
I.J. Information Technology and Computer Science, 2016, 5, 13-27
Published Online May 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.05.02

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

Extending the Syntax and Semantics of the

Hybrid Functional-Object-Oriented Scripting

Language FOBS with FEDELE

James Gil de Lamadrid
Bowie State University/Computer Science Department, Bowie, Maryland, 20715, United States of America

E-mail: jgildelamadrid@bowiestae.edu

Abstract—We describe the programming language

FOBS-X (Extensible FOBS). FOBS-X is interpreted, and

is intended as a universal scripting language. One of the

more interesting features of FOBS-X is its ability to be

extended, allowing it to be adopted to new scripting

environments. FOBS-x is structured as a core language

that is parsed by the interpreter, and an extended

language that is translated to the core by macro expansion.

The syntax of the language can easily be modified by

writing new macros. The library for FOBS-X is

reconfigurable, allowing the semantics of the language to

be modified, and adapted to facilitate the interaction with

interfaces to new scripting environments. This paper

focuses on the tools used for the semantic extension of

the language. A tool called FEDELE has been developed,

allowing the user to add library modules to the FOBS-X

library. In this way the semantics of the language can be

enhanced, and the language can be adapted.

Index Terms—Functional, object-oriented, programming

language.

I. INTRODUCTION

Tools and techniques from both the object-oriented and

the functional paradigms are valuable to the programmer.

Techniques from the functional paradigm provide elegant

solutions to many problems. Many other problems are

best solved using the concept of communicating objects

inherent in the object oriented paradigm. FOBS-X is a

single language that offers the user the expressive power

of both paradigms, allowing the user a choice of tools

when analyzing a problem, but requiring only fluency in

one language. The language FOBS-X is a version of the

language FOBS, described by Gil de Lamadrid &

Zimmerman [4]. The changes to FOBS involve

simplification of the pointers used in scoping rules.

FOBS-X shares many characteristics with functional

languages. In particular, it is characterized by the

following features:

 A single data type called a FOB, that is a simple and

elegant structure that functions as both a function

and an object.

 Stateless programming. Mutable objects do not

exist in the FOBS-X runtime environment. Instead,

mutation is simulated by creating new objects that

incorporate the required changes.

 A simple form of inheritance. A sub-FOB can be

built by combining a new FOB with a super-FOB.

The sub-FOB inherits all attributes from the super-

FOB in the process.

 Scoping rules that support attribute overriding in

inheritance. This enables a sub-FOB to modify or

replace behaviors and attributes of a super-FOB.

 The ability to modify syntax through a macro

expansion capability.

 A tool for easily writing new library modules,

allowing the semantics of FOBS-X to be modified

to fit differing scripting requirements.

Many scripting languages are weakly typed. FOBS

follows this trend. Often the justification for weak typing

is that it relieves the programmer from the burden of

strict type enforcement. However, it also results in a

situation in which type errors are not detected until late.

The justification for weak typing in FOBS-X is based on

two points. The first is that FOBS-X only has one data

type, making strong type checking, based on syntax,

almost impossible. The second point is that with

interpreted languages the distinction between parsing and

execution is much more blurred than with compiled

languages, and so type checking before execution

becomes much less important.

Several researchers have built hybrid language systems,

in an attempt to combine the functional and object-

oriented paradigms, but have sacrificed referential

transparency in the process. A language called PROOF,

developed by Yau et al. [11] attempts to incorporate

objects into the functional paradigm. However, the

modifications do little to take into account the functional

programming style. Alexandrescu [1] presents the

language D, which is a rework of the language C,

transforming it into a more natural scripting language that

is similar to Javascript and Ruby.

Scala by Odersky et al. [12] is a language compiled to

the Java Virtual Machine. The claim for Scala is that it

implements a hybrid of the functional and object oriented

paradigms, but, in fact, it tends toward the imperative

language end of the spectrum. Scala is a class based

language that is proposed as a tool to write web-servers.

14 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

It is implemented as a small core language, along with a

library that implements many of its capabilities. The

same structure in FOBS allows the capabilities of the

language to be easily extended.

The two languages FLC by Beaven et al. [2], and

FOOPS by Goguen and Mesegner [6] seek to preserve

functional features. In FOOPS, functional features have

been augmented by adding in support for ADTs. FLC, in

our opinion, takes an approach that is conceptually

simpler. In FLC, classes are represented as functions.

FOBS is based on this same representation scheme. The

class structure, however, has been removed from FOBS.

The role of the class as a ”factory” of individual objects,

each with their own state, is not applicable in a stateless

environment such as that in FOBS. A stateless system

lends itself better to a prototype system, in which a single

prototype object is copied with slight modifications to

produce variants.

Another language that implements object-orientation

while maintaining a mostly functional approach is

OCAML[8]. OCAML is built around ML, but has added

elements enabling object-oriented and imperative

programming. The creation of objects is supported by a

record structure, and stateful programming is supported

by mutable objects. The importance of mutation in

object-orientation is discussed later in the paper. And,

although important, we felt that mutation should be

isolated and controlled. This helps preserve the

overriding computation model of FOBS, which

prominently features referential transparency. OCAML

has a distinctly non-declarative nature, resulting from the

tight integration of mutable objects into the

computational model.

Scripting languages have tended to avoid the

functional paradigm. Several object-oriented scripting

languages such as Python [3] are available. Python is

mostly object-oriented, although its support for functional

programming is decent, including LISP like

characteristics such as dynamic typing and anonymous

functions. However, Python lacks referential transparency.

We view this as one of the more significant features of

FOBS. We also felt, when designing FOBS, that a

simpler data structure could be used to implement objects

and the inheritance concept, than was used in this popular

language. FOBS combines functional programming and

object-orientation into a single elegant hybrid language,

offering both tools to the user. This is not done by adding

in features from both paradigms, as do languages like

Python or FOOPS, but rather by incorporating a single

structure that embodies both paradigms, and unifies them.

II. LANGUAGE DESCRIPTION

FOBS-X is built around a core language, core-FOBS-X.

Core-FOBS-X has only one type of data: the FOB. A

simple FOB is a quadruplet,

[m i -> e ̂]

The FOB has two tasks. Its first task is to bind an

identifier, i, to an expression, e. The e-expression is

unevaluated until the identifier is accessed. Its second

task is to supply a return value when invoked as a

function. (the -expression) is an unevaluated

expression that is evaluated and returned upon invocation.

