context

Variability Model is combined with a conventional

feature model to create an MPL-Feature model. However,

this model needs more work at domain engineering stage

and must be maintained over all the development process.

Rabiser et al [22] present an approach that aims to

improve awareness during MPLs derivation such as users

configuring a system are informed about the decisions

made in other systems. The approach is materialized by a

decision board that allows users to publish their decisions

and subscribe to other projects decisions. The paper in

fact presents a simple approach to communicate the key

decisions in multiple SPLs derivation processes without

explicitly integrating the underlying variability models.

So it does not present a solution neither to the inter-SPLs

reuse within MPLs nor to the MPLs model structuring

challenges.

Dhungana et al [23] propose an approach that

organizes an SPL into a set of interrelated model

fragments describing the variability of particular parts of

the system. Model fragments help structuring the

modeling space and provide support for evolution. This

work is important in terms of structuring the modeling

space and merging models. The proposition is actually

targeted to single SPLs environment, yet in MPLs

environments decomposing the system into fragments

that define reusable assets is not enough for managing

complexity. Moreover, the work has no relation with

variability management across MPLs which is a crucial

issue tackled by our work.

IV. SPLS COMPOSITION

SPLs composition process consists in three main steps:

separation of concerns, partial derivation and composition

as depicted in the Fig. 2. Separation of concerns step

decomposes the MPL into two SPLs kinds: MPL sub-

SPLs and crosscutting SPLs. Partial derivation activity

aims to prepare the crosscutting SPLs to be integrated

with their reusing SPLs, while SPLs composition results

in complete SPLs ready to be derived using traditional

methods in order to produce final applications.

A. Separation of Concerns

As stated before, the MPL model needs to be well

structured to allow better variability management across

their SPLs. If we analyze existing MPLs we find that

their sub-SPLs share some commonalities even if they are

separated. Considering for example the set of e-learning

SPLs, we find that e-Learning applications can be

implemented in a variety of settings: for schools and

universities to complete or enhance classroom learning,

 Software Product Lines Composition through Partial Derivation 51

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

for corporations to provide training and certification for

their employees, and for organizations to provide e-

Learning courses to a larger learners population virtually

anywhere in the world. Each e-learning subfield

encompasses various applications that are characterized

by common and variable features. For instance

universities produce applications for the various faculties

that may include variable courses and interaction tools as

well as different tests and exercises kinds. Therefore,

separated SPLs can be built for the various e-Learning

sub-fields: e-University, e-Secondary, e-Primary, e-

PrivateLearning SPLs. However, all of those SPLs still

have in common some crucial features such as: security,

GUI, user management, document management,

evaluation and search.

Fig.2. SPLs composition process.

In order to structure the MPL model, we propose to

separate between features that are common to all (or a set

of) MPL SPLs and those that are specific to each sub-

SPL (intended to the basic business sub-field

functionalities). We see the common features as

crosscutting concerns for the MPL, since they reply to

transversal needs for a set or all MPL SPLs. Yet, even if

crosscutting-features are common to some (or all) sub-

SPLs they still may vary in their sub-features and their

reuse requires adaptations to fulfill the new needs. Thus,

crosscutting-features can in turn be derived themselves

from dedicated SPLs that we call: crosscutting SPLs.

Separation of concerns at SPLs level helps structuring the

MPL models. We distinguish between two kinds of

models: the MPL sub-SPLs models and the crosscutting

SPLs models. The integration of those SPLs is discussed

in the next sections.

Crosscutting SPLs aim, on the one hand, to systematize

reuse throughout the various MPL SPLs by defining the

MPL crosscutting-features, and devoting an SPL for each

of them. On the other hand, SPL development often gives

more emphasis to business functionalities. Ignoring

secondary (especially technical) functionalities decrease

the systems’ performances, given that a weakness in the

SPL design can cause problems throughout all its

members. Improving these functionalities is one of

crosscutting SPLs’ advantages. Since they will be created

by specialized developers and tested in different contexts;

crosscutting SPLs will provide the MPL by high quality

components which will participate in improving the

derived applications’ quality. In addition, the MPL SPLs

development processes will be simplified by reusing the

core assets derived from the crosscutting SPLs.

Crosscutting SPLs are defined by analyzing the MPL

sub-SPLs (if they exist or the MPL subfields) and

extracting the main common features among them. Hence,

all of GUI, evaluation, user management, security SPLs

represent crosscutting SPLs for the e-Learning MPL,

while: e-University, e-Primary, e-PrivateLearning, e-

Coaching are the sub-SPLs of the e-Learning MPL. For

instance: the evaluation crosscutting SPL aims to provide

various test kinds to evaluate the learners' understanding

for the provided online courses. Yet, the evaluation

components needed for primary applications differ from

those needed by an e-University SPL. E-University

applications require more advanced test types, such as:

allowing diagrams design, supporting more languages

and special mathematics symbols. In contrast, the

evaluation component may not be needed in other

contexts such as a Self-paced learning SPL.

