
I.J. Information Technology and Computer Science, 2016, 8, 59-65

Published Online August 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.08.07

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

Multi Objective Test Suite Reduction for GUI

Based Software Using NSGA-II

Neha Chaudhary
Ph.D. Scholar, Gautam Buddha University, Greater Noida, India

E-mail: Neha.chaudhary@gmail.com

O.P. Sangwan
Guru Jambheshwer University of Science & Technology, Hisar, India

E-mail: sangwan_op@yahoo.co.in

Abstract—Regression Testing is a performed to ensure

modified code does not have any unintended side effect

on the software. If regression testing is performed with

retest-all method it will be very t ime consuming as testing

activity. Therefore test suite reduction methods are used

to reduce the size of original test suite. Object ive of test

suite reduction is to reduce those test cases which are

redundant or less important in their fau lt revealing

capability. Test suite reduction can only be used when

time is critical to run all test cases and selective testing

can only be done. Various methods exist in the literature

related to test suite reduction of traditional software. Most

of the methods are based of single objective optimization.

In case of mult i ob jective optimization o f test suite,

usually researchers assign different weight values to

different objectives and combine them as single object ive.

However in test suite reduction multiple Pareto-optimal

solutions are present, it is difficult to select one test case

over other. Since GUI based software is our concern there

exist very few reduction techniques and none of them

consider mult iple objective based reduction. In this work

we propose a new test suite reduction technique based on

two objectives, event weight and number of faults

identified by test case. We evaluated our results for 2

different applications and we achieved 20% reduction in

test suite size for both applications. In Terp Paint 3.0

application compromise 15.6% fau lt revealing capability

and for Notepad 11.1% fau lt revealing capability is

reduced.

Index Terms—Test Suite Reduction, NSGA II, Multi

Objective Optimization, Pareto-optimal solution.

I. INTRODUCTION

The widespread recognition of the usefulness of

graphical user interface (GUIs) has established their

importance as critical components of today‟s software.

Testing of GUIs systems is more difficu lt due to the

following reasons: The event driven nature of GUIs,

unsolicited events, many ways in/ many ways out, and the

infinite input domain problems make it likely that the

programmer has introduced errors because he could not

test every path [6]. Regression testing means rerunning

test cases from existing test suites to build confidence that

software changes have no unintended side-effects. The

ideal process for regression testing is to create a wide test

suite and run it after each and every modificat ion [7].

Regression testing is also a crit ical problem with GUI‟s.

This is because the GUI may modify significantly across

versions of the applicat ion, even though the underlying

application may not. A s mall modification in GUI may

cause many of test cases to become useless. When we do

regression testing huge number of test cases becomes

unusable for d ifferent version of application under test.

Rerunning all test cases again will be t ime consuming. So

we require test suite reduction technique for GUI based

software. There are very few existing techniques for test

suite reduction of GUI based software and they are based

on single objective. In this work we propose Multi-

objective test suite reduction technique for GUI based

software.

One of the objectives of multi objective test suite

reduction is to find as many Pareto-optimal test cases as

possible. This discards the requirement of assigning

weight values to multip le objectives converting them in a

single one. Evolut ionary algorithms consider all non

dominated solution in a population as similar and provide

a diverse set of mult iple non dominated solutions [8].

That is why EA is a preferable choice for test suite

reduction it will eliminate only dominated solutions.

Pareto-optimal solutions

Pareto optimal solution exists when there is a need to

optimize mult iple conflicting objectives, there is trade off

between one or more conflicting object ives and the

relative importance of these objectives is not known.

Therefore our objective of test suite reduction of GUI

based software is

 To find test cases which are as close as possible to

the Pareto-optimal front

 To identify test cases as diverse as possible to

cover complete test suite

A multi objective test suite minimization problem can

be formulated as:

Given a test suite T for GUI based application with

Events E = {e1,e2,e3,…en}, where E is the set of events.

60 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

Find the min imal test suite T‟ such that T‟ is a Pareto -

Optimal set which satisfy a given measure. (maximum

weight based event coverage and consider set of fault

identified by individual test cases)

The organization of this paper is as follows: Sect ion II

discuss about previous work done by researchers. Section

III demonstrates Multi Objective Test Suite Reduction

and problem formulation. Test suite reduction using

NSGA II is discussed in Section IV. This section also

comprises experimental results. Section V comprises of

threats to validity. Finally, section VI contains conclusion

and future work.

