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Abstract—Recently, big data analysis has become an 

imperative task for many big companies. Map-Reduce, 

an emerging distributed computing paradigm, is known  

as a promising architecture for big data analytics on 

commodity hardware.  Map-Reduce, and its open source 

implementation Hadoop, have been extensively accepted 

by several companies due to their salient features such as 

scalability, elasticity, fault-tolerance and flexibility to 

handle big data. However, these benefits entail a  

considerable performance sacrifice. The performance of a 

Map-Reduce application depends on various factors 

including the size of the input data set, cluster resource 

settings etc. A clear understanding of the factors that 

affect Map-Reduce application performance and the cost 

associated with those factors is required. In this paper, we 

study different performance parameters and an existing 

Cost Optimizer that computes the cost of Map-Reduce 

job execution. The cost based optimizer also considers 

various configuration parameters available in  Hadoop 

that affect performance  of these programs. This paper is 

an attempt to analyze the Map-Reduce application 

performance and identifying the key factors affecting the 

cost and performance of executing Map-Reduce 

applications. 

 

Index Terms—Map-Reduce, Hadoop, Cost Parameters, 

Cost-Optimizer. 

 

I.  INTRODUCTION 

Current studies reveal that due to advancements in 

technology organizations are now able to gather large 

amounts of data and efficiently analyze values in them. 

“Big Data” management is one of the biggest challenges 

of the digital era. Google‟s Map-Reduce is one of the 

most successful parallelization framework that allows the 

users to write their own code for analytical data 

processing. Among the various proposed 

implementations of the Map-Reduce programming model,  

Hadoop framework is the most widely adopted one. The 

most attractive features of Hadoop include HDFS 

(Hadoop Distributed File System) and resource 

management layer. 

Map-Reduce framework gains its popularity due to the 

powerful features it offers such as flexib ility to  write 

application code, scalability, fault-tolerance etc. But 

despite of its advantages, it also suffers from severe 

criticis m due to its limitations and performance 

drawbacks. For example, it allows a program to scale to 

process very large data sets, but it puts a restriction on 

the program to process smaller data items. 

There exist a wide range of studies  reporting the 

shortcomings of Map Reduce model. Some of the 

features that contribute negatively in its performance are 

frequent data materializat ion, the lack of support for 

iterations and state transfer between jobs, no index and 

schema support, dependency on Hadoop‟s configuration 

parameters etc. 

Reducing the execution time of Map-Reduce jobs is 

very important to make it attractive to a wide class of 

analytical applications. For the above reasons, in this 

paper we study the Map-Reduce framework in great  

detail and associated performance and cost parameters 

affecting the execution of Map-Reduce jobs. Through in-

depth analysis, we conclude that the cost associated with 

the sub phases of map-reduce model greatly  impacts the 

performance of map-reduce job under execution. The 

extent of our paper is  limited to studying the parameters 

that affect the cost and performance of executing map-

reduce job and does not include the impact of these 

factors on map-reduce applications based on column 

oriented storage such as  MongoDB. The contributions of 

this paper are: 

 

 Studying an existing Cost Optimizer 

 Analyzing the effect of modeling the Map-Reduce 

sub-phases 

 Studying Hadoop logs and performance factors  

 

The paper is organized as follows: Sect ion 2 gives the 

background of map-reduce framework along with its 

advantages. Section 3 briefs the research work performed  

by various researchers to improve the performance of 

map- reduce programs. In Sect ion 4, we elaborate the 

map-reduce sub-phase and the cost associated with these 

sub-phases. Section 5 and 6 d iscuss how to analyze 

Hadoop logs for map-reduce programs and the related 

performance factors. At the end we conclude the paper in  
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Section 7. 

 

II.  BACKGROUND 

Hadoop is an open-source Java implementation of 

Map-Reduce framework. Users can opt to run Hadoop 

either on a virtual cluster in the cloud environment or on 

Linux configured machines.  Hadoop architecture is 

divided among two main layers: HDFS (Hadoop 

Distributed File System) layer  for data storage and a 

Map-Reduce layer for data processing.  