B. Partial Derivation

Partial derivation is a transformation procedure that

takes as input the core assets of an SPL to be reused

(crosscutting SPL) and generates a partially derived SPL

ready to be integrated with its reusing SPL (MPL sub-

SPL). Partial derivation consists in modifying a set of

VPs included within the reusable SPL’s core assets in

order to fit the reusing SPLs’ requirements. Ultimately,

the partial derivation can alter a set of VPs or in some

cases all the SPL VPs may be modified to meet the new

needs. As we will have a full SPLs composition (not only

the code is composed), all artefacts types to be composed

must be partially derived from requirements models to

the architecture and implementation code. The set of

partially derived artefacts will be completely derived

thereafter as a part of the reusing SPL.

Partial derivation is comparable to the specialization

concept that was introduced by Czarnecki et al [24] [25].

They define specialization as the transformation process

that takes a feature diagram and yields another feature

diagram, such as the set of configurations denoted by the

latter diagram is a true subset of the configurations

denoted by the former diagram. Successive specialization

processes result in a final configuration, this method is

called staged configuration [24]. Specialization defers

from partial derivation in two crucial ways. On the one

side, the purpose of introducing specialization is to allow

handling applications derivation through several

configuration stages what is needed in the case of

software supply chains. Final applications derivation step

is then decomposed into several specialization stages

each one is performed by a particular actor, whereas

partial derivation aims to prepare the reusable SPLs for

integration with the reusing SPLs during the domain

engineering phase. On the other side, specialization is

defined to be applied particularly on the feature models

what is clear from its definition, while partial derivation

is applied to all the artefacts extracted from the reusable

SPLs domain engineering (including requirements

models, architecture and final code).

52 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

Unlike specialization, the resulting model from a

partial derivation procedure does not describe necessarily

a sub-set of the systems set described by the original

model. In some cases, the partially derived model is

extended by adding new functionalities or VPs to fulfill

the particular needs of the reusing field. This is due to the

fact that the resulted model is integrated with the entire

reusing SPL (with all its covered contexts) not a

particular final application. We can then distinguish

between two partial derivation categories: restriction and

expansion techniques. The partial derivation of a model

can include transformations from both categories.

 Restricting a model means altering the model in a

way that restricts the choices set covered by the

resulted model. The set of transformations that

could be done in this category are: - to restrict a

choice VP - to change a VP type from optional to

mandatory - to restrict an attribute by assigning a

value - to omit a VP or a feature (eventually a

component).

 Expanding a model means to modify this model in

such a way that expand the choices set covered by

the resulted model. The set of transformations

included in this category are: - to extend a choice

VP – to change a VP type from mandatory to

optional – to add a VP or a feature (eventually a

component).

Those techniques are applied to all the artefacts types

of an SPL. In this paper we focus on the partial derivation

of the SPL architecture. Hence the partial derivation

techniques are illustrated basing on the architectural

model “IASA extension” (see the section 2.B).

Restriction Techniques:

● Restricting a Choice VP: A choice VP allows

several configuration possibilities unlike optional and

mandatory VPs that allow only two resolution

possibilities. It describes the variation of a set of related

elements and may limit the options by a cardinality

interval. Restricting a choice VP means reducing the

configuration possibilities enabled by the VP. This can be

done by removing an option or an options-set from the

elements described by the VP or by reducing the related

cardinality interval. For the architecture model we

distinguish between:

1. Restricting a choice component by removing one

or several implementation possibilities. A special

case of this operation is when no implementation

choice is left. As a result, a choice component with

no implementation is completely removed from

the architecture.

2. Restricting a choice connector by excluding a

component or a set of components from the

choices related to the connector. If the components

group size is s and its cardinality is [n, m] such as

n ≤ s, when removing one grouped component the

new components group size will be s - 1 and its

new cardinality interval will be [n, min(m, s-1)]

where min(n, nʹ) takes the minimum of the two

natural numbers n and nʹ. Special cases occur

when it remains a single component from the

components choices set or when no component

remains. If no component choice remains then the

connector is no longer useful and it must be

removed from the architecture. If the connector is

related to a single component and the cardinality

interval is [1, 1] the choice connector is replaced

by a mandatory connector. In the case of [0, 1]

interval, the relation choice connector is changed

into optional connector.

3. Restricting a choice connector by reducing the

choices number described by the interval. A

choice connector with cardinality [n, m] may be

reduced to [nʹ, mʹ] where nʹ ≥ n and mʹ ≤ m.

Special cases occur when getting [1, 1] or [0, 0]

intervals. If we obtain [1, 1] interval and the

connector is related to more than one component,

the connector type is called Alternative. If we

obtain [0, 0] interval, the connector is completely

omitted whatever is the number of components it

is related to.