The FOB also includes a modifier, m. This modifier

indicates the visibility of the identifier. The possible

values are: ”‘+”, indicating public access, ”‘~”, indicating

protected access, and ”‘$”, indicating argument access.

Identifiers that are protected are visible only in the FOB,

or any FOB inheriting from it. An argument identifier is

one that will be used as a formal argument, when the

FOB is invoked as a function. All argument identifiers

are also accessible as public.

As an example, the FOB

[‘+x -> 3 ̂ 6]

is a FOB that binds the variable x to the value 3. The

variable x is considered to be public, and if the FOB is

used as a function, it will return the value 6.

Primitive data is defined in the FOBS library. The

types Boolean, Char, Real, and String have constants

with forms close to their equivalent C types. The Vector

type is a container type, with constants of a form close to

that of the Prolog list. For example, the vector

["abc", 3, true]

represents an ordered list of a string, an integer, and a

Boolean value. Semantically, a vector is more like the

Java type of the same name. It can be accessed as a

standard list, using the usual car, cdr, and cons operations,

or as an array using indexes. It is implemented as a Perl

list structure. Unlike the Java vector type, the FOBS-X

vector type is immutable. The best approximation to the

mutate operation is the creation of a brand new modified

vector.

There are three operations that can be performed on

any FOB. These are called access, invoke, and combine.

An access operation accesses a variable inside a FOB,

provided that the variable has been given a public or

argument modifier. As an example, in the expression

[‘+x -> 3 ̂ 6].x

the operator ”.” indicates an access, and is followed by

the identifier being accessed. The expression would

evaluate to the value of x, which is 3.

An invoke operation invokes a FOB as a function, and

is indicated by writing two adjacent FOBs. The first FOB

is the the invoked FOB, and the second FOB contains the

actual arguments for the function invocation. In the

following example

[‘$y -> _ ̂ y.+[1]] [3]

a FOB is defined that binds the variable y to the empty

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 15

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

FOB and returns the result of the expression y + 1, when

used as a function. When the example is used as a

function by the invoke operation, since y is an argument

variable, the binding of the variable y to the empty FOB

is considered only a default binding. This binding is

replaced by a binding to the actual argument, 3. To do the

addition, y is accessed for the FOB bound to the identifier

+, and this FOB is invoked with 1 as its actual argument.

The result of the invocation is 4.

In an invocation, it is assumed that the second operand

is a vector. This explains why the second operand in the

above example is enclosed in square braces. Invocation

involves binding the actual argument to the argument

-

expression, giving the return value.

A combine operation is indicated with the operator ”;”.

It is used to implement inheritance. In the following

example

[‘+x -> 3 ̂ _] ;

[‘$y -> _ ̂ x.+[y]] (1)

two FOBs are combined. The super-FOB defines a public

variable x. The sub-FOB defines an argument variable y,

and a -expression. Notice that the sub-FOB has

unrestricted access to the super-FOB, and is allowed

access to the variable x, whether modified as public,

argument or protected.

The FOB resulting from Expression (1) can be

accessed, invoked, or further combined. For example the

code

([‘+x -> 3 ̂ _] ;

[‘$y -> _ ̂ x.+[y]]).x

evaluates to 3, and the code

([‘+x -> 3 ̂ _] ;

 [‘$y -> _ ̂ x.+[y]]) [5]

evaluates to 8.

Multiple combine operations result in FOB stacks,

which are compound FOBs. For example, the following

code creates a FOB with an attribute x and a two-

argument function that multiplies its arguments together.

The code then uses the FOB to multiply 9 by 2.

([‘+x -> 5 ̂ _] ; [‘$a -> _ ̂ _] ;

[‘$b -> _ ̂ a.⋆[b]]) [9, 2]

In the invocation, the arguments are substituted in the

order from top to bottom of the FOB stack, so that the

formal argument a would be bound to the actual

argument 2, and the formal argument b would be bound

to 9.

In addition to the three primitive FOBS operations,

many operations on primitive data are defined in the

FOBS library. These operations include the usual

arithmetic, logic, and string manipulation operations. In

addition, conversion functions provide conversion from

one primitive type to another, when appropriate.

Example (2) presents a larger example to demonstrate

how FOBS code might be used to solve more complex

programming problems. In this example we define a FOB

that implements a standard up-counter. The FOB

structure is shown in Fig. 1, using UML. The outermost

FOB implements the UML class called CounterMaker,

that copies a prototype to create new counters. The

counters are known as the class Counter in Fig. 1.

CounterMaker creates a new Counter when its function

makeCounter is called. The argument to makeCounter,

val, becomes the initial value of the counter. The counter

contains an instance variable, count, that contains the

current count value. When the Counter FOB is invoked,

the value of the variable count is returned. The counter

also contains a function inc that ”increments” the counter.

Since FOBS is stateless, what inc actually does is create a

new Counter object with the incremented count variable.

Implementation of a standard

up-counter

([‘+makeCounter ->

 [‘$val -> 0 ̂

 [‘~count -> val ̂_];

 [‘+inc ->

 [‘~_ -> _

 ̂ makeCounter[

 count.+[1]]

] (2)

 ̂_];

 [‘~_ -> _ ̂ count]

]

̂_]

test it

 .makeCounter[6].inc[]

 .inc[])[]

#.

#!

Fig.1. Class structure of Example (2)

Since UML is designed to model object-oriented

systems, it is no surprise that using it to model a FOB

requires extra notation to handle the ability to invoke a

16 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

FOB as a function. In Fig. 1. the notation rv is used to

represent the operation of invoking the FOB as a function.

The use of rv (return value) in the diagram indicates that,

when the FOB Counter is invoked, it returns the current

value of the variable count.
Larger examples, and a more complete definition of the

FOBS language are given by Gil de Lamadrid and

Zimmerman [4].

III. CORE-FOBS DESIGN TOPICS

Expression evaluation in FOBS-X is fairly straight

forward. Three issues, however, need some clarification.

These issues are: the semantics of the redefinition of a

variable, the semantics of a FOB invocation, and the

interaction between dynamic and static scoping.