 

 HDFS is a  distributed block-structured file  system 

which has multiple data-nodes and a single name-

node. Data-nodes contain the actual data (or 

blocks of data) whereas Name-node contains the 

metadata of the data stored on Data-nodes. 

 Map-Reduce framework  is managed by a single 

master and mult iple worker nodes. Master node 

(or JobTracker) has the responsibility of creating  

and allocating the tasks among Worker nodes 

(orTaskTrackers). When the input file  is loaded on 

HDFS, it is first partitioned into fixed size data 

blocks also called chunks, which are generally  

64MB in size and then these data blocks are 

assigned to different mappers and reducers  by 

JobTracker.  

 

The main advantage of using Map-Reduce model is  

that it provides a simple programming interface for 

writing analytical applications  with high fault-tolerance 

guarantee. It is comprised of two user-defined functions – 

map() and reduce() – both of which work on (key, value) 

pairs. The map() function accepts a list of (key1, value1) 

pairs as input, processes them and produces  intermediate 

results. These results are further passed to reduce() 

function that processes them to produce aggregated 

results in form of (key2,value2) pairs  [9].  

The execution of Map-Reduce framework is based on 

runtime scheduling algorithm where no execution plan is 

create in advance to specify what tasks will go on which  

nodes. The number of Map tasks to be scheduled for a 

particular job depends on the number of data blocks in  

the input file  and not on the number of nodes available. 

Moreover, all map tasks need not to be executed 

concurrently. For instance, if an input is broken down 

into N number of blocks and there are M mappers 

available in  a cluster, then number of map tasks are N 

and these tasks are executed N/M times by mappers.  

 

III.  RELATED WORK 

Various implementations of Hadoop Map-Reduce have 

been developed in past few years that propose 

improvement gains in performance, p rogramming model 

extension and automation of use and tuning. Few 

examples include Hadoop++, Llama, Cheetah, SHadoop, 

HAIL. Below we brief some of the studies that worked 

upon various factors that affect the performance of Map-

Reduce application. 

Wottrich et al [1] identified five essential features that 

affect the performance of Map-Reduce applications. 

They conducted five separate experiments, each to 

identify the effect of a single factor on the performance. 

The results describe a tractable model of Map-Reduce 

application performance and the initial steps of 

benchmarking the key factors affecting that performance. 

Their study illustrates that the size of input data set for a 

given Map-Reduce application has a linear effect on total 

run time of the application, where the required  run t ime 

for an application increased at a rate of 13 sec/GB of data. 

The application run time can be improved by increasing 

either the number of Map Tasks or the number of Reduce 

Tasks up to a limit of 512. Number of reducers beyond 

this limit  causes an adverse effect on application run t ime.  

This implies that to achieve good performance results 

only an optimal number o f Map and Reduce Tasks 

should be launched for a given Map-Reduce applicat ion 

running on a specific cluster. 

Hadoop has approximately 190 configuration  

parameters which can be set to optimize the cost of map-

reduce applications. Of these 190 parameters, 10-20 

parameters cause significant impact on the applicat ion 

performance. It is the job of the user who executes the 

Map-Reduce program to specify settings for all those 

configuration parameters. S. Babu [2] developed 

techniques to automate the settings of performance 

parameters fo r Map-Reduce applications. The automat ion 

assists users to only focus on the execution of Map-

Reduce applicat ion without even knowing the effect of 

various parameters on the application performance. 

Hence this feature improves the productivity of users 

who do not have the expert ise to optimize their programs 

due to the lack of familiarity with Map-Reduce 

architecture.  

Herodotou [3] developed a self-tuning system, Starfish 

for big data processing. It includes  a Cost-based 

Optimizer that automatically identifies configuration 

settings for Map-Reduce programs. The Optimizer 

employs two other components: a Profiler and a what-if 

analysis engine.  The profiler generates the detailed 

statistical in formation of Map-Reduce job execution 

including logs, counters, resource utilization metrics, and 

profiling data. The user can also get informat ion of how 

many tasks were running at any g iven time on each node, 

when each task started and ended etc. The user can alter 

the cluster and input specifications for the same Map-

Reduce program executed over different input datasets 

and different clusters. 