● Changing a Variability Type from Optional to

Mandatory: A functionality may become obligatory for

particular reusing contexts. For the architecture model, an

optional component may be changed to mandatory type if

its existence is obligatory in the final reusing applications.

This is also valid to both of optional interfaces and

connectors.

● Removing a Functionality: A restriction operation

may be done by removing a functionality. In architecture

model we may: omit a component with all its interfaces

and connections, omit a particular interface from a

component, or omit a connection between two

components. Omitting a component from a component-

group and omitting a set of components cases correspond

to what is described by restricting a choice VP.

Expansion Techniques:

● Extending a Choice VP: It means increasing the

configuration possibilities enabled by the VP. This can be

done by adding an option or an options-set to the

elements described by the VP or by extending the related

cardinality interval. For the architecture model we can

distinguish:

1. Adding a new implementation (or a set of

implementations) to the implementations group of

a choice component. A component with a single

implementation may turn into a choice component

if new implementations are introduced;

2. Adding a component or more to the components

choice group related to a choice connector;

3. Extending the options number interval described

by a choice connector. The choice connector

cardinality interval [n, m] may be extended to [nʹ,

mʹ] where nʹ ≤ n and mʹ ≥ m and consistency is

 Software Product Lines Composition through Partial Derivation 53

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

preserved (nʹ ≥ 0 and mʹ ≤ s). A simple connector

may change into choice connector if it must be

related to more than one component.

● Changing a Variability Type from Mandatory to

Optional: A variability type may be changed if needed by

the reusing SPL. A mandatory component may become

optional and this results in extending the configuration

possibilities of the model. This is valid also for

mandatory interfaces and connectors. The IASA

extension architecture style allows dealing with each

variable architecture element separately which allows

more complete and explicit variability representation.

● Adding a Functionality: In the case of specific new

requirements by the reusing SPL, the reused SPL can be

extended by new functionalities. An architecture model

can be then, expanded by adding a new component or a

component set. Related interfaces and connectors are

changed or added accordingly. Moreover, new interfaces

and connectors may also be added to the model if needed.

The cases of adding new component implementations or

extending connector cardinality are described by

extending a choice VP.

C. SPLs Composition

SPLs composition means the integration of the

crosscutting-SPLs that have been partially-derived to be

reused by a particular domain with the SPL of this

domain. This operation takes as input an MPL sub-SPL in

addition to the partially derived crosscutting-SPLs for this

sub-SPL and yields an SPL ready to be completely

derived to produce final applications. SPLs composition

can be performed simultaneously with the sub-SPL

domain engineering, such as each partially-derived

artifact is merged with its correspondent reusing artifact

at development time. Yet, SPLs can be integrated

subsequently since the crosscutting-SPLs core assets base

is available for reuse.

Sub-SPLs must plan for reuse in order to decrease the

risk of encountering integration challenges. Moreover,

the used languages are recommended to be compatible in

order to ease the integration step, yet they could be

adapted using a unified language, for example, before

integration. Several works have studied the merging of

SPLs models: Morin et al. [26] [27] present an approach

to safely integrating aspects models with variability into

existing models. Abele et al. [28] provides an overview

on a variability management tool called CVM framework.

Among other capabilities, the tool allows composing

feature diagrams from several related SPLs. Alférez et al.

[29] propose the Variability Modeling Language for

Requirements (VML4RE), a multi-view composition

language for SPL requirements. VML4RE language

supports the composition of elements defined in separate

and heterogeneous requirement models using a set of

operators. Dhungana et al. [30] present an approach to

facilitate variability models integration. They provides a

unified perspective to users configuring products in multi

product line environments, by making the internal

technical aspects of using variability models for

configuration transparent to the stakeholders performing

the configuration.

Reused components concern generally particular

functionalities from the reusing SPL. Those components

are represented by black boxes that will be replaced by

partially-derived components thereafter. We suggest

differentiating those black boxes components by

annotating them in the architecture model by «CC_cmp»

(i.e. CrossCutting SPL component). During the partial

derivation step, the crosscutting components are extracted

from the crosscutting SPLs according to the reusing SPL

requirements. Only needed interfaces and sub-

components are kept. At composition step, the CC_cmps

are replaced by the partially derived components and

connections are performed to link the reused components

with the reusing SPL reference architecture components.

The CC_cmps may represent aspect components or

business components to the reusing SPL architecture.

However, this does not influence the composition

operation. For instance, in the e-Learning MPL, security

and GUI crosscutting SPLs components will take the

place of aspect components while evaluation and user

management crosscutting SPLs components will

represent business components.