3.1. Variable overriding

A FOB stack may contain several definitions of the

same identifier, resulting in overriding. For example, in

the following FOB

[‘$m -> 'a' ̂ m.toInt[]] ;

[‘+m -> 3 ̂ m]

the variable m has two definitions; in the super-FOB it is

defined as an argument variable, and in the sub-FOB

another definition is stacked on top with m defined as a

public variable. The consequence of stacking on a new

variable definition is that it completely overrides any

definition of the same variable already in the FOB stack,

including the modifier. In addition, the new -expression

becomes the return value at the top of the full FOB stack.

3.2. Argument substitution

As mentioned earlier, the invoke operator creates

bindings between formal and actual arguments, and then

evaluates the -expression of the FOB being invoked. At

this point we give a more detailed description of the

process.

Consider the following FOB that adds together two

arguments, and is being invoked with values 10 and 6.

([‘$r -> 5 ̂ _] ;

[‘$s -> 3 ̂ r.+[s]]) [10, 6]

The result of this invocation is the internal creation of

the following FOB stack

[‘$r -> 5 ̂ _] ;

[‘$s -> 3 ̂ r.+[s]] ;

[‘+r -> 6 ̂ r.+[s]] ;

[‘+s -> 10 ̂ r.+[s]]

In this new FOB the formal arguments are now public

variables bound to the actual arguments, and the return

value of the invoked FOB has been copied up to the top

of the FOB stack. The return value of the original FOB

can now be computed easily with this new FOB by doing

a standard evaluation of its -expression, yielding a value

of 16.

3.3. Partial invocation

Modern functional languages often support currying.

The major contribution of currying is that it is a way to

implement partial application, allowing the user to create

a function from a function activation, with some, but not

all of the parameters bound.

Originally FOBS implemented only the invoke

operator, which combined argument binding and

evaluation of the -expression. Although the user could

specify only a subset of the formal arguments, the result

of a partial application was that the default values of the

formal arguments would be used, and the return value

would be a fully evaluated function, rather than a new

partially applied function, as in currying.

When FOBS-X was developed from FOBS, a new

operation, denoted as ”;;”, was added to the language.

This operation, called partial invocation, implements a

partial application in the semantic environment of FOBS.

Although the mechanism in FOBS-X is radically

different than currying, the result is close to the same.

The functioning of the partial invocation operator is

best illustrated with an example. Consider the following

example, using the invoke operator:

([‘$r -> 5 ̂ _] ;

 [‘$s -> 3 ̂ r.+[s]]) ;; [10]

Here a FOB stack with two arguments, r, and s, is

being invoked with only one actual argument; the value

10. When this happens, a new stack is formed, as

discussed previously.

[‘$r -> 5 ̂ _] ;

[‘$s -> 3 ̂ r.+[s]] ; (3)

[‘+s -> 10 ̂ r.+[s]]

The -expression of this stack, r.+[s] is then

evaluated using the new binding for s, 10, and the default

binding for r, 5, yielding the value 15. This value is the

value of the invoke operation.

Let us now consider the same example using the partial

invocation operation.

([‘$r -> 5 ̂ _] ;

 [‘$s -> 3 ̂ r.+[s]]) ;; [10]

The partial invocation operator starts by performing

argument binding, producing the same stack as the

invoke operator. This is the stack of Example (3).

However, unlike the invoke operator, there is no

evaluation of the -expression. The stack of Example (3)

is the result of the partial invocation. This stack can later

be supplied with more arguments, and fully invoked, as

the user pleases.

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 17

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

3.4. Variable scope, and expression evaluation

Scoping rules in FOBS-X are, by nature, more

complex than scoping used in most functional languages.

Newer functional languages, such as Haskell and ML,

typically use lexical scoping. Dynamic scoping is often

associated with older dialects of LISP.
Pure lexical scoping does not cope well with variable

overriding, as understood in the object-oriented sense,

which typically involves dynamic message binding. To

address this issue, FOBS-X uses a hybrid scoping system

which combines lexical and dynamic scoping. Consider

the following FOB expression.

[‘~y -> 1̂_] ;

[‘~x ->

 [‘+n -> y.+[m] ̂ n] ;

 [‘~m -> 2 ̂_] (4)

_] ;

[‘~z -> 3 ̂x.n]

We are currently mostly interested in the FOB stack

structure of Expression (4), and can represent it

graphically with the stack graph, given in Fig. 2. In the

stack graph each node represents a simple FOB, and is

labeled with the variable defined in the FOB. Three types

of edges are used to connect nodes: the s-pointer, the t-

pointer, and the -pointer. The s-pointer describes the

lexical nested block structure of one FOB defined inside

of another. The s-pointer for each node points to the FOB

in which it is defined. For example m is defined inside of

the FOB x.

Fig.2. Stack graph of Example (4)

The t-pointer for each node points to the super-FOB of

a FOB. It describes the FOB stack structure of the graph.

In Fig. 2 there are basically two stacks: the top level stack

consisting of nodes z, x, and y, and the nested stack

consisting of nodes m, and n.

The -pointer is a back pointer, that points up the FOB

stack to the top. This provides an easy efficient

mechanism for finding the top of a stack from any of the

nodes in the stack.

If the FOB z were invoked, it would access the FOB x

for the value of n. This would cause the expression y + m

to be evaluated, a process that demonstrates the use of all

three pointers. The process of resolving a reference in

FOBS-X first examines the current FOB stack. The top of

the current stack is reached by following the -pointer.

Then the t-pointers are used to search the stack from top

to bottom. If the reference is still unresolved, the s-

pointer is used to find the FOB stack enclosing the

current stack. This enclosing stack now becomes the

current stack, and is now searched in the same fashion,

from top to bottom, using the -pointer to find the top of

the stack, and the t-pointers to descend to the bottom.

To illustrate this procedure for the example, to locate

the definition of the variable y, referenced in the FOB n,

the -pointer for n is followed up to the FOB m, this FOB

is examined, and then its t-pointer is followed down to

the FOB n, which is also examined. Not having found a

definition for the variable y, the s-pointer for FOB n is

followed out to the FOB x , and then the -pointer is

followed up to the FOB z. FOB z is examined, and its t-

pointer is traversed to FOB x, which is also examined.