Herodotou et al [4] modeled a „what-if Engine‟ which  

is used for cost estimation. It p redicts the performance of 

Map-Reduce job  by considering the job profile generated 

by the profiler, configuration settings, input dataset and 

cluster resource properties. 

Herodotou [5] published a technical report that 

describes a detailed set of mathematical performance 

models fo r describing the execution of a Map-Reduce job 

on Hadoop. The model is used to identify the optimal 

configuration settings and the performance of Map-
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Reduce jobs. The performance estimation of an arb itrary  

Map-Reduce job is done by accurately modeling all the 

sub-phases Map-Reduce tasks. A map task is modeled  by 

modeling Read, Map, Collect, Sp ill and Merge sub-

phases. Similarly, a reduce task is modeled by modeling 

Shuffle, Merge, Reduce and Write sub-phases. 

In this model, the execution of a Map-Reduce job is  

represented using a job profile, which is a concise 

statistical summary of a Map-Reduce job execution. A 

job profile consists of dataflow fields and cost fields for a 

Map-Reduce job j - dataflow fields give informat ion 

about the amount of data flowing through the different 

sub-phases of Map-Reduce whereas cost fields give 

informat ion about the execution time of various phases 

and resource usage. 

Rong Hu et al [6] worked upon Map-Reduce 

programming model to increase its performance by 

optimizing  the job and task execution mechanism. The 

authors proposed two approaches to optimize Map 

Reduce job and task execution. In the first approach, they 

implemented setup and cleanup tasks for a  Map Reduce 

job to reduce the t ime taken by the in itializat ion and 

termination stages of the job. In the second approach, 

they implemented an  instant messaging communicat ion 

mechanis m for accelerating performance-sensitive task 

execution rather than transmitting all messages between 

the Job Tracker and Task Trackers. These two 

approaches have been successfully implemented in  

SHadoop, an optimized and fully compatible version of 

Hadoop that aims at reducing the cost of executing Map 

Reduce jobs. 

 

IV.  MAP-REDUCE PROGRAMMING MODEL 

Map-Reduce programming model is known for 

processing large sets of data in parallel fashion. The 

model is based on four basic steps:  

 

 Iterating the input 

 Computing key-value pairs 

 Grouping intermediate results with same keys  

 Iterating and reducing intermediate results to 

produce final output. 

 

Though the model is simple with two phases – map  

phase and reduce phase; it may have many sub phases 

that depends on the requirements and input supplied. 

Here we discuss the phases in detail. 

A.  MR Sub-phases and Modeling 

The map-reduce phases of MR programming mode l 

are actually implemented in various  sub-phases, as 

described below: 

The map phase goes through five stages: 

 

 Input – Reading the blocks from HDFS and  

converting them into key-value pairs (k1,v1). 

 Map – Running map() task to produce 

intermediate results in form of key-value pairs  

(k2,v2). 

 Partit ion – The intermediate key-value pairs are 

partitioned by the Partitioner. The key (or a subset 

of the key) can be used to get the partitions, 

usually by a hash function. The total number of 

partitions is equal to the number o f reduce tasks  

assigned for the job. Therefore this controls which 

intermediate key should be forwarded to which of 

the reduce tasks, for reduction. 

 Spill – Sorting and  performing compression if 

required, followed  by writing to local disk so as to 

create file spills. 

 Merge – Merging the file  spills into a single map  

output file. Th is merging may be done in several 

rounds. 

 

Similarly, the reduce phase is carried out in three 

stages: 

 

 Shuffle –The sorted output produced by the 

mappers is passed as input to the Reducers . In this  

phase, the framework fetches the appropriate 

partition from the mappers, via HTTP. 

 Merge – In this stage, the inputs to Reducers are 

grouped by keys because different map functions 

may have produced the same key. The shuffle and 

sort phases are carried out in parallel; while map-

outputs being fetched are merged. 