During this step the need for a composition model

arises. A composition model helps the developer to know

what is expected to be reused from the crosscutting SPLs

repository and how it will be composed with the reusing

SPL. Composition model has been defined by

Rosenmüller et al. [18] as the description of how an MPL

is composed from a set of SPLs instances i.e. the

composition model describes dependencies between

concrete SPL instances. For our approach, composition is

performed for each sub-SPL with its reused crosscutting

SPLs. Hence, each sub-SPL needs a composition model

to represent its dependencies with the crosscutting SPLs

it is reusing. In fact, in our approach we have not to

invent a new model in order to describe the composition

dependencies since the reference architecture model does

the job. As stated before, components to be extracted

from other SPLs are integrated in the SPL architecture as

CC_cmps, thus, their connections with the various SPL

components are defined by the reference architecture of

this SPL.

V. VALIDATION

As stated before, we can distinguish between several e-

Learning SPLs: e-University, e-Secondary, e-Primary, e-

PrivateLearning and e-Coaching SPLs. The crosscutting

SPLs for the e-Learning MPL include but are not limited

to: GUI, Evaluation, User Management, Security, and

Statistics SPLs. In this section we will focus on a

particular crosscutting SPL to illustrate the main

techniques of our proposition. A functionality that is

usually needed in e-Learning applications is the

evaluation. Evaluation aims to estimate the learner

comprehension of the provided online courses. Schools

and universities can use it to help students reaching better

courses understanding or to perform online exams in

54 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

special classes, and by the way getting a faster way to

assess students’ answers when using automatic scoring

functionality. Enterprises and corporations may use

evaluation tests to help trainees appreciating their

understanding of online training.

An evaluation crosscutting-SPL allows producing a

variety of evaluation components intended for the various

e-Learning sub-fields. It includes several questions types

ranging from basic simple questions intended to primary

schools, to more advanced questions targeted –for

example- to e-Learning applications specialized in

particular subjects such as: languages, architecture,

computer science or mathematics. Moreover, evaluation

components may comprise other functionalities such as:

homework, score estimation, production of report cards

and certificates that vary from an institution to another.

Fig. 3 depicts the evaluation crosscutting-SPL feature

model.

 e-Evaluation

MCQ

<1, *>

SAQ
True/False

Qst
Essay

wri ting
Drawing

Curve

Diagram

 <1, *>

Table

Order

Words

Pictures

 <1, 3>

Letters

Online test Certi fication Report card Home work Scoring

Manual

Automatic

 <1, 2>

Math qst

Basic

math

Advanced

math

 <1, 1>

Mandatory feature

Optional feature

Choice with cardinali ty

<a, b>

Individual

work Group

work

 <1, 2>

Fig.3. The evaluation crosscutting-SPL feature model.

«Mdr»

:OnlineTest_Cmp

« Opt»

:HomeWork_Cmp

«Opt»

:Certification_Cmp

«Opt»

: ReportCard_Cmp

«Opt»

:Scoring_Cmp

«Mdr»ITest

«Opt»IHomeWork

«Opt»ICertification

«Opt»IReportCard

:Main
«Mdr»

:Log_Cmp

«Opt»IReportCertificat

e

«opt»IScoreCard

«Opt»IWorkScore

«Opt»ITestScore

«opt»IHomeTest

Fig.4. The reference architecture of the evaluation crosscutting SPL.

The reference architecture of the evaluation

crosscutting-SPL is presented by Fig. 4. The evaluation

component provides at least one obligatory interface

which is test interface that allow handling online tests

functionality. It may provide other optional interfaces for

homework, report cards and certification functionalities.

Fig. 5 shows the internal structure of the component 'test'.

An OnlineTest_Cmp instance may include one or more

questions of various kinds. The question components

themselves may have various implementations according

to the context as in the case of mathQst_Cmp. The model

presents a set of questions components, more questions

kinds can be introduced, as we can go in more detail for

each question type. For example, drawing tools may

provide curves and tables tools for mathematic

applications, modeling tools for computer science

applications, and graphs for statistics applications and so

on.

The partial derivation of the evaluation crosscutting-

SPL architecture to be reused by the e-Primary SPL

results in the same reference architecture as in Fig. 4.

However, the internal structure of components is altered.

For instance, the partial derivation of the test component

for e-Primary SPL results in the model reported in Fig. 6.

:Main
«Mdr»

:Log_Cmp

«Mdr»

:OnlineTest_Cmp
«Opt»IOnlineTest

«Opt»

: Scoring_Cmp

«Choice»

:Test_Questions _Cnt

[1..*]

«Choice»

:MathQst_Cmp

«Opt»ITestScore

«Mdr»ITestQst

:BasicMathQst_Cmp

:AdvancedMathQst_Cmp

«Opt»IMeetingTool

s

«Opt»IHomeTest

«Opt» :TrueFalseQst_Cmp

«Opt» :OrderQst_Cnt

«Opt» :Drawing_Cmp

«Opt» :SAQ _Cmp

«Opt» :MCQ_Cmp

«Opt» :EssayWrit_Cmp

Fig.5. The internal structure of the component 'test'.