Then the t-pointer for FOB x is finally followed down to

the FOB y, which supplies the definition of y needed in

the FOB n.

As mentioned above, the scoping for FOBS-X is a

combination of lexical and dynamic scoping. S-pointers

are lexical in nature, since the nesting of FOBs is a static

property. T-pointers and -pointers are dynamic. These

pointers must be created as new FOB stacks are created

during execution.

Table 1. Operations for the Boolean FOB

Libary FOB Operation Description

Boolean b.if[x, y]

If Boolean value b is

true, return x,

otherwise return y

 b.&[x]

Return the boolean

value of the

expression xb

 b.|[x]

Return the boolean

value of the

expression xb

 b.![]

Return the boolean

value of the

expression

IV. THE FOBS LIBRARY

As FOBS-X can be extended by adding new primitive

FOBs to the library, we use the term native primitive

FOBs to denote the primitive FOBs that are part of core-

FOBS. The FOBS library contains definitions of all

native primitive FOBs. The native primitive FOBs are Int,

Char, Real, Boolean, Vector, String, and FOBS. In

addition a set of ”mix-in” FOBs are contained in the

library, that serve the same purpose as mix-in classes

described by Page-Jones [9], providing general capabilities

to primitive FOBs. For example the Boolean FOB uses

18 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

the mix-in FOBs Eq, and Printable to supply operations

to compare Boolean values for equality, and the ability to

be printed, respectively.

The native primitive FOBs mostly implement the

native data types of the FOBS language. Each data type

provides the wrapper for the data, along with a set of

operations, used to manipulate the data. As an example,

Table 1 shows the operations provided by the Boolean

FOB. This operation structure is shown in the UML

diagram of Fig. 3. The operations for the Boolean FOB

are implication, logical and, logical or, and logical not.

The Boolean FOB inherits the operations of equals, and

not-equals form the mix-in FOB Eq, and it inherits the

toString function, that generates a print-string, from the

FOB Printable.

Fig.3. Interface for the Boolean FOB

The primitive FOB FOBS is the one primitive FOB

that does not implement a data type. This FOB is, initially,

largely empty. It, however, provides the mechanism for

extending the FOBS-X language, allowing it to be

adapted to differing scripting environments. The user of

the FOBS-X language extends the language by adding

modules to the FOBS FOB, one for each extension to the

language.

V. EXTENSIONS

FOBS is a language that is designed to be extensible,

both in terms of syntax, and semantics. To extend the

language the user designs an extension. An extension is

defined by an extension module, which is composed of

two pieces: a macro file, and a collection of library

modules.

5.1. Macro files

FOBS-X allows the syntax of the language to be

changed in a limited fashion. The mechanism used to

modify the syntax is macro expansion. Before a FOBS

expression is parsed, a macro processor is used to expand

macros used in the code. In this way, the user can alter

the syntax of FOBS expression by writing and loading

the appropriate macros to handle the changes.

Many programming languages have macro capabilities.

These range from the fairly simple mechanisms in the

programming language C, to the relatively more

sophisticated mechanisms of LISP. It was felt that these

simple systems were inadequate for FOBS. In particular,

to implement a fair degree of flexibility, we felt that the

ability to modify syntax should be more extensive than

these types of systems offer, including a limited ability to

change delimiter symbols. The language MetaML [13]

provides much more sophisticated macro capabilities. It

is built for the manipulation of macro type code, and

implements multi-stage meta-programming. The macro

capability of FOBS-X is much lighter weight than that of

MetaML, but ideas from MetaML have found their way

into FOBS-X. In particular, we found the staging of

macro expansion useful. The staging in our case is used

to implement macro operator precedence.

Macro definitions are quadruples, which are described

in detail by Gil de Lamadrid [5]. Example (5) gives a

simple demonstration of the form of macro definitions.

the array mutate operation

#defleft

 #?x [#*i] <- #?y

#as (5)

 (#?x) . -+ [#*i , #*y]

#level

 3

#end

The macro quadruple consists of the following parts.

 S1: the search string, which includes wild-card

tokens.

 S2: the replacement string, which includes wild-

card tokens.

 P : the priority of the macro, with priority 19

being highest priority, and priority 0 being the

lowest.

 d: the direction of the scan, with right indicating

right-to-left, and left indicating left-to-right.

In the FOBS notation of Example (5) the parts of the

quadruple are specified using either the #defleft, or the

#defright directive. Firstly, the directive specifies the

direction d, depending on whether #defleft or

#defright is used. Then the search string S1, the

replacement string S2, and the priority P are specified, in

order, separated by the two delimiters #as, and #level,

and terminated by the #end directive.

The strings S1, and S2 are strings of FOBS lexicons,

and wild-card tokens. Wild card tokens are all tokens that

begin withe either the sequence ”#?” or ”#*”, indicating a

single wild card token, or a mutiple wild card token,

respectively. A single wild card matches a single atom,

and a multiple wild card matches a string of atoms. An

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 19

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

atom is either a single FOBS token, or a balanced

bracketed string, using one of the usual bracketing

characters such as parentheses or braces.

Wild cards are named, so that the match in S1 can be

referred to in S2. In Example (5), for example, the wild

cards #?x, #?y, and #*i are matched in S1, and their

values are used in S2.

The direction, d, and the priority of a macro, P, are

used to control the associativity of the operator defined

by the macro, and the precedence of the operator,

respectively. To control associativity, macros defined

with direction left are expanded left-to-right, resulting in

the definition of a left-associative operator, and macros

defined with a direction of right are expanded right-to-

left, resulting in a right-associative operator. To control

precedence, macros with higher priority are expanded

before macros with lower priority, resulting in operators

with different precedences.

5.2. The standard extension

The syntax in core-FOBS-X is a little cumbersome. It

has been designed with minimalistic notation, allowing a

concise formal description, given by Gil de Lamadrid &

Zimmerman [4]. It is not necessarily attractive to the

programmer. Standard extension (SE) FOBS-X attempts

to rectify this situation. In particular, SE-FOBS-X

includes constructs to enable the following.

 Allow infix notation for most operators.

 Eliminate the cumbersome syntax associated with

declaring a FOB.

 Introduce English keywords to replace some of the

more cryptic notation.