II. RELATED WORK

The objective of test suite min imization is to reduce the

number of test cases in a given test suite which satisfy the

given criteria. Many greedy algorithms are used to solve

test suite reduction problems [25, 26, 27]. Harrold et al.

proposed a heuristic based algorithm known as HGS for

test suite reduction. That algorithm tries to minimize test

suite based on program requirements.

The concept of HGS algorithm was further generalized

by Von Ronne. In this work a concept of hitting factor

was introduced, based on this factor every requirement

could be satisfied multiple times.

To identify near optimal solutions for test suite

reduction problem Chen & Lau apply divide and-

conquer techniques.

The next frequently used test suite reduction

techniques are based on evolutionary computation [30,

31].

The problem of test suite reduction can be formulated

as NP-Hard problem [18], min imum set cover problem.

For test suite minimizat ion many heuristics are suggested

in literature [20, 19]. There are few studies that report no

impact of test suite reduction[21,22] and some studies

shows negative impact of test suite reduction because

reduce test suite will compromise the fault revealing

capability of test suite [13]. That may be due to reduction

criterion which is simply taken as structural coverage.

Although, Rothermel et al. in their paper reveal that the

fault-detection capabilities of test suites may be severely

compromised by test-suite reduction. They further

analyze the cost and benefit of test suite reduction.

Authors specify that characteristics of programs and

faults will be important parameters for test suite reduction

[13].

In further research some more techniques are proposed

and they have some sophisticated reduction criteria and

consider program characteristics. Scott McMaster and

Atif Memon present a reduction technique based on the

call-stack coverage criterion. Significance of this

technique is due to the context provided by call stack,

which is valuable in test suite reduction [9]. Preethi

Harris and Nedunchezhian Raju in their work reduce the

size of the test suite based on two metrics Size and

requirement coverage [10]. Rajiv Gupta and Mary Lou

Soffa, presents a test suite reduction technique based on

data flow testing methodology. They select a reduce test

suite which provide same coverage as entire test suite by

removing redundant and obsolete test cases[11]. A static

analysis approach based on program slicing is proposed

by Stephan Arlt et al. [12]. Th is approach reduces the size

of test suite by removing redundant event sequences from

test cases.

Previous work has considered test suite reduction

problem as single object ive optimization. From the last

few years researchers have introduced the concept of

Pareto efficiency for test suite reduction and consider

multip le object ives like code coverage, past fault-

detection history and execution cost [16] for reduction.

Shin Yoo et al. developed a search based optimisation

approach for multi objective regression test optimisation

for graphics cards. Authors in the paper introduce the

concept of parallel test suite minimizat ion along with the

concept of scalability [15]. Saeed Parsa and Alireza

Khalilian in their paper consider test suite reduction as

multi objective problem where first objective is fault

detection capability and it has to be maximized. The

second objective is number of test cases which should be

minimized. They used greedy algorithm to solve this

optimization problem.

There are very few researches which focus on test suite

reduction of GUI based applications. In one of the

approach reduction is based on call stack based coverage.

In another research done by Wei Sun et al. a mult i-

objective algorithm is proposed for test cases

prioritization for GUI applications. They consider

statement coverage event coverage for p riorit izat ion

criteria.

III. MULTI OBJECTIVE TEST SUITE REDUCTION

Most evolutionary mult i objective optimization

algorithms require us to find best non dominated front in

the population and in our approach best non dominated

front is reduced set of test cases and reduction is based on

following two objectives

1) Weight of test case

2) Number of faults identified

In our previous work we have generated a formula for

calculating weight of each test case that is based on

weight value of events and event coverage.

In this work event classification is considered where

events are classified according to their fault revealing

capability and they are assigned a weight value (events

classification and their weight value is shown in table 1).

Table 1. Event weight assignment [1]

Event type WVs

Restricted-focus event 5

System-interaction event 4

Termination event 3

Menu-open event 2

Unrestricted-focus event 1

 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II 61

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

Then weight of each event is added and multiplied with

the coverage of test case.

Finally coverage is computed by calculating (adding)

number of events in the test case divided by total number

of events in the application [2].

Weight of each test case is calculated according to the

formula given in (1):

1

/ *
n

TC

j

W n Tn Wj

 (1)

Where WTC is Weight of test case, Wj is the j
th

 event

weight, n is the number of events in tes t case and Tn is

the total number of events in AUT.

