
I.J. Information Technology and Computer Science, 2016, 8, 50-58

Published Online August 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.08.06

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Analyzing Cost Parameters Affecting Map

Reduce Application Performance

N.K. Seera
Research Scholar, Banasthali Vidyapeeth, Jaipur, INDIA

E-mail: narinder.k2010@gmail.com

S. Taruna
Associate Professor, Banasthali Vidyapeeth, Jaipur, INDIA

E-mail: staruna71@yahoo.com

Abstract—Recently, big data analysis has become an

imperative task for many big companies. Map-Reduce,

an emerging distributed computing paradigm, is known

as a promising architecture for big data analytics on

commodity hardware. Map-Reduce, and its open source

implementation Hadoop, have been extensively accepted

by several companies due to their salient features such as

scalability, elasticity, fault-tolerance and flexibility to

handle big data. However, these benefits entail a

considerable performance sacrifice. The performance of a

Map-Reduce application depends on various factors

including the size of the input data set, cluster resource

settings etc. A clear understanding of the factors that

affect Map-Reduce application performance and the cost

associated with those factors is required. In this paper, we

study different performance parameters and an existing

Cost Optimizer that computes the cost of Map-Reduce

job execution. The cost based optimizer also considers

various configuration parameters available in Hadoop

that affect performance of these programs. This paper is

an attempt to analyze the Map-Reduce application

performance and identifying the key factors affecting the

cost and performance of executing Map-Reduce

applications.

Index Terms—Map-Reduce, Hadoop, Cost Parameters,

Cost-Optimizer.

I. INTRODUCTION

Current studies reveal that due to advancements in

technology organizations are now able to gather large

amounts of data and efficiently analyze values in them.

“Big Data” management is one of the biggest challenges

of the digital era. Google‟s Map-Reduce is one of the

most successful parallelization framework that allows the

users to write their own code for analytical data

processing. Among the various proposed

implementations of the Map-Reduce programming model,

Hadoop framework is the most widely adopted one. The

most attractive features of Hadoop include HDFS

(Hadoop Distributed File System) and resource

management layer.

Map-Reduce framework gains its popularity due to the

powerful features it offers such as flexib ility to write

application code, scalability, fault-tolerance etc. But

despite of its advantages, it also suffers from severe

criticis m due to its limitations and performance

drawbacks. For example, it allows a program to scale to

process very large data sets, but it puts a restriction on

the program to process smaller data items.

There exist a wide range of studies reporting the

shortcomings of Map Reduce model. Some of the

features that contribute negatively in its performance are

frequent data materializat ion, the lack of support for

iterations and state transfer between jobs, no index and

schema support, dependency on Hadoop‟s configuration

parameters etc.

Reducing the execution time of Map-Reduce jobs is

very important to make it attractive to a wide class of

analytical applications. For the above reasons, in this

paper we study the Map-Reduce framework in great

detail and associated performance and cost parameters

affecting the execution of Map-Reduce jobs. Through in-

depth analysis, we conclude that the cost associated with

the sub phases of map-reduce model greatly impacts the

performance of map-reduce job under execution. The

extent of our paper is limited to studying the parameters

that affect the cost and performance of executing map-

reduce job and does not include the impact of these

factors on map-reduce applications based on column

oriented storage such as MongoDB. The contributions of

this paper are:

 Studying an existing Cost Optimizer

 Analyzing the effect of modeling the Map-Reduce

sub-phases

 Studying Hadoop logs and performance factors

The paper is organized as follows: Sect ion 2 gives the

background of map-reduce framework along with its

advantages. Section 3 briefs the research work performed

by various researchers to improve the performance of

map- reduce programs. In Sect ion 4, we elaborate the

map-reduce sub-phase and the cost associated with these

sub-phases. Section 5 and 6 d iscuss how to analyze

Hadoop logs for map-reduce programs and the related

performance factors. At the end we conclude the paper in

 Analyzing Cost Parameters Affecting Map Reduce Application Performance 51

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Section 7.