:Main
«Mdr»

:Log_Cmp

«Mdr»

:OnlineTest_Cmp
«Opt»IOnlineTest

«Opt»

: Scoring_Cmp

«Choice»

:Test_Questions_Cnt

[1..*]

«Opt»ITestScore

«Mdr»ITestQst

«Mdr» :BasicMathQst_Cmp

«Opt»IHomeTest

«Opt» :TrueFalseQst_Cmp

«Mdr» :OrderQst_Cnt

«Opt» :Drawing_Cmp

«Mdr» :SAQ _Cmp

«Opt» :MCQ_Cmp

Fig.6. Partially derived test component.

E-Primary applications usually need some basic

questions such as: Short Answer Questions (SAQ) and

Order questions, therefore the corresponding components

takes mandatory type instead of optional. Only basic

mathematic questions are required then the MathQst_cmp

component is replaced by BasicMathQst_cmp component.

Furthermore, new components can be added to the

application such as: match the items, fill with the correct

word, conjugation questions and others. Differently, if we

derive partially the evaluation SPL to be reused in e-

Coaching SPL the HomeWork_Cmp is omitted. In the

case of partially deriving the evaluation SPL for an e-

Math SPL which produces specialized applications in

providing mathematic courses, the resulted partially

 Software Product Lines Composition through Partial Derivation 55

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

derived SPL do not need essayWrite_cmp and order_cmp

components, yet it requires choosing

AdvancedMathQst_cmp implementation for

MathQst_cmp.

The composition model of e-University SPL with its

crosscutting SPLs corresponds to its reference

architecture as shown by the Fig. 7. All of

DownloadOfficialDocs, AddModule, DataValidation and

Communication components are annotated by CC_cmp

and will be replaced by the relative partially derived

crosscutting SPLs respectively Official Documents,

Additional Module, Data Validation and Communication

crosscutting SPLs. Official Documents SPL provides

functionalities for documents authentication, download,

archiving and so on. Additional modules encompasses

SPLs producing components that do not represent the

core of e-Learning applications but that can be added to

those applications when needed, such as: research, poll,

statistics SPLs. Data Validation SPL aims for developing

validation components that will be integrated in e-

learning applications to ensure the correctness and

reliability of the provided information. Communication

SPL should provide e-Learning institutions by

communication components that fit their different needs

such as: supporting several data formats, communication

protocols, and basically to provide efficient security

means. Those crosscutting SPLs are partially derived

according to the reusing SPL requirements (in this case e-

University SPL) and are composed with the other SPL

components according to the reference architecture.

«Mdr»

:UserManagement
Cmp

«Mdr»ICompteEvent

: Main «Mdr» :Log_cmp

«Opt»IUserDeclar

ation

«Mdr»IRequestDoc «Mdr»

:RequestDoc_Cmp

«Opt»IModification
«Opt»
 :DocModification
Cmp

«Opt»

:DataValidation
CC_cmp

«Opt»IValidatio

n

«Mdr»IDocManage «Mdr»
:DocManagement
 Cmp

«Opt»
:DeclarationEvent
Cmp

«Opt»IDeclaration

«Opt»IAddModul

e

«Mdr»IConfiguration

Even

«Mdr»
:Configuration_Cmp

«Opt»
:AddModule
CC_cmp

«Opt»IDownloadDoc
«Opt»
:DownloadOfficialDocs

CC_cmp

«Opt»ICommunication

Even

«Opt»
:Communication
CC_Cmp

«Mdr»IUserConfi

g

«Opt»IDocDownload

Fig.7. The reference architecture of e-University SPL.

VI. RESULTS AND DISCUSSION

The validation case study shows a small part from the

project on which we are working (section 2.C). The

proposed approach brings several benefits to the project.

On the one hand, the separation of concerns allows us to

organize the e-Gov MPL, to differentiate between the

reusable SPLs (crosscutting SPLs) and the e-Gov MPL

SPLs and to better structure the MPL model for

simplifying the SPLs integration thereafter. The

separation of concerns provides in fact a good method for

systematizing reuse within an MPL by isolating the

reusable components in specialized SPLs (crosscutting

SPLs). On the other hand, the partial derivation helps us

to avoid delaying the SPLs composition until getting the

application level, where it is likely to have incompatible

instances derived from separate SPLs. The early

integration of partially derived SPLs avoids this problem,

and the resulted composed SPLs will be derived as

ordinary SPLs. In contrast to reusing instances, the SPLs

partial derivation provides better means for reusing SPLs

in a wider way. In the rest of this section, we discuss

some crucial points related to our approach.

In conventional SPLs environments, the derivation of a

final application implies usually a single user working on

the derivation of a single variability model. Otherwise,

MPLs environments include several sub-systems and

multiple users are involved to derive the various

variability models. Thus, multiple derivation processes

are handled simultaneously for the various MPL sub-

SPLs and this activity is known as distributed derivation.