Fig.1. NSGA II procedure [8]

IV. TEST SUITE REDUCTION USING NSGA II

NSGA -II uses an explicit diversity-preserving

mechanis m. In order to sort a population of size N

according to the level of non-domination, each solution

must be compared with every other solution in the

population to find if it is dominated. NSGA II starts with

the parent population Pt and offspring population Qt..

Procedure for algorithm is specified in fig. 1.

Various steps of algorithm are specified as follows:

1) Generat ion of Initial Set of test suite: In our

application we have taken test cases of Terp Paint 3.0‟

from Event Driven Software Lab. To implement the

algorithm we have randomly selected few test cases from

artefacts. Test cases are represented in binary string

format according to the number of fault they reveal and

number of event coverage. For example test case T1

reveal fault 1 and event coverage 6 and T2 reveal fau lt 2

and coverage 14. Length of test case is 5 where first 5 bit

represents number of faults covered by test case and last

five bit represents number of events covered by test case.

Table 2. Binary representation of test cases

Test Case Number of faults Event Coverage

T1 0 0 0 0 1 0 0 1 1 0

T2 0 0 0 1 0 0 1 1 1 0

T3 0 0 1 0 0 0 1 1 0 1

T4 0 0 0 1 1 1 0 0 0 0

T5 0 0 1 0 0 0 1 0 1 0

T6 0 0 1 1 1 0 1 1 0 0

T7 0 0 1 1 0 0 1 1 0 0

Table 3. Fault and Weight value of test cases

Test Case Number of fault Weight of test case

T1 1 1.61

T2 2 10.04

T3 4 10.04

T4 3 3.61

T5 4 3.61

T6 7 3.61

T7 6 6.43

Fig.2. Line Chart for Number of Faults and Weight of Test Case

After generation of initial population their values are

calculated for both objectives. Weight of test case is

calculated according to (1) and the number of fau lts is

identified from init ial testing. These values are specified

in table 3:

Fig 2 shows line chart for number of faults and weight

of test cases it is clearly visible from the figure that these

two are conflict ing objectives test cases can not be

62 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

selected based on any one objective.

2) Perform Non-dominated sorting on initial test suite:

In our example we have used Kung et al.‟s efficient

method for sorting. This method is most computationally

efficient method.

Since both objectives represent maximization for test

suite reduction. We need to combine parent population

and offspring population & then we need to perform non-

dominated sorting and identify different fronts.

For the given example we require offspring population

also but for the example purpose we consider only parent

population. Sort the test cases according to descending

order of importance of Event Weight. Now we call set of

test cases as T‟

T‟= {T2,T3,T7,T4,T5,T6,T1}

Next we have performed non dominated sorting on T‟

and we obtain following non dominated fronts:

F1 = {T3, T7, T6}

F2 = {T2,T5}

F3 = {T4}

F4 = {T1}

In this example total number of test cases is N but in

the algorithm total number of test cases will be 2N and

we need to identify N test cases from the initial fronts.

3) Calcu late the crowding distance: Once the sorting is

complete, crowding distance is assigned to each test case

in all fronts. Crowding distance comparison does not

matter in d ifferent fronts. Test cases are selected based on

rank and crowding distance [4]. Crowding distance is

used to select test cases from the same front. Test cases in

the boundary are assigned infinity distance so these test

cases are always selected. Crowding d istance is computed

according to (2).

max min

(1). (1).
() ()k k

m m

F k m F k m
F d F d

f f

 (2)

F (k).m is the value of the m
th

 objective function of the

k
th

 individual in F.

This step will return solutions which are diverse in the

solution space. One selected test will be less crowded

compare to other solutions.

4) Perform crowded tournament selection, crossover

and mutation:

These operations will be performed to create offspring

population of test cases Qt+1 from Pt+1

A crowded tournament selection operator is used to

select test cases, where a test case Ti will win the

tournament if „i‟ has a better rank or they have the same

rank but „i‟ has better crowding distance then other

solution. We performed other tournaments to obtain the

mat ing pool and then these test cases are mated pair wise

and mutation is performed to generate next offspring

population.

We have implemented NSGA II using MATLAB

7.10.0(R2010 a). For test suite reduction we have used

two objective functions, weight of test case and number

of faults identified by test case. Both functions have to be

maximizing for reduction purpose.