II. BACKGROUND

Hadoop is an open-source Java implementation of

Map-Reduce framework. Users can opt to run Hadoop

either on a virtual cluster in the cloud environment or on

Linux configured machines. Hadoop architecture is

divided among two main layers: HDFS (Hadoop

Distributed File System) layer for data storage and a

Map-Reduce layer for data processing.

 HDFS is a distributed block-structured file system

which has multiple data-nodes and a single name-

node. Data-nodes contain the actual data (or

blocks of data) whereas Name-node contains the

metadata of the data stored on Data-nodes.

 Map-Reduce framework is managed by a single

master and mult iple worker nodes. Master node

(or JobTracker) has the responsibility of creating

and allocating the tasks among Worker nodes

(orTaskTrackers). When the input file is loaded on

HDFS, it is first partitioned into fixed size data

blocks also called chunks, which are generally

64MB in size and then these data blocks are

assigned to different mappers and reducers by

JobTracker.

The main advantage of using Map-Reduce model is

that it provides a simple programming interface for

writing analytical applications with high fault-tolerance

guarantee. It is comprised of two user-defined functions –

map() and reduce() – both of which work on (key, value)

pairs. The map() function accepts a list of (key1, value1)

pairs as input, processes them and produces intermediate

results. These results are further passed to reduce()

function that processes them to produce aggregated

results in form of (key2,value2) pairs [9].

The execution of Map-Reduce framework is based on

runtime scheduling algorithm where no execution plan is

create in advance to specify what tasks will go on which

nodes. The number of Map tasks to be scheduled for a

particular job depends on the number of data blocks in

the input file and not on the number of nodes available.

Moreover, all map tasks need not to be executed

concurrently. For instance, if an input is broken down

into N number of blocks and there are M mappers

available in a cluster, then number of map tasks are N

and these tasks are executed N/M times by mappers.

III. RELATED WORK

Various implementations of Hadoop Map-Reduce have

been developed in past few years that propose

improvement gains in performance, p rogramming model

extension and automation of use and tuning. Few

examples include Hadoop++, Llama, Cheetah, SHadoop,

HAIL. Below we brief some of the studies that worked

upon various factors that affect the performance of Map-

Reduce application.

Wottrich et al [1] identified five essential features that

affect the performance of Map-Reduce applications.

They conducted five separate experiments, each to

identify the effect of a single factor on the performance.

The results describe a tractable model of Map-Reduce

application performance and the initial steps of

benchmarking the key factors affecting that performance.

Their study illustrates that the size of input data set for a

given Map-Reduce application has a linear effect on total

run time of the application, where the required run t ime

for an application increased at a rate of 13 sec/GB of data.

The application run time can be improved by increasing

either the number of Map Tasks or the number of Reduce

Tasks up to a limit of 512. Number of reducers beyond

this limit causes an adverse effect on application run t ime.

This implies that to achieve good performance results

only an optimal number o f Map and Reduce Tasks

should be launched for a given Map-Reduce applicat ion

running on a specific cluster.

Hadoop has approximately 190 configuration

parameters which can be set to optimize the cost of map-

reduce applications. Of these 190 parameters, 10-20

parameters cause significant impact on the applicat ion

performance. It is the job of the user who executes the

Map-Reduce program to specify settings for all those

configuration parameters. S. Babu [2] developed

techniques to automate the settings of performance

parameters fo r Map-Reduce applications. The automat ion

assists users to only focus on the execution of Map-

Reduce applicat ion without even knowing the effect of

various parameters on the application performance.

Hence this feature improves the productivity of users

who do not have the expert ise to optimize their programs

due to the lack of familiarity with Map-Reduce

architecture.

Herodotou [3] developed a self-tuning system, Starfish

for big data processing. It includes a Cost-based

Optimizer that automatically identifies configuration

settings for Map-Reduce programs. The Optimizer

employs two other components: a Profiler and a what-if

analysis engine. The profiler generates the detailed

statistical in formation of Map-Reduce job execution

including logs, counters, resource utilization metrics, and

profiling data. The user can also get informat ion of how

many tasks were running at any g iven time on each node,

when each task started and ended etc. The user can alter

the cluster and input specifications for the same Map-

Reduce program executed over different input datasets

and different clusters.