 Allow some parts of the syntax to be optionally

omitted.

SE-FOBS-X is a language defined entirely using the

macro processor. It demonstrates the flexibility of the

FOBS-X macro capability to almost entirely rework the

syntax of the language, without touching the back-end of

the interpreter.

To help demonstrate the changes in syntax allowed by

SE-FOBS-X, we rewrite the counter of Example (2) in

SE-FOBS-X.

#use #SE

Implementation of a standard

up-counter

(fob{

 public makeCounter

 val{

 fob{

 argument val

 ret{

 fob{

 count val{val} \

 public inc

 val{

 fob{

 ret{ (6)

 makeCounter

 [count + 1]}

 \}

 } \

 ret{count}

 \}

 }

 \}

 }

\}

test it

 .makeCounter[6].inc[].inc[])

 [])

#.

#!

The #use directive loads the standard extension macro

file. This file makes available the syntax used in the

remainder of the code. The most salient syntax feature of

the code is the fob structure, used to define FOB-stacks.

Each FOB in the stack is listed in the fob construct, and

terminated by the "\" delimiter.

A FOB declaration contains a modifier, the identifier, a

val structure, and a ret structure. The val structure defines

the e-expression for the FOB, and the ret structure gives

the -expression for the FOB. Any of the parts of the

FOB declaration may be omitted, resulting in the use of

appropriate default values. Modifiers in SE-FOBS-X are

the keywords public, private, and argument, instead of

the cryptic symbols ”‘+”, ”‘~” , and ”‘$”.

A final feature present in Example (6) is the use of the

infix version of the addition operator. All common binary

operators in SE-FOBS-X are available in their infix

version, relieving the user from using the normal core-

FOBS access and invoke notation.

5.3. Extension library modules

Macro files extend the syntax of the FOBS language.

To extend the semantics, you must add modules to the

FOBS library. The FOBS-X library is written in Perl, and

so to add modules you simply write Perl modules, and

add them into the appropriate library directory structure.

This process initially may sound simple. On further

reflection, it becomes obvious that to do this

 One needs to be fairly familiar with the structure

of the FOBS-X library.

 One must be familiar with how to manipulate

FOBs in Perl.

While it is reasonable to expect a user requiring

complex semantic changes to learn the required material

to develop library modules from scratch, it is an

unreasonable burden to impose on the user that desires to

20 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

make only minor changes to the semantics of FOBS. To

make small changes it is more appropriate for the user to

do so using a tool that simplifies the process. The tool

that we have developed is the FOBS Extension Definition

Language Extension (FEDELE).

When designing FEDELE, we first thought of a meta-

language that was implemented as an external tool.

However, since FOBS is a scripting language, and

designed for just such work, we rapidly realized that it

made sense to implement FEDELE as a FOBS-X

extension. FEDELE is, therefore, a FOBS-X extension

that helps the user create other FOBS-X extensions.

VI. THE FEDELE OPERATING ENVIRONMENT

The standard extension is unusual in that it is an

extension with only one component: the macro file. No

semantic changes are made to FOBS; only syntactic

changes. Most extensions contain both a macro file and

library modules. FEDELE is a more usual extension.

Library modules provide the capabilities of the package,

and a macro file provides more convenient syntax for

using it.

The FEDELE extension provides a simpler way of

writing the library modules necessary for implementing

an extension. The FEDELE language allows the user to

specify the structure of the extension much in the same

way that YACC (see Johnson [7]) allows a programming

language designer to specify the structure of a new

programming language. The specification is translated

into a set of Perl modules implementing the extension.

The modules are then placed in a directory, and the

directory path is placed on the Perl include path @INC,

extending the directories searched for library modules.

This summarizes the process of extending the library, but

to continue our discussion of FEDELE, we will need to

examine the structure of the FOBS-X library in more

detail.

6.1. The FOBS library implementation

The FOBS-X library is composed of a collection of

primitive and utility FOBs. As explained previously

primitive FOBs use utility FOBs to mix-in general

capabilities. However, from the standpoint of structure,

there is no difference between a primitive and a utility

FOB. In this discussion we will therefor consider only the

structure of a primitive FOB.

To illustrate the structure of a primitive FOB, we take

as example the FOB Boolean. The Boolean FOB can be

represented in UML as shown previously in Fig. 3. It

contains an instance variable val that contains the actual

Boolean value, represented as a character string. It also

contains the common Boolean operations of and, ”&”,

or, ”|”, and not, ”!”. In addition it contains the operator if

that implements the implication operator. The FOB

Boolean inherits operations from the FOBs Eq, and

Printable. From Eq it inherits the operations equals, ”=”,

and not-equals, ”!=”. From Printable it inherits the

operation toString, that converts a Boolean value into a

printable string.

It should be noted that the term ”inheritance” for

primitive FOBs is only loosely applied. In fact, the

mechanism is more of a message-forwarding mechanism.

That is to say that, for example, if a Boolean FOB

receives an equals access request, the request is

forwarded to its parent Eq FOB.

Implementing the Boolean FOB in Perl is done with

two structures: a hash table, containing the data of the

primitive FOB, and a Perl module, Boolean, that contains

code for all of the operations in the primitive FOB.

6.2. Primitive FOB Hash Table Structure

The hash-table representing the data in a primitive

FOB stores information in attribute-value pairs. The

attributes of interest are the following.

 type - This attribute gives the type of the FOB.

Using the notation described by Gil de Lamadrid

& Zimmerman [4], a primitive FOB is of

type ”omega”, and a non-primitive FOB has

type ”phi”.

 code - This attribute stores the name of the

primitive FOB. For the FOB Boolean, the code

attribute would have the value ”Boolean”.

 Super-FOBs - This is a collection of attributes,

one per parent FOB. Each of these attributes stores

an instance of one of the parent FOBs. For the

FOB Boolean there are two such attributes.

superEq stores an instance of the primitive FOB

Eq, and superPrintable stores an instance of the

primitive FOB Printable.

In addition to the above standard attributes, the

primitive FOB hash-table contains attributes that are

specific to the particular primitive FOB. For the Boolean

primitive FOB, there is only one more attribute: the

attribute val, that holds the Boolean value of the FOB,

stored as a character string.