 Reduce – Executing the reduce() function to 

produce the final output data which is then written 

to the output file. 
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Fig.1. Phases of Map-Reduce Programming Model 

 

Herodotou [5] analyzed all these sub phases of Map-

Reduce in  order to estimate the accurate statistics of the 

execution time of a map-reduce job. The overall cost of a 

Map-Reduce job is can be represented as the sum of the 

costs of map and reduce tasks, as given below: 

 

 TotalJobTime = TotalMapsTime  

                 if NumReducers = 0 

  TotalMapsTime + 

TotalReducesTime                    

if NumReducers  > 0 

 

Where, 
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All the above mentioned parameters are actually the 

cost parameters that capture the information about the 

time spend in the execution of each individual sub-phase 

of a Map-Reduce job. 

The number of Reducers (NumReducers) can be set 

manually by setting the value of mapred.reduce.tasks. 

B.  Job configuration 

A job is the main interface for a user to set the 

configuration settings for the execution o f a  Map-Reduce 

program on the Hadoop framework. The framework 

executes the map-reduce program with the given 

configuration settings but some configuration parameters  

cannot be altered by the user as they are marked as final 

by the admin istrator. While some parameters can be set 

directly by changing their defau lt values, as listed in the 

table below: 

Table 1. Map-Reduce Parameter settings in Hadoop with description 

Name Description 

mapred.tasktracker.map.tasks.max 
Max maps per node in a 

cluster. Default is 2 

mapred.tasktracker.map.tasks.max 
Max reducers per node in a 

cluster. Default is 2 

mapred.map.tasks Number of mappers  

min.num.spills.for.combine 
Number of spills for 
combiner function 

mapred.reduce.tasks Number of reducers 

mapred.compress.map.output 
Whether output of map is 
compressed. Default is 
false 

mapred.output.compress 
Whether the output is 
compressed. Default is 
false 

mapreduce.map.input.file 
Name of the file - map is 
reading from 

mapreduce.map.input.start 
The offset that marks the 
beginning of the map input 
split  

mapreduce.map.input.length 
No. of bytes in the map 
input split  

mapreduce.task.output.dir 
Temporary output directory 
for the tasks 

mapred.split.size The size of the input split 

 

To set or get configuration parameters needed by an 

application one can use Configuration.set(String, String) 

or Configuration.get(String) methods that take one or two 

String type values. 

Job Configuration settings typically specify the 

number of Mappers, Reducers, combiners  (if any), 

Partit ioners, InputFormat, OutputFormat  

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/conf/Configuration.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/conf/Configuration.html
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implementations etc. FileInputFormat and 

FileOutputFormat specify where the input and output 

files should be written. Users can use 

FileInputFormat.setInputPath(Path) and 

FileOutputFormat.setOutputPath(Path) methods  to set the 

location for the Input and Output files. 

C.  Map-Reduce job Execution 

The case study is based on the data regarding the 

number of electricity units consumed by of an 

organization. The table g iven below contains the monthly 

consumption of electricity units  and the annual average 

for five consecutive years. The objective is to find out the 

year of maximum usage of electricity, year of min imum 

usage, and year of average usage. 

 

 
Jan Feb Mar Apr May Jun Jul Aug Sep O ct Nov Dec Avg 

1979 23 23 2 43 24 25 26 26 26 26 25 26 25 

1980 26 27 28 28 28 30 31 31 31 30 30 30 29 

1981 31 32 32 32 33 34 35 36 36 34 34 34 34 

1984 39 38 39 39 39 41 42 43 40 39 38 38 40 

1985 38 39 39 39 39 41 41 41 00 40 39 39 45 

 

To achieve the goal, an application is required  that 

reads the above input and produce the desired results. 

When the application is executed, it  generates the 

complete details of the processes that undergo along with 

the execution time of each phase. We analyze the cost 

based on the previously discussed cost parameters . 

Following is the application, consisted of mapper and 

reducer classes that process our data. The execution 

results and cost measurement is given at the end of the 

code. 