In such a case the communication is needed between the

involved users in order to guarantee awareness about the

decisions made in the deferent sub-SPLs [22]. If final

applications should be integrated in order to produce a

complete system, compatibility is needed among the

components to be integrated, otherwise adaptation

challenges will be encountered. Furthermore, competitive

SPLs producing similar products may delay the

derivation processes of an SPL reusing their outputs. If

components needed by an SPL are provided by several

other MPL SPLs, choosing the right component for reuse

requires a whole decision process that results in

lengthening the production operation. In our approach we

act differently, instead of waiting until the derivation

phase and facing up the afore-mentioned challenges we

suggest the early integration of MPL SPLs. SPLs to be

reused are partially derive according to the reusing SPL

and are composed during the domain engineering of the

reusing SPL. The matter is to move from distributed

derivation to traditional derivation since at derivation

time reused components belong already to the reusing

SPL.

For composing the various SPLs artefacts

(requirements models, architecture model, code, etc.) we

assumed that our approach is applied in an homogeneous

environment, such as the same modeling languages and

implementation techniques are used. Having the same

language will help widely in the well performance of the

composition activity. Moreover, it allows reaching final

results in shorter development time and avoids long

procedure of adaptation, transformation into common

language and communication between stakeholders. On

the other side, in the case of heterogeneous SPLs

environments adaptations must be performed to carry out

the composition phase. This can be done by transforming

all SPLs models into a unified language or choosing the

56 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

language that have been adopted by most of the SPLs.

Some propositions have been suggested in this area

(section 4.C); yet considerable research work is still

needed in order to provide SPLs developers by

standardized languages and technologies.

The key step of our contribution is the partial

derivation. This activity allows the early and full

integration of SPLs artefacts. A major task to perform

would be the automation of the partial derivation step.

The partial derivation automation relies on two concepts:

transformation rules and traceability. Transformation

rules correspond to the various partial derivation

techniques defined beforehand (section 4.B). Those

techniques can be formalized for each SPL artefact.

Moreover, traceability must be kept among artefacts to

automate the passage through the various abstraction

levels. For instance, when features are mapped to the

architecture the feature model partial derivation results in

a configuration that can be used for automating the

architecture model partial derivation. Nevertheless, this

task cannot be fully automated since there are some

partial derivation activities requiring the involvement of

users. Those activities stand mainly in the expansion

partial derivation techniques. When adding a new

element to the architecture, developer must interfere to

define the properties of the new element and its

dependencies with respect to the architecture.

Our approach seems spending more time at the MPL

domain engineering. That is true because planning for

reuse; analyzing crosscutting common features and

building the set of crosscutting SPLs requires more time

than it is the case for traditional MPLs (direct

development of MPL sub-SPLs). However, the aim of

our approach is to avoid longer and hard decision and

adaptation procedures during the application engineering

phase. The matter is that the SPLs base (crosscutting

SPLs and sub-SPLs) once built will allow the fast

production of final applications, while in the conventional

case time is wasted for each new application derivation.

Finally, we note that both of separation of concerns

and partial derivation activities are autonomous from

each other, i.e. each of them can be used independently.

For instance, separation of concerns can be used in an

MPL environment for structuring the MPL model. It can

be also adapted for decomposing a single SPL into a set

of sub-SPLs and thus moving from single SPL to MPL

approach. On the other side, partial derivation can be

adopted for the merging of two separated SPLs aiming

inter-SPLs reuse even if they do not belong necessarily to

the same MPL.

VII. CONCLUSION AND FUTURE WORK

In this paper we have presented an approach that helps

managing reuse across SPLs, avoids distributed

derivation challenges and eases the composition of SPLs

within an MPL. The key idea is to plan for reuse from the

very beginning avoiding thus several problems

encountered during MPLs derivation. At first step, the

MPL is organized into two SPLs kinds: sub-SPLs and

crosscutting SPLs that produce reusable components for

the sub-SPLs. Then, the crosscutting SPLs are partially-

derived according to the reusing SPLs requirements.

Finally, the partially-derived SPLs are merged with the

reusing SPLs. The aim is to systematize reuse across

MPL SPLs, prevent late derivation challenges by

composing SPLs at early development stages, and thus

gain in terms of time, cost, and effort of development.

The approach is validated in the context of a MPL for e-

Learning applications, and a discussion is presented in

lights of the approach evaluation.

The presented approach steps are in fact uncoupled

techniques i.e. they may be used separately in other

contexts. For instance, separation of concerns may be

used to structure the MPLs models or to transform a

single SPL into an MPL. On the other side, if developers

prevent reusing an SPL (an SPLs set) by another SPL,

and that this latter is under development, partial

derivation technique can be used to ease the SPLs

integration and to avoid the derivation challenges.