Herodotou et al [4] modeled a „what-if Engine‟ which

is used for cost estimation. It p redicts the performance of

Map-Reduce job by considering the job profile generated

by the profiler, configuration settings, input dataset and

cluster resource properties.

Herodotou [5] published a technical report that

describes a detailed set of mathematical performance

models fo r describing the execution of a Map-Reduce job

on Hadoop. The model is used to identify the optimal

configuration settings and the performance of Map-

52 Analyzing Cost Parameters Affecting Map Reduce Application Performance

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Reduce jobs. The performance estimation of an arb itrary

Map-Reduce job is done by accurately modeling all the

sub-phases Map-Reduce tasks. A map task is modeled by

modeling Read, Map, Collect, Sp ill and Merge sub-

phases. Similarly, a reduce task is modeled by modeling

Shuffle, Merge, Reduce and Write sub-phases.

In this model, the execution of a Map-Reduce job is

represented using a job profile, which is a concise

statistical summary of a Map-Reduce job execution. A

job profile consists of dataflow fields and cost fields for a

Map-Reduce job j - dataflow fields give informat ion

about the amount of data flowing through the different

sub-phases of Map-Reduce whereas cost fields give

informat ion about the execution time of various phases

and resource usage.

Rong Hu et al [6] worked upon Map-Reduce

programming model to increase its performance by

optimizing the job and task execution mechanism. The

authors proposed two approaches to optimize Map

Reduce job and task execution. In the first approach, they

implemented setup and cleanup tasks for a Map Reduce

job to reduce the t ime taken by the in itializat ion and

termination stages of the job. In the second approach,

they implemented an instant messaging communicat ion

mechanis m for accelerating performance-sensitive task

execution rather than transmitting all messages between

the Job Tracker and Task Trackers. These two

approaches have been successfully implemented in

SHadoop, an optimized and fully compatible version of

Hadoop that aims at reducing the cost of executing Map

Reduce jobs.

IV. MAP-REDUCE PROGRAMMING MODEL

Map-Reduce programming model is known for

processing large sets of data in parallel fashion. The

model is based on four basic steps:

 Iterating the input

 Computing key-value pairs

 Grouping intermediate results with same keys

 Iterating and reducing intermediate results to

produce final output.

Though the model is simple with two phases – map

phase and reduce phase; it may have many sub phases

that depends on the requirements and input supplied.

Here we discuss the phases in detail.

A. MR Sub-phases and Modeling

The map-reduce phases of MR programming mode l

are actually implemented in various sub-phases, as

described below:

The map phase goes through five stages:

 Input – Reading the blocks from HDFS and

converting them into key-value pairs (k1,v1).

 Map – Running map() task to produce

intermediate results in form of key-value pairs

(k2,v2).

 Partit ion – The intermediate key-value pairs are

partitioned by the Partitioner. The key (or a subset

of the key) can be used to get the partitions,

usually by a hash function. The total number of

partitions is equal to the number o f reduce tasks

assigned for the job. Therefore this controls which

intermediate key should be forwarded to which of

the reduce tasks, for reduction.

 Spill – Sorting and performing compression if

required, followed by writing to local disk so as to

create file spills.

 Merge – Merging the file spills into a single map

output file. Th is merging may be done in several

rounds.

Similarly, the reduce phase is carried out in three

stages:

 Shuffle –The sorted output produced by the

mappers is passed as input to the Reducers . In this

phase, the framework fetches the appropriate

partition from the mappers, via HTTP.

 Merge – In this stage, the inputs to Reducers are

grouped by keys because different map functions

may have produced the same key. The shuffle and

sort phases are carried out in parallel; while map-

outputs being fetched are merged.

 Reduce – Executing the reduce() function to

produce the final output data which is then written

to the output file.