 

Example 

 
Mapper class : 

 

Public static class ElecMapper extends MapReduceBase 

implements 
Mapper<LongWritable,Text,Text,IntWritable> 

{ 

 
Public void map(LongWritable key,Text value, 

OutputCollector<Text,IntWritable> output, 

Reporter reporter) throws IOException 

{ 

String line =value.toString(); 

String lasttoken=null; 

StringTokenizer s =new StringTokenizer(line,"\t"); 

String year =s.nextToken(); 

 

while(s.hasMoreTokens()) 

{ 

lasttoken=s.nextToken(); 

} 

 

Int avgprice=Integer.parseInt(lasttoken); 

output.collect(new Text (year),new IntWritable(avgprice));  

} 

} 

 

Reducer class : 

 

Public static class ElecReducer extends MapReduceBase 

implements 

Reducer<Text,IntWritable,Text,IntWritable> 

{ 

 

Public void reduce(Text key,Iterator<IntWritable> 

values, 

OutputCollector<Text,IntWritable> output,Reporter 

reporter) throws IOException 

{ 

intmaxavg=30; 

intval=Integer.MIN_VALUE; 

 

while(values.hasNext()) 

{ 

if((val=values.next().get())>maxavg) 

output.collect(key,newIntWritable(val)); 

} 

 

} 

} 

 
Main function : 

 

Public static void main(String s[]) throws Exception 

{ 

JobConfconf=newJobConf(Eleunits.class); 

 

conf.setJobName("max_eletricityunits"); 

conf.setOutputKeyClass(Text.class); 

conf.setOutputValueClass(IntWritable.class); 

conf.setMapperClass(ElecMapper.class); 

conf.setCombinerClass(ElecReducer.class); 

conf.setReducerClass(ElecReducer.class); 

conf.setInputFormat(TextInputFormat.class); 

conf.setOutputFormat(TextOutputFormat.class); 

 

FileInputFormat.setInputPaths(conf,newPath(s[0])); 

FileOutputFormat.setOutputPath(conf,newPath(s[1])); 

 

JobClient.runJob(conf); 

} 
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Upon execution the output will be d isplayed as shown 

below, containing the number of input splits, the number 

of Map tasks, the number of reduce tasks, time taken by 

map task, time taken by reduce tasks etc. 
 

FILE: 

No. of bytes read=61  

No. of bytes written=279400  

No. of read operations=0  

No. of large read operations=0    

No. of write operations=0  

HDFS:  

No. of bytes read=546  

No. of bytes written=40  

No. of read operations=9  

No. of large read operations=0  

No. of write operations=2 

 

 

   Launched map tasks=2   

   Launched reduce tasks=1  

   Data-local map tasks=2   

   Total time spent by all maps in 

occupied slots (ms)=146137  

   Total time spent by all reduces in 

occupied slots (ms)=441    

   Total time spent by all map tasks 

(ms)=14613  

   Total time spent by all reduce tasks 

(ms)=44120  

   Total vcore-seconds taken by all map 

tasks=146137     

   Total vcore-seconds taken by all reduce 

tasks=44120  

   Total megabyte-seconds taken by all map 

tasks=149644288  

   Total megabyte-seconds taken by all 

reduce tasks=45178880  

 

MR Framework  

 

   Map input records=5   

   Map output records=5    

   Map output bytes=45   

   Map output materialized bytes=67   

   Input split bytes=208  

   Combine input records=5   

   Combine output records=5  

   Reduce input groups=5   

   Reduce shuffle bytes=6   

   Reduce input records=5   

   Reduce output records=5   

   Spilled Records=10   

   Shuffled Maps =2   

   Failed Shuffles=0   

   Merged Map outputs=2   

   GC time elapsed (ms)=948   

   CPU time spent (ms)=5160   

   Physical memory (bytes) 

snapshot=47749120   

   Virtual memory (bytes) 

snapshot=2899349504   

   Total committed heap usage 

(bytes)=277684224 

 

V.  EXAMINING HADOOP LOGS 

Hadoop maintains various log files on behalf of the 

execution of a Map-Reduce program. These files are 

located in /hadoop/logs sub-directory. One can examine 

all these log informat ion to gain better understanding of 

the execution performance of map-reduce program. To  
access the logs through command line explore the logs 

sub-directory. 

The log file contains various lines of information:  

 

 Lines beginning with "Job", list information about 

the job such as job id, launch time, number of map  

tasks, number of reduce tasks and job status. 