Our approach tackles some MPLs development issues;

nevertheless more research work is still needed in this

area. In the future we aim to: define the partial derivation

techniques for the various SPL core assets, and to

formulate the proposed activities in order to allow the

automation of the partial derivation process. It would be

also important to test our approach in other MPLs

environments than e-Government to reach further

improvements.

ACKNOWLEDGMENT

This work is done in the context of the project

“Towards a Software Product Line for E-Government

Applications” conducted at LIMPAF Laboratory at

Bouira University (Bouira, Algeria), with grant number:

LIMPAF/CNEPRU/C00L07UN100120140008.

REFERENCES

[1] L.M. Northrop and C.C. Clements, “A Framework for

Software Product Line Practice,” SEI, Version 5.0,

http://www.sei.cmu.edu/, 30-05-2017

[2] P. Klaus, G. Böckle, and F. van der Linden, Software

Product Line Engineering: Foundations, Principles, and

Techniques, Springer, 2005.

[3] F. Van der Linden, K. Schmid, and E. Rommes, Software

Product Lines in Action, The Best Industrial Practice in

Product Line Engineering, Springer, 2007.

[4] H. Gerald, P. Grünbacher, and R. Rabiser, “A systematic

review and an expert survey on capabilities supporting

multi product lines,” Information and Software

Technology, vol. 54, no. 8, 2012, pp. 828-852.

DOI:10.1016/j.infsof.2012.02.002.

[5] J. Savolainen, M. Mannion, and J. Kuusela, “Developing

platforms for multiple software product lines,” Proc.

Software Product Line Conf. (CBPL 12), 2012, pp. 220-

228.

[6] J. Bosch, “The challenges of broadening the scope of

software product families,” Communications of the ACM,

vol. 49, no. 12, 2006, pp. 41-44.

[7] A. Guendouz, and D. Bennouar, “Component-Based

Specification of Software Product Line Architecture,”

 Software Product Lines Composition through Partial Derivation 57

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

Proc. Int. Conference on Advanced Aspects of Software

Engineering (ICAASE 14), 2014, pp. 100-107

[8] S. Kaliraj, N. Premkumar, A. Bharathi, "The Novel Life

Cycle Model for Component Based Software System

Based on Architecture Quality Using KCW Framework",

International Journal of Information Technology and

Computer Science(IJITCS), vol.6, no.9, pp.74-79, 2014.

DOI: 10.5815/ijitcs.2014.09.10.

[9] M. Rizwan Jameel Qureshi, Ahmed Barnawi, "Evaluation

of the Extended CBD Model: A Case Study using IMS

Application", International Journal of Information

Technology and Computer Science (IJITCS), vol.5, no.7,

pp.36-42, 2013. DOI: 10.5815/ijitcs.2013.07.04.

[10] A. Colin, B. Joachim, and M. Dirk, “Component-Based

Product Line Development: The KobrA Approach,” Proc.

Software Product Line Conf. (SPLC), 2000.

[11] O. Rob van, “The Koala component model for consumer

electronics software,” Philips Research Eindhoven, IEEE

Computer, vol. 33, no. 3, 2000.

[12] A. Timo, S. Timo, and M. Tomi, “A Koala-Based

Approach for Modelling and Deploying Configurable

Software Product Families,” PFE-5, 2004.

[13] D. Bennouar, “The Integrated Approach to Software

Architecture,” ” PhD dissertation, high school of

Computer Science, Oued Smar, Algiers, 2009.

[14] D. Bennouar, and A. Saadi, “The Design of an

eGovernment Application Using an Aspect Oriented

Software Architecture Approach,” AOSA conf., 2009.

[15] D. Bennouar, A. Henni, and A. Saadi, “The Design of A

Complex Software System Using A Software Architecture

Approach,” The International Arab Conference on

Information Technology (ACIT 08), 2008.

[16] D. Bennouar, T. Khammaci, and A. Henni, “A new

approach for component’s port modeling in software

architecture,” Journal of System and Software Elsevier,

vol. 83, no. 8, 2010. DOI:10.1016/j.jss.2010.03.005.

[17] M. Rosenmüller, N. Siegmund, C. Kästner, and S. ur R.

Syed, Modeling dependent software product lines, Pro. of

the GPCE Workshop on Modularization, Composition and

Generative Techniques for Product Line Engineering

(McGPLE), 2008, pp. 13-18.

[18] M. Rosenmüller, and N. Siegmund, “Automating the

Configuration of Multi Software Product Lines,” VaMoS

10, 2010, pp. 123-130.

[19] R. Schröter, “Using Multi-Level Interfaces to Improve

Analyses of Multi Product Lines,” Technical report, Otto-

von-Guericke University Magdeburg, Germany, 2014.

[20] R. Schröter, N. Siegmund, and T. Thüm, “Towards

modular analysis of multi product lines,” Pro. of the 17th

Int. Software Product Line Conference co-located

workshops, ACM, 2013, pp. 96-99.