 Analyzing Cost Parameters Affecting Map Reduce Application Performance 53

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Fig.1. Phases of Map-Reduce Programming Model

Herodotou [5] analyzed all these sub phases of Map-

Reduce in order to estimate the accurate statistics of the

execution time of a map-reduce job. The overall cost of a

Map-Reduce job is can be represented as the sum of the

costs of map and reduce tasks, as given below:

 TotalJobTime = TotalMapsTime

 if NumReducers = 0

 TotalMapsTime +

TotalReducesTime

if NumReducers > 0

Where,

And

All the above mentioned parameters are actually the

cost parameters that capture the information about the

time spend in the execution of each individual sub-phase

of a Map-Reduce job.

The number of Reducers (NumReducers) can be set

manually by setting the value of mapred.reduce.tasks.

B. Job configuration

A job is the main interface for a user to set the

configuration settings for the execution o f a Map-Reduce

program on the Hadoop framework. The framework

executes the map-reduce program with the given

configuration settings but some configuration parameters

cannot be altered by the user as they are marked as final

by the admin istrator. While some parameters can be set

directly by changing their defau lt values, as listed in the

table below:

Table 1. Map-Reduce Parameter settings in Hadoop with description

Name Description

mapred.tasktracker.map.tasks.max
Max maps per node in a

cluster. Default is 2

mapred.tasktracker.map.tasks.max
Max reducers per node in a

cluster. Default is 2

mapred.map.tasks Number of mappers

min.num.spills.for.combine
Number of spills for
combiner function

mapred.reduce.tasks Number of reducers

mapred.compress.map.output
Whether output of map is
compressed. Default is
false

mapred.output.compress
Whether the output is
compressed. Default is
false

mapreduce.map.input.file
Name of the file - map is
reading from

mapreduce.map.input.start
The offset that marks the
beginning of the map input
split

mapreduce.map.input.length
No. of bytes in the map
input split

mapreduce.task.output.dir
Temporary output directory
for the tasks

mapred.split.size The size of the input split

To set or get configuration parameters needed by an

application one can use Configuration.set(String, String)

or Configuration.get(String) methods that take one or two

String type values.

Job Configuration settings typically specify the

number of Mappers, Reducers, combiners (if any),

Partit ioners, InputFormat, OutputFormat

http://hadoop.apache.org/docs/current/api/org/apache/hadoop/conf/Configuration.html
http://hadoop.apache.org/docs/current/api/org/apache/hadoop/conf/Configuration.html

54 Analyzing Cost Parameters Affecting Map Reduce Application Performance

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

implementations etc. FileInputFormat and

FileOutputFormat specify where the input and output

files should be written. Users can use

FileInputFormat.setInputPath(Path) and

FileOutputFormat.setOutputPath(Path) methods to set the

location for the Input and Output files.

C. Map-Reduce job Execution

The case study is based on the data regarding the

number of electricity units consumed by of an

organization. The table g iven below contains the monthly

consumption of electricity units and the annual average

for five consecutive years. The objective is to find out the

year of maximum usage of electricity, year of min imum

usage, and year of average usage.

Jan Feb Mar Apr May Jun Jul Aug Sep O ct Nov Dec Avg

1979 23 23 2 43 24 25 26 26 26 26 25 26 25

1980 26 27 28 28 28 30 31 31 31 30 30 30 29

1981 31 32 32 32 33 34 35 36 36 34 34 34 34

1984 39 38 39 39 39 41 42 43 40 39 38 38 40

1985 38 39 39 39 39 41 41 41 00 40 39 39 45

To achieve the goal, an application is required that

reads the above input and produce the desired results.

When the application is executed, it generates the

complete details of the processes that undergo along with

the execution time of each phase. We analyze the cost

based on the previously discussed cost parameters .

Following is the application, consisted of mapper and

reducer classes that process our data. The execution

results and cost measurement is given at the end of the

code.