6.3. Primitive FOB Module Structure

The main library module for a primitive FOB has the

same name as the primitive FOB. For example, for the

primitive FOB Boolean there is a Perl module called

Boolean. This module has four standard functions in it.

 construct - This function constructs the hash table

representing an instance of the primitive FOB.

 constructConstant - This function is an extension

of the function construct. It constructs the instance,

using construct, and then initializes it by filling in

any instance variables.

 alpha - This is the function that is described by

Gil de Lamadrid & Zimmerman [4]. It takes a

single argument, a character string, and accesses

the primitive FOB for the value of the identifier

specified by the argument.

 iota - This is the function described by Gil de

Lamadrid & Zimmerman [4]. It takes a single

argument, a Vector FOB, and invokes the

primitive FOB using the vector to supply its actual

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 21

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

arguments.

6.4. Operation Modules

The main module of a primitive FOB is not the only

module needed to define the FOB. To understand why

this is so, consider the following FOBS code, and the

semantics of invocation.

false.&[true] (7)

In this expression, the Boolean FOB false is being

accessed for its and operation. The operation is then

being invoked, with the argument true. However, the

question arises, when we say that the operation is

invoked, what, in fact, is an operation, in terms of

implementation? The simple answer is that if an

operation is invoked, then it must be a FOB, because only

FOBs are invoked. This observation becomes trivially

clear when we look at an example that does not involve a

primitive FOB.

[‘+ & -> [‘~_ -> _ ̂ false]

 ^ _]. & [true] (8)

In this example, as in Example (7), a FOB is accessed

for an ”&” operation, and the operation is invoked with

the Boolean FOB true. The difference is that in Example

(8) the FOB being accessed is not a primitive FOB. What

is produced by the access operation is a FOB, in this case,

that always returns the value false. We observe that the

same must be true of Example (7). That is to say that an

access operation always produces a FOB, whether the

FOB being accessed is a primitive FOB or not.

What the above discussion points out is that when we

access an operator in a primitive FOB, what is produced

is a FOB. That FOB, when invoked would perform the

particular operation. Every operator in a primitive FOB

must have defined a FOB that will perform the given

operation. For a library FOB such as Boolean, each of its

operators is defined as a primitive FOB. For example the

and operator for the FOB Boolean is defined as a

primitive library FOB called Boolean_and. We refer to

library modules for the operations of a primitive FOB, as

primitive operation modules.

To summarize, a primitive FOB is represented as a set

of library modules. These consist of the main library

module, described above, and a set of operation modules,

one per operation. An operation module contains the

same functions as the main module. That is to say that the

operation module will have a construct function, a

constructConstant function, an alpha function, and an

iota function, each with the same role as in the main

module. Each of these functions would perform actions

appropriate to the operator. That is to say that the alpha

function would always return an empty FOB, and the iota

function would perform the operation of the operation

module.

6.5. Extension Access

Once the user has defined an extension, the language

FOBS-X must be able to allow the user to use the

extension. This section describes the mechanism used to

allow FOBS-X code to use an extension.

The modules of the extension can be placed at any

location in the directory hierarchy of the operating system.

The author of the extension then must inform the FOBS-

X interpreter where the extension is located. As discussed

previously, this is done by ensuring that the extension

directory is on the list of include directories for Perl,

@INC. This is easily done by setting the environment

variable PERL5LIB to the extension path.

Recall that the two components of an extension are the

macro file, and the library modules. We discuss how the

FOBS-X interpreter locates both of these components in

this section. We begin with how the macro file is located.

A macro file is loaded with the #use directive. An

example might be

#use Count

This directive tells the FOBS-X interpreter to look for

a file called Count.fobs containing the macros of the

extension. What the FOBS-X interpreter does then is to

search Perl include directories, listed in the array @INC.

There are two exceptions to the procedure, as illustrated

in the following #use invocations.

#use #SE

 #use #FEDELE

The extensions #SE, the standard extension, and

#FEDELE are considered part of the FOBS-X language,

and as such are located in a separate default FOBS

include directory.

We now turn to the location of library modules. The

standard mechanism for accessing the library in FOBS is

a reference to a constant. For example, if a FOBS

expression contains a reference to the constant true, the

FOBS interpreter observes that this is a Boolean constant.

The interpreter then goes to the default library directory,

locates the main Boolean module, and invokes its

constructConstant constructor function to create the hash-

table. ConstructConstant also links the main module to

the hash-table, using a Perl mechanism called blessing,

effectively making the hash table an object, in the object-

oriented sense, which is to say that the hash table can be

sent messages corresponding to any of the functions

defined in the main Boolean module.
When the user defines their own library module, the

above procedure cannot be used, because there is no

FOBS constant for the new primitive FOB that would

trigger the FOB construction. Instead, the construction of

a FOB is triggered using the FOB FOBS. This is

illustrated in the following FOBS expression.

22 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

FOBS.Count.new[5] (9)

The FOB FOBS is a primitive FOB in the FOBS-X

library used to present links to extensions to the user. In

Example (9), the user is attempting to access the

identifier Count, which is the name of an extension. This

identifier is not explicitly defined in the FOB FOBS.

However, the FOBS-X interpreter will consider it

implicitly defined, and, when referenced, will attempt to

load the main module for the extension from the list of

Perl include directories.

If we assume that the Count FOB is defined along the

lines of the UML diagram in Fig. 1, the Count FOB has

one operation, inc, explicitly defined. For every extension,

generated by FEDELE or not, the primitive FOB must

also contain a new operation. This operation, when called,

generates a new instance of the FOB, and calls the

constructConstant constructor for the FOB. In Example

(9), the new operator is called to construct a primitive

Count FOB, initialized to the value 5.

VII. THE FEDELE EXTENSION

This section describes the components of the FEDELE

extension. FEDELE has both a macro file, extending the

syntax of FOBS to more easily specify extension

components, and library modules, providing the operators

required to specify the contents of the library modules of

the new extension, and write the module out. We begin

by describing the FEDELE operations.

7.1. The FEDELE Primitive FOB

The primitive FOB FOBS.FEDELE is a very

uncomplicated FOB that has no accessible identifiers in it,

and can only be invoked. The result of an invocation is a

FEDELE_module FOB. The FEDELE_module is a data

structure used to collect information on the new FOB

being described. Fig. 4 is the UML diagram showing the

two FOBs: FEDELE, and FEDELE_module.