[21] H. Hartmann, and T. Trew, “Using feature diagrams with

context variability to model multiple product lines for

software supply chains,” Pro. Software Product Line

Conference, IEEE, 2008, pp. 12-21.

[22] R. Rabiser, P. Grünbacher, and G. Holl, “Improving

awareness during product derivation in multi-user multi

product line environments,” Proc. of the 1st Int. Workshop

on Automated Configuration and Tailoring of Applications

(ACoTA 10), in Conjunction with 25th IEEE/ACM

International Conference on Automated Software

Engineering (ASE’10), CEUR-WS, 2010, pp. 1–5.

[23] D. Dhungana, P. Grünbacher, R. Rabiser, and T.

Neumayer, “Structuring the modeling space and

supporting evolution in software product line

engineering,” Journal of Systems and Software, vol. 83,

no. 7, 2010, pp. 1108–1122.

[24] K. Czarnecki, S. Helsen and U. Eisenecker, “Staged

configuration using feature models,” Proc. of Software

Product Lines Conference (SPLC’04), Springer Berlin

Heidelberg, 2004 pp. 266-283.

[25] K. Czarnecki, S. Helsen and U. Eisenecker, “Staged

configuration through specialization and multilevel

configuration of feature models,” Software Process:

Improvement and Practice, vol. 10, no. 2, 2005, pp. 143-

169. DOI: 10.1002/spip.225.

[26] B. Morin, G. Vanwormhoudt, P. Lahire, A. Gaignard, O.

Barais, and J. M. Jézéquel, “Managing variability

complexity in aspect-oriented modeling,” Model Driven

Engineering Languages and Systems, Springer Berlin

Heidelberg, 2008, pp. 797-812.

[27] B. Morin, J. Klein, O. Barais, and J. M. Jézéquel, “A

generic weaver for supporting product lines,” Pro. of 13th

int. workshop on Early Aspects, ACM, 2008, pp. 11-18.

[28] A. Abele, Y. Papadopoulos, D. Servat, M. Törngren, and

M. Weber, “The CVM Framework-A Prototype Tool for

Compositional Variability Management,” VaMoS 10, 2010,

pp. 101-105.

[29] M. Alférez, J. Santos, A. Moreira, A. Garcia, U. Kulesza, J.

Araújo, and V. Amaral, “Multi-view composition

language for software product line requirements,”

Software Language Engineering, Springer Berlin

Heidelberg, 2010, pp. 103-122.

[30] D. Dhungana, D. Seichter, G. Botterweck, R. Rabiser, P.

Grunbacher, D. Benavides, and J. A. Galindo,

“Configuration of multi product lines by bridging

heterogeneous variability modeling approaches,” Software

Product Line Conference (SPLC) IEEE, 2011, pp. 120-

129.

Authors’ Profiles

Amina Guendouz is a PhD candidate in

computer systems engineering at the Saad

Dahlab University of Blida, Algeria, an

Associate Researcher in the LIMPAF

laboratory (Software System and Sensor

Networks for Agriculture and Forestry) at

the University of Bouira, Algeria, and a

member of the LRDSI Lab at the Saad

Dahlab University of Blida, Algeria. She

obtained her BS (2009) and MSc (2011) degrees in Software

Engineering from Blida University, Algeria. Her research

interests include Software Architecture, Aspect Oriented

Systems, E-Government, software reuse and Software Product

Lines.

Djamal Bennouar is a Professor at the

University of Bouira, Algeria, an

Associate Researcher in the National

Center for the Development of

Advanced Technologies (CDTA),

Algiers, the Director of the LIMPAF

laboratory (Software System and Sensor

Networks for Agriculture and Forestry)

and a member of the LRDSI Lab at the

Saad Dahlab University of Blida,

Algeria. He obtained the Magister degree from the National

Institute for Computer Science (INI), Algeria, in 1993 and the

PhD degree from the Ecole Superieure d’Informatique (ESI),

Algeria, in 2009. His main research interests include Software

58 Software Product Lines Composition through Partial Derivation

Copyright © 2017 MECS I.J. Information Technology and Computer Science, 2017, 10, 47-58

Architecture, Hardware Software Co-Design, Aspect Oriented

Systems, E-Government and Software Product Lines. In the

CDTA, D. Bennouar conducted various research related to

VLSI CAD Frameworks (HDL, Inter tools communication,

Engineering Databases), Computer Networking and Software

Product Lines for E-Government. He is supervising a number of

PhD students preparing their thesis in Software Architecture,

Software Architecture Approach for System on Chip Design

and Software Product Lines.

How to cite this paper: Amina Guendouz, Djamal Bennouar,

"Software Product Lines Composition through Partial

Derivation", International Journal of Information Technology

and Computer Science(IJITCS), Vol.9, No.10, pp.47-58, 2017.

DOI: 10.5815/ijitcs.2017.10.05