 
Job JOBID="job_201004011119_0025" 

LAUNCH_TIME="1270509980407" 

TOTAL_MAPS="12" TOTAL_REDUCES="1" 

JOB_STATUS="PREP"  

 

 Lines beginning with "Task" indicate the start and 

complet ion time of Map or Reduce tasks, also 

indicating on which host the tasks were scheduled 

and on which split  (input data) they worked up on. 

On completion, all the counters associated with the 

tasks are listed.  
 

Task 

TASKID="task_201004011119_0025_m_00000

3" TASK_TYPE="MAP" 

START_TIME="1270509982711" 

\SPLITS="/default-

rack/hadoop6,/default-rack/hadoop4"  

 

Task 

TASKID="task_201004011119_0025_m_00000

3" TASK_TYPE="MAP" 

TASK_STATUS="SUCCESS" \ 

FINISH_TIME="1270510023272" \ 

                      

COUNTERS="{(org\.apache\.hadoop\.mapre

d\.Task$FileSystemCounter)(File 

Systems) \ 

[(HDFS_READ)(HDFS bytes 

read)(67112961)][(LOCAL_READ)(Local 

bytes read)(58694725)] \ 

(LOCAL_WRITE)(Local bytes 

written)(72508773)]}{(org\.myorg\.Word

Count$MyCounters) \ 

                       ... 

[(MAP_INPUT_BYTES)(Map input 

bytes)(67000104)][(COMBINE_INPUT_RECOR

DS) \ 

(Combine input 

records)(11747762)][MAP_OUTPUT_RECORDS

)(Map output records)(9852006)]}"  

 

 Lines beginning with "MapAttempt", gives status 
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update, except if they contain the keyword 

FINISHTIME, indicating that the task has 

completed successfully.  

 Lines beginning with "ReduceAttempt", gives the 

intermediary status of the reduce tasks including 

the finish time of the sort and shuffle phases  etc. 
 

ReduceAttempt TASK_TYPE="REDUCE" 

TASKID="task_201004011119_0025_r_00000

0" 

\TASK_ATTEMPT_ID="attempt_201004011119

_0025_r_000000_0" 

TASK_STATUS="SUCCESS" \ 

SHUFFLE_FINISHED="1270510076804" 

SORT_FINISHED="1270510082505" 

FINISH_TIME="1270510093979" 

\HOSTNAME="/default-rack/hadoop4" 

STATE_STRING="reduce > reduce" \ 

                      

COUNTERS="{(org\.apache\.hadoop\.mapre

d\.Task$FileSystemCounter)(File 

Systems) \ 

                      ... 

(4416230)][(REDUCE_INPUT_RECORDS)(Redu

ce input records)(6888474)]}" . 

 

VI.  PERFORMANCE FACTORS 

There are various factors that may significantly  

influence the performance of map-reduce applications – 

the factors may depend on cluster resource settings, 

configuration settings of the machines, properties of 

map-reduce applicat ion etc. The use of partit ion and 

combine sub-phases of MR model g reatly impacts the 

application performance. Below we discuss first how a 

job is carried out by these sub-phases and then we 

discuss them in detail. 

To reduce I/O operations and network traffic, one can  

define a combiner function to perform map-side pre-

aggregations. It is  implemented before partitioning phase 

in order to perform pre-aggregation on the grouped key-

value pairs so that the communication cost to transfer all 

the intermediate outputs to reducers can be minimized. 

The Map-Reduce framework ensures the number of times 

combiner function needs to be run – once or mult iple 

times. Running the combiner ( ) function results in 

significant performance gains by lessening the amount of 

intermediate data to be transferred over the network. 
The intermediate outputs are then partitioned into R 

partitions using a hash function such as hash (key) mod 

R, where R is the number of reduce tasks. Each partition 

is then written to the mappers local disk. 

After the map stage is over, all the part itions with the 

same hash value are read by the same reducer, regardless 

of which mapper produced which part ition. These 

partitions are grouped together using merge –sort and are 

written to the output file to be used by the reducer. This 

is depicted in figure 2. 