Fig.4. Interface for FEDELE

The FEDELE_module FOB contains variables for

storing the following items

 mixIn: a list of primitive mix-in FOBs.

 makeID: a list of identifiers that will be included

in the hash-table representing the FOB.

 element: a list of operations that will be included

in the FOB. Each operation is represented as a pair

consisting of the operation name, and a snippet of

Perl code that will become the body of the iota

function for the operation.

 invokeValue: a snippet of Perl code that will

become the body of the iota function for the new

FOB itself.

 modulePath: the directory on to which the files of

the library module will be written.

In addition to the above variables, the

FEDELE_module also contains operators for adding

items to its data structures. Each operation adds an item

and returns the modified FEDELE_module.

7.2. The FEDELE Macros

The second part of the FEDELE extension is a macro

file that defines the FEDELE language, and allows easier

specification of a primitive FOB. The FEDELE language

is a structured language. The structures of the language

are listed in Table 2.

A FEDELE specification, at the outer level is an

extension structure. This structure would contain clauses;

each clause being either a mixIn, a make, an element, or

an invoke structure. This is illustrated more clearly in the

next section. FEDELE translates the extension structure

into FOBS code that creates a FEDELE_module. The

clause structures are translated into FEDELE_module

operations that add the appropriate elements to the

module. For example, the make clause would translate

into an invocation of the addMakeId operator shown in

Fig. 4.

VIII. A FEDELE EXAMPLE

We now present an example to illustrate how FEDELE

is used. Suppose that the user wished to add a primitive

FOB to the library that is similar to the counter FOB of

Example (2). Remember that this example is illustrated in

UML in Fig. 1. The new library FOB, however, unlike

the counter of Example (2), will be mutable. That is to

say that a counter will have state, and each time the

counter is incremented it will change its state, rather than

produce a new counter with the modified state. This new

counter will also support two new syntactic constructs:

one to easily construct a counter, and one to increment

the counter. The syntax of these operations is illustrated

in the following example.

++(%C(5))

This example uses the ”%C” operator to create a

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 23

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

counter initialized to 5. The second operator

illustrated, ”++”, is used to increment a counter.

Table 2. FEDELE macro operations

Structure Description

extension " xtnd "

 { clauses } to path

Defines an extension with name
xtnd, to be written to the given

directory path. It contains clauses
giving the content of the

extension xtnd.

mixIn mixinFOB
A clause indicating that the FOB

mixinFOB from the library is a

super-FOB for this FOB. This
clause can be repeated to include

several super-FOBs.

make { idList }
Describes the constant

constructor for the FOB. The
constructor will be available as

the function FOBS.xtnd.new.

New takes an argument for each
identifier listed, and stores the

argument as the value of the
identifier. The idList is given as a

list of strings, separated by

commas.

element " id " as

 " perlScript "

Gives the name of an element, or

operator, of the FOB available
through the access operator. The

included Perl script gives the
value returned if the operator is

invoked.

invoke " perlScript "
The Perl script gives the result of

an invoke operation on the FOB

itself.

Our new counter will also allow the user to increment

the counter by any value, as opposed to just an increment

of one. An increment of more than one will not be

supported by the macros, but can still be accomplished by

using the inc function itself, as in

c.inc[3]

that increases the value of the counter c by 3. Fig. 5

shows the new FOB structure in UML.

8.1. The Counter FEDELE Specification

The extension specification for our new counter

consists of a FEDELE specification describing the library

modules, and a macro file defining the syntax of the

constructor operator, and the increment operator.

Fig.5. The mutable counter FOB

We begin by presenting the FEDELE code to generate

the library modules.

FEDELE specification to

generate the example counter

#use #FEDELE

extension "Count" {

 mixIn "Printable"

 make {"count"}

 element "inc" as "

 $args = lib::

 PrimitiveFobs

 ->thunkDown($args->[0]);

 if($args eq $undef){

 return(lib::

 PrimitiveFobs::

 getEmpty())

 };

 if($args->{type} eq

 \"omega\" &&

 $args->{code} eq

 \"Int\"){

 $it->{count}->{val}

 += $args->{val}; (10)

 return($it);

 }

 return(lib::PrimitiveFobs

 ::getEmpty());

 "

24 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

 element "toString" as "

 my $v = $it->{count}->

 {val};

 return(lib::FEDELE::

 evalString(

 \"\\\"%C:\\\" (10 cont.)

 .+[$v .toString[]] \"));

 "

 invoke "

 return($it->{count});

 "

} to "e:/fobs-x/code/Count"

#.

#!

Considering the overall structure of Example (10), it is,

in fact, faithful to the UML description of Figure 5. It

specifies a mix-in FOB Printable, an identifier count, two

operations, inc, and toString, and a return value when

invoked.

The Perl code snippets from Example (10) illustrate

several issues concerned with the interface between

FOBS-X and Perl. The first issue is how to enable a Perl

segment to access the arguments of the function call. This

is accomplished through the use of several special

variables.

 $it - The FOB being operated on. That is to say

that $it is the target of the invoke operation.

 $args - A Vector FOB containing the arguments

of the invoke operation.

The object $it contains all the identifiers declared in

the FEDELE declaration as hash attributes. For instance,

in the Count FOB, the sequence $it->{count} is the

count identifier of Fig. 5.

To access the arguments in the variable $arg a helper

function is necessary. The arguments to FOBs are stored

in thunks. To be used, the FOB inside the argument thunk

must be unwrapped and evaluated. The function

lib::PrimitiveFobs->thunkdown can be used for this

purpose, as demonstrated in the definition of the operator

inc.

There are a couple of other useful Perl functions used

in Example (10). The function

lib::PrimitiveFobs::getEmpty can be used to create

an instance of the empty FOB, a FOB often used to signal

an exception. Another function

lib::FEDELE::evalString is used to evaluate FOBS

expressions within the Perl code. This is a useful feature.

Often it is easier to perform certain actions in FOBS, than

in Perl. EvalString provides the ability to mix Perl with

FOBS code, allowing the user to choose the more

efficient implementation.