Example

Mapper class :

Public static class ElecMapper extends MapReduceBase

implements
Mapper<LongWritable,Text,Text,IntWritable>

{

Public void map(LongWritable key,Text value,

OutputCollector<Text,IntWritable> output,

Reporter reporter) throws IOException

{

String line =value.toString();

String lasttoken=null;

StringTokenizer s =new StringTokenizer(line,"\t");

String year =s.nextToken();

while(s.hasMoreTokens())

{

lasttoken=s.nextToken();

}

Int avgprice=Integer.parseInt(lasttoken);

output.collect(new Text (year),new IntWritable(avgprice));

}

}

Reducer class :

Public static class ElecReducer extends MapReduceBase

implements

Reducer<Text,IntWritable,Text,IntWritable>

{

Public void reduce(Text key,Iterator<IntWritable>

values,

OutputCollector<Text,IntWritable> output,Reporter

reporter) throws IOException

{

intmaxavg=30;

intval=Integer.MIN_VALUE;

while(values.hasNext())

{

if((val=values.next().get())>maxavg)

output.collect(key,newIntWritable(val));

}

}

}

Main function :

Public static void main(String s[]) throws Exception

{

JobConfconf=newJobConf(Eleunits.class);

conf.setJobName("max_eletricityunits");

conf.setOutputKeyClass(Text.class);

conf.setOutputValueClass(IntWritable.class);

conf.setMapperClass(ElecMapper.class);

conf.setCombinerClass(ElecReducer.class);

conf.setReducerClass(ElecReducer.class);

conf.setInputFormat(TextInputFormat.class);

conf.setOutputFormat(TextOutputFormat.class);

FileInputFormat.setInputPaths(conf,newPath(s[0]));

FileOutputFormat.setOutputPath(conf,newPath(s[1]));

JobClient.runJob(conf);

}

 Analyzing Cost Parameters Affecting Map Reduce Application Performance 55

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Upon execution the output will be d isplayed as shown

below, containing the number of input splits, the number

of Map tasks, the number of reduce tasks, time taken by

map task, time taken by reduce tasks etc.

FILE:

No. of bytes read=61

No. of bytes written=279400

No. of read operations=0

No. of large read operations=0

No. of write operations=0

HDFS:

No. of bytes read=546

No. of bytes written=40

No. of read operations=9

No. of large read operations=0

No. of write operations=2

 Launched map tasks=2

 Launched reduce tasks=1

 Data-local map tasks=2

 Total time spent by all maps in

occupied slots (ms)=146137

 Total time spent by all reduces in

occupied slots (ms)=441

 Total time spent by all map tasks

(ms)=14613

 Total time spent by all reduce tasks

(ms)=44120

 Total vcore-seconds taken by all map

tasks=146137

 Total vcore-seconds taken by all reduce

tasks=44120

 Total megabyte-seconds taken by all map

tasks=149644288

 Total megabyte-seconds taken by all

reduce tasks=45178880

MR Framework

 Map input records=5

 Map output records=5

 Map output bytes=45

 Map output materialized bytes=67

 Input split bytes=208

 Combine input records=5

 Combine output records=5

 Reduce input groups=5

 Reduce shuffle bytes=6

 Reduce input records=5

 Reduce output records=5

 Spilled Records=10

 Shuffled Maps =2

 Failed Shuffles=0

 Merged Map outputs=2

 GC time elapsed (ms)=948

 CPU time spent (ms)=5160

 Physical memory (bytes)

snapshot=47749120

 Virtual memory (bytes)

snapshot=2899349504

 Total committed heap usage

(bytes)=277684224

V. EXAMINING HADOOP LOGS

Hadoop maintains various log files on behalf of the

execution of a Map-Reduce program. These files are

located in /hadoop/logs sub-directory. One can examine

all these log informat ion to gain better understanding of

the execution performance of map-reduce program. To
access the logs through command line explore the logs

sub-directory.

The log file contains various lines of information:

 Lines beginning with "Job", list information about

the job such as job id, launch time, number of map

tasks, number of reduce tasks and job status.