 

 Partit ioner - Hadoop uses Partitioner interface to 

identify which partit ion will receive which  

intermediate key/value pair. The most important 

point is that for any key, regardless of its Mapper 

instance, the destination partition is the same. The 

Map-Reduce architecture determines the number 

of partit ions to be used when any Map-Reduce 

program begins, which is usually the same as the 

number of reduce tasks. For performance reasons, 

Mappers never communicate with each other to 

the partition of a particular key. 

 
Partitioners are actually implemented in  Java, and  

may take two forms: 

 

1. Default partit ioning – that randomly distributes all 

the keys evenly. Hashing is used as default 

partitioning. For example :key.hashCode() % 

no_of_reducers 

2. Custom part itioning – is required when an  order in  

the output needs to be produced. It is done by 

implementing Partitioner interface, the signature 

is given below: 

 

public interface Part itioner<K2,V2> 

extendsJobConfigurable { .... } 

 

// <K2,V2> is a key -value pair supplied as an 

argument to the partition interface 

 

The Partition can be set by: 

job.setPartitionerClass(LogPartitioner.class); 

 

To get an ordering in the output, the map output 

keys can be divided into roughly equal buckets 

and used in partitioner. 

 

 Combiners – As the outputs from the mappers 

may  be large in size, so to limit the volume of data 

transferred between mappers and reducers, 

combiners are implemented. Combiners  

summarize the map outputs with the same key and  

forward the results to reducers. Each combiner 

works in isolation and thus it does not have any 

access to intermediate outputs from other mappers.  

The combiner acts as an optimizer, and it is never 

sure of how many times it will be called for any  

particular map  output record. But regardless of the 

number of times it  is called  it  should produce the 

same output every time for the reducer. 

 

Combiners have the same interface as Reducers, 

and can be set by: 

 

job.setCombinerClass(LogReducer.class); 

 

The difference between a partit ioner and a 

combiner is that the partitioner div ides the data 

according to the number of reducers so that all the 

data in a single partition gets executed by a single 

reducer. However, the combiner functions similar 
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to the reducer and processes the data in each  

partition. 

 

 Compression – In order to achieve huge 

performance gain  it is worth to compress the input 

blocks, intermediate data and outputs produced by 

map  phase. Compressing the data entails two  

major advantages – it reduces the storage space 

required to store it and it increases the speed of 

data transfer across the network (or across the 

nodes in a cluster). To compress the map outputs 

or final job output, the corresponding parameters 

can be set either by altering configuration files  or 

programmat ically, as given in Table 1. There are 

two types of compression methods for sequential 

files which can be set via 

mapred.output.compression.type.  

 

1. Block-level compression – It compresses a group 

of key-value pairs together. 

2. Record-level compression – It compresses each 

key-value pair individually 

 

To set BLOCK type compression, use: 
 

conf.set("mapred.output.compression.ty

pe", "BLOCK") 

 

The most widely used compression formats are gzip  

(default in Hadoop), bzip2, LZO and snappy. A detail 

discussion on these formats is beyond the scope of this 

paper.  

 

 Speculative Execution - The MR model can  

execute mult iple instances of slower tasks by 

using the output from the instances that finish first. 

This can be done by setting the following  

configuration variable: 

 

mapred.speculative.execution 

 

It can significantly get in long tails on tasks. 

 

VII.  CONCLUSION AND FUTURE SCOPE 

As we know, Hadoop and Map-Reduce offer several 

advantages such as scalability, elasticity, fault-tolerance 

and flexibility to handle big data - these benefits entail a  

significant performance sacrifice. The performance of a 

Map-Reduce application not only depends on the size of 

the input data set but also on several parameters that 

affect its performance and other configuration settings of 

the Hadoop installed machine. Th is paper is focused on 

analyzing the cost parameters for executing Map-Reduce 

programs using a case study. The cost based optimizer 

considered in the paper uses various factors and 

configuration parameters to examine the cost of map-

reduce programs. 

The case study used a simple text file as the input data 

set and the program was run on a single node cluster. We 

are trying to extend our analysis to column oriented 

stores where the columnar data will be used as the input 

data set. The organization of data and data structures used 

for column oriented storage such as the use of index files, 

compression techniques etc also somehow affect the 

performance of map-reduce applicat ions. The 

performance of map-reduce applications along with 

columnar data layouts is yet to be explored. 
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