V. EVALUATION OF ALGORITHM

For the evaluation of test suite reduction methods, we

have considered two applications i.e . Terp Paint 3.0 and

Notepad. For both applications, when we run NSGA II

algorithm we get results as shown in table 4. The results

of the optimization shown in table 4 containing both

objective function values and the value of the Number of

Events and faults . We have evaluated test cases of both

applications corresponding to given values. All test cases

near Pareto optimal front are selected for regression

testing purpose.

Fig.3. Pareto front for Test suite minimization

Fig.4. Average Distance between Individuals

Fig.5. Score Histogram for two objectives

 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II 63

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

Fig.6. Distance between individuals

Fig. 3 represents two competing objectives. The

tradeoff between these two objectives, weight of test case

and number of faults is plotted in objective function space.

Fig. 4 to fig. 6 p lots various aspects of the mult i

objective genetic algorithm its execution corresponding

to different generations. In Table 4, Weight of test case

and number of fau lts represents both objective functions.

Number of Events and Faults represents input values.

Table 4. Optimal values for test suite reduction

Test
Case

O bjectives Inputs

Weight of
test case

Number
of Faults

Number of
Events

Faults

10 13.10326 3.092452 11.1289 2.092452

1 11.24816 3.093185 11.12875 2.093185

2 9.266539 3.096041 9.592378 2.096041

8 4.454116 3.09611 6.378983 2.09611

5 3.588967 3.171592 5.638344 2.171592

11 2.862798 3.660142 5.382481 2.660142

3 2.817113 4.956395 5.335696 3.956395

4 2.724817 6.548348 5.240018 5.548348

6 2.724781 8.548256 5.23998 5.548256

9 2.724779 9.548562 5.239978 5.548562

7 2.724602 10.54852 5.239793 5.548515

To calculate the test suite size reduction and fault

detection capability loss we have used (3) and (4)

respectively:

| | - | |
%Test suite size reduction= *100

| |

REDT T

T
 (3)

| | | |
%Fault detection loss = *100

| |

REDF F

F

 (4)

We have evaluated NSGA II using Application Under

Test (AUT), Notepad and Terp Paint 3.0[3].

Table 5. Size Reduction and Fault Detection loss for Application

Under Test

AUT
% Size

Reduction
% Fault

Detection loss

Terp Paint

3.0
20 84

Notepad 20 88.8

As shown in table 5, we consider small size of test

suite for Terp Paint 3.0 Applicat ion, it gave 20%

reduction in test suite size and its fault revealing

capability is reduced to 84.4%.

Fig.7. Bar chart for Size Reduction and Fault Detection loss for

Application Under Test

In another example o f notepad test suite size reduction

is 80% and fault revealing capability is reduced to 88.8%.

Fig. 7 represents bar chart for applicat ion under test

considering reduction in test suite size and fau lt detection

loss.

VI. THREATS TO VALIDITY

Threats to validity consider all aspects that may affect

ability to generalize results in other situations. First threat

considers that validation of our results is done using test

cases generated for 2 applications , first is Terp Paint 3.0

and another application is Notepad. Test cases for Terp

Paint are generated using Guitar tool which generates test

cases by creating all possible combination of events by

ripping the application. For notepad application we have

generated test cases using HP-QTP version 11 [5].

Further experiments should be done with bigger size of

test suites. There may be d ifferent cost associated with

every test case execution and this is another threat to

validity but we have considered uniform cost of

execution in our research.

VII. CONCLUSION AND FUTURE WORK

We have implemented NSGA II algorithm for test suite

reduction. When we executed algorithm for two examples,

we are ab le to ach ieve reduction in test suite size. From

the analysis of results obtained from two applicat ions this

is vibrant that whenever test suite size is reduced fault

revealing capability will be compromised. In case of t ime

constraint we should reduce number of test cases other

than redundant ones because fault revealing capability of

test suite will be reduced. As we infer from the literature

that there is no existing technique for test suite reduction

of GUI based software which considers multiple

objectives. This is a novel idea for future research.

64 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

REFERENCES

[1] Memon Atif, Lou Soffa Mary, E. Pollock Martha,

“Coverage criteria for GUI testing”, in the proceeding of
21st International conference on software engineering,

ACM press, pp 257-266, 1999.

[2] Neha Chaudhary, O.P. Sangwan, Richa Arora,” Event-

Coverage and Weight based Method for Test Suite
Prioritization”, I.J. Information Technology and Computer

Science, Vol. 12, pp. 61-66, 2014.