Job JOBID="job_201004011119_0025"

LAUNCH_TIME="1270509980407"

TOTAL_MAPS="12" TOTAL_REDUCES="1"

JOB_STATUS="PREP"

 Lines beginning with "Task" indicate the start and

complet ion time of Map or Reduce tasks, also

indicating on which host the tasks were scheduled

and on which split (input data) they worked up on.

On completion, all the counters associated with the

tasks are listed.

Task

TASKID="task_201004011119_0025_m_00000

3" TASK_TYPE="MAP"

START_TIME="1270509982711"

\SPLITS="/default-

rack/hadoop6,/default-rack/hadoop4"

Task

TASKID="task_201004011119_0025_m_00000

3" TASK_TYPE="MAP"

TASK_STATUS="SUCCESS" \

FINISH_TIME="1270510023272" \

COUNTERS="{(org\.apache\.hadoop\.mapre

d\.Task$FileSystemCounter)(File

Systems) \

[(HDFS_READ)(HDFS bytes

read)(67112961)][(LOCAL_READ)(Local

bytes read)(58694725)] \

(LOCAL_WRITE)(Local bytes

written)(72508773)]}{(org\.myorg\.Word

Count$MyCounters) \

 ...

[(MAP_INPUT_BYTES)(Map input

bytes)(67000104)][(COMBINE_INPUT_RECOR

DS) \

(Combine input

records)(11747762)][MAP_OUTPUT_RECORDS

)(Map output records)(9852006)]}"

 Lines beginning with "MapAttempt", gives status

56 Analyzing Cost Parameters Affecting Map Reduce Application Performance

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

update, except if they contain the keyword

FINISHTIME, indicating that the task has

completed successfully.

 Lines beginning with "ReduceAttempt", gives the

intermediary status of the reduce tasks including

the finish time of the sort and shuffle phases etc.

ReduceAttempt TASK_TYPE="REDUCE"

TASKID="task_201004011119_0025_r_00000

0"

\TASK_ATTEMPT_ID="attempt_201004011119

_0025_r_000000_0"

TASK_STATUS="SUCCESS" \

SHUFFLE_FINISHED="1270510076804"

SORT_FINISHED="1270510082505"

FINISH_TIME="1270510093979"

\HOSTNAME="/default-rack/hadoop4"

STATE_STRING="reduce > reduce" \

COUNTERS="{(org\.apache\.hadoop\.mapre

d\.Task$FileSystemCounter)(File

Systems) \

 ...

(4416230)][(REDUCE_INPUT_RECORDS)(Redu

ce input records)(6888474)]}" .

VI. PERFORMANCE FACTORS

There are various factors that may significantly

influence the performance of map-reduce applications –

the factors may depend on cluster resource settings,

configuration settings of the machines, properties of

map-reduce applicat ion etc. The use of partit ion and

combine sub-phases of MR model g reatly impacts the

application performance. Below we discuss first how a

job is carried out by these sub-phases and then we

discuss them in detail.

To reduce I/O operations and network traffic, one can

define a combiner function to perform map-side pre-

aggregations. It is implemented before partitioning phase

in order to perform pre-aggregation on the grouped key-

value pairs so that the communication cost to transfer all

the intermediate outputs to reducers can be minimized.

The Map-Reduce framework ensures the number of times

combiner function needs to be run – once or mult iple

times. Running the combiner () function results in

significant performance gains by lessening the amount of

intermediate data to be transferred over the network.
The intermediate outputs are then partitioned into R

partitions using a hash function such as hash (key) mod

R, where R is the number of reduce tasks. Each partition

is then written to the mappers local disk.

After the map stage is over, all the part itions with the

same hash value are read by the same reducer, regardless

of which mapper produced which part ition. These

partitions are grouped together using merge –sort and are

written to the output file to be used by the reducer. This

is depicted in figure 2.

 Partit ioner - Hadoop uses Partitioner interface to

identify which partit ion will receive which

intermediate key/value pair. The most important

point is that for any key, regardless of its Mapper

instance, the destination partition is the same. The

Map-Reduce architecture determines the number

of partit ions to be used when any Map-Reduce

program begins, which is usually the same as the

number of reduce tasks. For performance reasons,

Mappers never communicate with each other to

the partition of a particular key.