[3] Reference: Terp Paint 3.0 Fault matrix

http://www.cs.umd.edu/~atif/Benchmarks/UMD2007a.ht

ml
[4] Kalyanmoy Deb and Deb Kalyanmoy, “Multi-Objective

Optimization Using Evolutionary Algorithms” John Wiley

& Sons, Inc., New York, NY, USA, 2001.

[5] Kaur and Kumari, HP QuickTest Professional version 11.

2010. HP – QTP version 11, Comparative study of
Automated Testing Tools: Test Complete and QuickTest

Pro, Punjab University, 2011.

[6] Paul Gerrard, “Testing GUI Applications”, EuroSTAR,

Edinburgh UK, 1997
[7] A. M. Atif, “Automatically Repairing Event Sequence-

Based GUI Test Suites for Regression Testing”, ACM

Transaction on Software Engineering and Method.

Volume 18, Issue 2, Nov. 2008.

[8] Kalyanmoy Deb, “Multi-Objective Optimization Using
Evolutionary Algorithms”, Wiley India Private Limited,

ISBN-10: 8126528044.

[9] McMaster, S.; Memon, A.M., "Call-Stack Coverage for

GUI Test Suite Reduction," Software Engineering, IEEE

Transactions on Software Engineering, vol.34, no.1,
pp.99-115, Jan.-Feb. 2008

[10] Preethi Harris and Nedunchezhian Raju,” A Greedy

Approach for Coverage-Based Test Suite”, The

International Arab Journal of Information Technology,

Vol. 12, No.1, PP. 17-23, January 2015.
[11] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa. 1993.

A methodology for controlling the size of a test suite.

ACM Trans. Softw. Eng. Methodol. 2, pp. 270-285, July

1993.
[12] Arlt, Stephan and Podelski, Andreas and Wehrle,

Martin, ”Reducing GUI Test Suites via Program Slicing”,

Proceedings of the 2014 International Symposium on

Software Testing and Analysis, 2014, pp.270-281, 2014.

[13] G. Rothermel, M. J. Harrold, J. von Ronne, and C.
Hong, ”Empirical studies of test-suite reduction”, Journal

of Software Testing, Verification, and Reliability, Vol 12,

no. 4, December, 2002.

[14] G. Rothermel, R. Untch, C. Chu, and M. J. Harrold, ”Test

case prioritization”, IEEE Transactions on Software
Engineering, vol. 27, no. 10, pp. 929-948, October, 2001.

[15] Shin Yoo, Mark Harman, and Shmuel Ur, ”Highly

scalable multi objective test suite minimisation using

graphics cards”, Proceedings of the Third international
conference on Search based software engineering, pp.

219-236, 2011.

[16] Shin Yoo and Mark Harman, “Pareto efficient multi-

objective test case selection”, In Proceedings of the 2007

international symposium on Software testing and analysis
(ISSTA '07), ACM, New York, NY, USA, pp. 140-150,

2007.

[17] Saeed Parsa and Alireza Khalilian,” On the Optimization

Approach towards Test Suite Minimization”, International

Journal of Software Engineering and Its Applications Vol.
4, No. 1, January 2010.

[18] M. R. Garey and D. S. Johnson, “Computers and

Intractability: A guide to the theory of NP-Completeness”,

New York, NY: W. H. Freeman and Company, 1979.

[19] J. O_utt, J. Pan, and J. Voas, “Procedures for reducing the

size of coverage-based test sets," in Proceedings of the
12th International Conference on Testing Computer

Software. ACM Press, pp. 111-123, June 1995.

[20] T. Y. Chen and M. F. Lau, “Dividing strategies for the

optimization of a test suite," Information Processing
Letters, vol. 60, no. 3, pp. 135-141, 1996.

[21] W. E. Wong, J. R. Horgan, S. London, and A. P. Mathur,

“Effect of test set minimization on fault detection

effectiveness," Software Practice and Experience, vol. 28,

no. 4, pp. 347-369, April 1998.
[22] W. E. Wong, J. R. Horgan, A. P. Mathur, and A. Pasquini,

“Test set size minimization and fault detection

effectiveness: A case study in a space application," The

Journal of Systems and Software, vol. 48, no. 2, pp. 79-89,

October 1999.
[23] G. Rothermel, S. Elbaum, A. Malishevsky, P. Kallakuri,

and B. Davia, “The impact of test suite granularity on the

cost-effectiveness of regression testing," in Proceedings of

the 24th International Conference on Software

Engineering (ICSE 2002). ACM Press, pp. 130-140, May
2002.