Partitioners are actually implemented in Java, and

may take two forms:

1. Default partit ioning – that randomly distributes all

the keys evenly. Hashing is used as default

partitioning. For example :key.hashCode() %

no_of_reducers

2. Custom part itioning – is required when an order in

the output needs to be produced. It is done by

implementing Partitioner interface, the signature

is given below:

public interface Part itioner<K2,V2>

extendsJobConfigurable { }

// <K2,V2> is a key -value pair supplied as an

argument to the partition interface

The Partition can be set by:

job.setPartitionerClass(LogPartitioner.class);

To get an ordering in the output, the map output

keys can be divided into roughly equal buckets

and used in partitioner.

 Combiners – As the outputs from the mappers

may be large in size, so to limit the volume of data

transferred between mappers and reducers,

combiners are implemented. Combiners

summarize the map outputs with the same key and

forward the results to reducers. Each combiner

works in isolation and thus it does not have any

access to intermediate outputs from other mappers.

The combiner acts as an optimizer, and it is never

sure of how many times it will be called for any

particular map output record. But regardless of the

number of times it is called it should produce the

same output every time for the reducer.

Combiners have the same interface as Reducers,

and can be set by:

job.setCombinerClass(LogReducer.class);

The difference between a partit ioner and a

combiner is that the partitioner div ides the data

according to the number of reducers so that all the

data in a single partition gets executed by a single

reducer. However, the combiner functions similar

 Analyzing Cost Parameters Affecting Map Reduce Application Performance 57

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

to the reducer and processes the data in each

partition.

 Compression – In order to achieve huge

performance gain it is worth to compress the input

blocks, intermediate data and outputs produced by

map phase. Compressing the data entails two

major advantages – it reduces the storage space

required to store it and it increases the speed of

data transfer across the network (or across the

nodes in a cluster). To compress the map outputs

or final job output, the corresponding parameters

can be set either by altering configuration files or

programmat ically, as given in Table 1. There are

two types of compression methods for sequential

files which can be set via

mapred.output.compression.type.

1. Block-level compression – It compresses a group

of key-value pairs together.

2. Record-level compression – It compresses each

key-value pair individually

To set BLOCK type compression, use:

conf.set("mapred.output.compression.ty

pe", "BLOCK")

The most widely used compression formats are gzip

(default in Hadoop), bzip2, LZO and snappy. A detail

discussion on these formats is beyond the scope of this

paper.

 Speculative Execution - The MR model can

execute mult iple instances of slower tasks by

using the output from the instances that finish first.

This can be done by setting the following

configuration variable:

mapred.speculative.execution

It can significantly get in long tails on tasks.

VII. CONCLUSION AND FUTURE SCOPE

As we know, Hadoop and Map-Reduce offer several

advantages such as scalability, elasticity, fault-tolerance

and flexibility to handle big data - these benefits entail a

significant performance sacrifice. The performance of a

Map-Reduce application not only depends on the size of

the input data set but also on several parameters that

affect its performance and other configuration settings of

the Hadoop installed machine. Th is paper is focused on

analyzing the cost parameters for executing Map-Reduce

programs using a case study. The cost based optimizer

considered in the paper uses various factors and

configuration parameters to examine the cost of map-

reduce programs.

The case study used a simple text file as the input data

set and the program was run on a single node cluster. We

are trying to extend our analysis to column oriented

stores where the columnar data will be used as the input

data set. The organization of data and data structures used

for column oriented storage such as the use of index files,

compression techniques etc also somehow affect the

performance of map-reduce applicat ions. The

performance of map-reduce applications along with

columnar data layouts is yet to be explored.

REFERENCES

[1] K. Wottrich, Thomas Bressoud, “The Performance

Characteristics of Map-Reduce applications on scalable

clusters”, MCURCSM 2011.