[24] S. Yoo and M. Harman, “Pareto efficient multi-objective

test case selection," in Proceedings of International

Symposium on Software Testing and Analysis. ACM
Press, pp. 140-150, July 2007.

[25] M. Jean Harrold, Rajiv Gupta, and Mary Lou Soffa, “A

methodology for controlling the size of a test suite” ACM

Trans. Softw. Eng. Methodol. 2, 270-285, 1993.

[26] Jun-Wei Lin and Chin-Yu Huang, “Analysis of test suite
reduction with enhanced tie-breaking techniques”, Inf.

Softw. Technol. 51, 679-690, 2009.

[27] Saeed Parsa and Alireza Khalilian,” On the Optimization

Approach towards Test Suite Minimization”, International

Journal of Software Engineering and Its Applications, Vol.
4, No. 1, January 2010.

[28] J. von Ronne, "Test Suite Minimization: An Empirical

Investigation," university honors college thesis, Oregon

State Univ., June 1999.
[29] T. Y. Chen and M. F. Lau, “Dividing strategies for the

optimization of a test suite”, Information Processing

Letters, vol. 60(3), pp.135-141, March 1996.

[30] Xue-ying MA, Zhen-feng He, Bin-kui Sheng, Cheng-qing

Ye, "A genetic algorithm for test-suite reduction," in
Systems, Man and Cybernetics, 2005 IEEE International

Conference on , vol.1, no., pp.133-139 Vol. 1, 10-12 Oct.

2005

[31] Yi-kun ZHANG, Ji -ceng LIU, Ying-an CUI, Xinhong EI,

Ming-hui ZHANG, An Improved Quantum Genetic
Algorithm for Test Suite Reduction, IEEE International

Conference on Computer Science and Automation

Engineering (CSAE), 2011.

Authors’ Profiles

Neha Chaudhary holds a Masters of

Technology and a Bachelor of Engineering

degree in Computer Science & Engineering.

She is pursuing her Ph.D from Gautam
Buddha University. Her research interest

includes Web Testing, Software Testing, GUI

Testing and metrics development. She has

 Multi Objective Test Suite Reduction for GUI Based Software Using NSGA-II 65

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 59-65

many publications in international journals and conferences to

her credit.

Dr. Om Prakash Sangwan received his
PhD in Computer Science & Engineering

and Master of Technology (M.Tech) degree

in Computer Science & Engineering with

distinction in Research Work from Guru
Jambheshwar University of Science &

Technology, Hisar, Haryana. He is also

CISCO Certified Network Associate (CCNA) and CISCO

Certified Academic Instructor (CCAI). His area of research is

Software Engineering focusing on Planning, Designing, Testing,
Metrics and application of Neural Networks, Fuzzy Logic and

Neuro-Fuzzy. He has numbers of publications in International /

National Journals and Conferences. He is presently (on EOL

from Department of Computer Science & Engineering, School

of Information & Communication Technology, Gautam Buddha
University, Greater Noida, Uttar Pradesh) working as Associate

Professor with Department of Computer Science & Engineering,

Guru Jambheshwer University of Science & Technology, Hisar,

Haryana,. Before joining the current assignment Dr. Sangwan

has worked as Dy. Director with Amity Resource Centre for
Information Technology (ARCIT), and LMC & Head, CISCO

Regional Networking Academy, Amity Institute of Information

Technology, Amity University, Uttar Pradesh. He is also

Member of Computer Science Teacher Association (CSTA),
New York, USA, International Association of Engineers

(IAENG), Hong Kong, IACSIT (International Association of

Computer Science and Information Technology, USA,

professional member Association of Computing Machinery,

USA, IEEE, and Life member, Computer Society of India, India.
He has also published a book on Soft Computing Techniques in

Software Engineering co-authored by Prof. Yogesh Singh,

Hon‟ble Vice Chancellor, M.S. University, Baroda, Gujarat.

How to cite this paper: Neha Chaudhary, O.P. Sangwan,

"Multi Objective Test Suite Reduction for GUI Based Software

Using NSGA-II", International Journal of Information
Technology and Computer Science (IJITCS), Vol.8, No.8,

pp.59-65, 2016. DOI: 10.5815/ijitcs.2016.08.07