[2] S. Babu, “Towards Automatic Optimization of

MapReduce Programs”, in SOCC, pages 137-142, 2010H.
[3] Herodotou et. Al, Starfish: A Self Tuning System for Big

Data Analytics, 5th Biennial Conference on Innovative

Data Systems Research (CIDR ‟11) January 912, 2011,

Asilomar, California, USA.

[4] H. Herodotou and S. Babu. Profiling, What-if Analysis,
and Cost-based Optimization of MapReduce Programs.

PVLDB, 4, 2011.

[5] Horodotou, “Hadoop Performance Model”, Technical

Report, CS-2011-05, CS Department, Duke University

[6] Rong Gu et al, “SHadoop: Improving Map Reduce
performance by optimizing job execution mechanism is

Hadoop cluster”, Journal of Parallel and Distributed

Computing, Elsevier, Vol 74 Issue 3, March 2014, pg

2166-2179.

[7] Chang, M. Kodialam, R. Kompella, T. V. Lakshman, M.
Lee, and S. Mukherjee, “Scheduling in mapreduce-like

systems for fast completion t ime,” in Proc. IEEE

INFOCOM‟11, Shanghai, China, 2011.

[8] H. Herodotou, F. Dong, S. Babu, MapReduce

Programming and Cost based Optimization? Crossing this
Chasm with Starfish, Proceedings of the VLDB

Endowment, 21508097/11/08, Vol. 4, No. 12, 2011

[9] Narinder, S. Taruna, “Efficient data layouts for cost

optimized Map-Reduce operations”, Proceedings of

INDIACom 2015, BVICAM, Delhi.
[10] Arun C Murthy, ”Programming Hadoop Map -Reduce”,

Yahoo CCD, ApacheCon US 2008.

[11] D. Borthakur, “The Hadoop Distributed File System:

Architecture and design”, Apache Software Foundation,

2007.
[12] K. Lee, Y. LeeH. Choi, Y. Chung, B. Moon, “Parallel

data processing with Map Reduce: A Survey”, SIGMOD

Record, December 2011 (Vol. 40, No. 4).

[13] Dittrich, Jens, J. Arnulfo, "Efficient big data processing in

Hadoop MapReduce." Proceedings of the VLDB
Endowment 5.12 (2012): 2014-2015.

[14] J. Tan, S. Meng, X. Meng and Li Zhang, “Improving

ReduceTask Data Locality for Sequential MapReduce

Jobs”, in Proc. IEEE INFOCOM‟13, Turin, Italy, 2013.

[15] H. Chang, M. Kodialam, R. Kompella, T. V. Lakshman,
M. Lee, and S. Mukherjee, “Scheduling in mapreduce-

like systems for fast completion time,” in Proc. IEEE

INFOCOM‟11, Shanghai, China, 2011.

[16] C. Doulkeridis, K. Norvag, “A Survey of Large

Analytical Query Processing in Map-Reduce”, the VLDB
Journal.

[17] A. Floratou et al, “Column-Oriented Storage Techniques

for Map-Reduce”, In proceedings of VLDB Endowment,

Vol 4, No. 7, 2011.

58 Analyzing Cost Parameters Affecting Map Reduce Application Performance

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 8, 50-58

Authors’ Profiles

N.K. Seera is a Research Scholar in

Banasthali Vidyapeeth, Jaipur, India. She is

carrying out her research work in the field of
Data Processing in Map-Reduce. Her

interest areas include databases, Query

Processing and Big Data Processing. Her

research papers have been published in

various Journals as well as National and International
Conferences sponsored by IEEE and other bodies.

Dr. S . Taruna is working as an Associate

Professor in Banasthali Vidyapeeth, Jaipur
in the department of Computer Science.

She has done M.Sc (CS) and carried out

her Ph.D in the field of Data Mining. Her

areas of Interest are Data Mining, Data

Processing etc.

How to cite this paper: N.K. Seera, S. Taruna, "Analyzing

Cost Parameters Affecting Map Reduce Application
Performance", International Journal of Information Technology

and Computer Science (IJITCS), Vol.8, No.8, pp.50-58, 2016.

DOI: 10.5815/ijitcs.2016.08.06