8.2. The Counter Macro File

The second component of the extension is the macro

file that introduces more compact syntactic notation for

the new counter operations. The contents of the file are

shown in Example (11).

macros for the Counter

example FOB

#defleft

 % C (#?op)

#as

 (FOBS . Count . new

 [#?op])

#level

 9

#end (11)

#defleft

 ++ #?op

#as

 #?op . inc [1]

#level

 8

#end

#!

The macro file contains the definitions of two macros.

The first one implements the constructor structure with

the "%C" notation. It matches a string beginning with the

character sequence "% C", and followed by a single atom

enclosed in parentheses. This sequence is replaced by an

invocation of FOBS.Count.new with the matched atom as

an argument.

The second macro is for the increment operator. It

matches the operator ”++” followed by an atom, and

replaces it with an invocation of the inc operation on the

matched atom with argument 1.

8.3. Stateful and stateless programing

The counter defined by Examples (10) and (11)

demonstrates rather graphically one of the issues

concerning the hybrid paradigm of FOBS. There is a

dichotomy between functional programming and object-

oriented programming. The object-oriented paradigm

clearly involves the explicit maintenance of state. In fact

we often refer to the bindings of instance variables as the

state of the object. On the other hand, although state does

exist in functional languages, and is usually maintained

by the system stack, it is not manipulated explicitly, in

the sense that the program does not change the state

directly as is the case in imperative and object-oriented

programs, but rather indirectly by invoking functions. But,

this difference between the two paradigms often becomes

significant, and produces awkward situations in FOBS.

One of the defining characteristics of FOBS is

referential transparency. This puts FOBS squarely in the

camp of stateless programming. This is seen when we

observe, for example, that identifiers can be bound to a

value only once. Mutable objects are not an option in this

style of programming.

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 25

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

On the other hand, mutable objects are a staple of

object-oriented programming. Also, state is often an

integral part of scripting environments. For example,

operating systems scripting often involves manipulating

the state, represented as environment variables. To

accommodate these situations in a language that

advertises itself as an universal scripting language, it is

not unreasonable for the user to wish to introduce state

into FOBS. This is not difficult; the library can be

extended to include mutable FOBs, as for example the

Count FOB. However, it is still a stretch to use the

language FOBS to manipulate these new mutable FOBs.

In particular, what is needed to handle mutable FOBs is

the ability to define operators whose return values are not

used, but rather they are invoked only for their side-

effects on the state.

The problem of doing this type of stateful

programming in a functional paradigm has been well

researched, and has resulted in a body of literature on

monadic programming (see Peyton Jones & Wadler [10],

for example). Related to these results is a technique that

has long been used in the object-oriented paradigm,

called method chaining. This technique is used to pass

multiple messages to the same object, as in the example

recipient.doX(xArg).doY(yArg)

in which the mutable object recipient is being first sent

the message doX with the argument xArg, followed by the

message doY with the argument yArg. Although the

operations doX, and doY,naturally, might be thought of as

returning no value, with the chaining technique they

would instead return the object being operated on,

recipient. In this way the next message in the chain is

sent to the same recipient. One can think of the operators

as passing the state along the chain from one operator to

the next.

The technique of chaining is used in FOBS to handle

mutable objects, allowing a sequence of operations

resulting in state changes. Its effects can be observed in

the code snippets of Example (10). The operator inc is

defined to return the variable $it, which is the target FOB,

and this allows FOBS expressions such as ++(++%C(5)),

with a chain of increment operations being applied to the

same FOB.

IX. FOBS AND SCRIPTING

The intended use of FOBS-X is as a universal scripting

language. Scripting languages are used to automate

processes in a variety of environments. One of the most

prevalent uses is in operating system interface. Scripting

languages have also become very useful in creating

dynamic web pages, and handling the collection of data

using forms. They are also used in application programs,

such as spreadsheets to automate calculations or

procedures. In each of these applications the runtime

system has two major components: an interpreter to

execute scripts, and an interface that allows the script to

interact with the environment. In FOBS-X, the library

FOB FOBS is the interface to the environment. To adapt

FOBS-X to a particular environment, an extension is

created in the FOB FOBS. This extension contains all

operations required for the interface, defined as FOBs.

As seen in the previous section, we have somewhat

automated the process of creating these extensions. The

user supplies a FEDELE description of an extension, and

it is translated into a Perl definition.

We have commenced the construction of a UNIX

extension. We present an example of how this extension

might be used in scripting. A simple UNIX C-shell script

follows that takes a command line argument, and prints

out all file names in the current directory containing that

string.

#!/bin/csh

 if ($#argv == 0) then

 echo Usage: $0 name

 exit 1

 else

 set user_input =

 $argv[1]

 ls | grep i

 $user_input

 endif

 exit 0

Assuming that an extension UNIX has been created,

the above code could be translated into SE-FOBS-X as

follows.

#use #SE

#use UNIX

 if {unix.args.length[] = 0}

 then {

 ## execute echo and exit

 ## in sequence, using

 ## the UNIX extension

 ## operation =>,

 ## (sequence)

 unix.echo["Usage: " +

 unix.args[0] +

 " name"]

 => unix.exit[1]

 } else {

 fob {

 userInput

 val {

 unix.args[1]

 }

 ret {

 ## use the UNIX

 ## package

 ## operator || to

 ## perform the

26 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

 ## UNIX pipe

 ## operation on

 ## ls and grep,

 ## and use the

 ## sequence

 ## operator to

 ## follow this

 ## with an exit.

 unix.ls[] ||

 unix.grep["i",

 userInput] =>

 unix.exit[0]

 } \

 }[]

 }

#.

#!

This script begins with two directives that inform the

FOBS preprocessor that the standard and UNIX

extensions are being used. The UNIX extension makes

available the keyword unix, that is a convenience

definition that allows the user to use this simple keyword,

rather than the full specification, FOBS.UNIX.

Another notation defined in the UNIX extension is the

operator ”=> ”, which might be called the sequence

operation. This operator is used to interact with UNIX,

which is stateful, using the FOBS computational model,

which is stateless. In UNIX, operations are performed in

sequence, and although they return values, they are

usually performed for their side effects. The sequence

operator takes as operands two FOBS expressions

representing UNIX commands, performs them in

sequence, alters the UNIX environment, and returns the

return value of the last command as a FOB. The operator

implements the chaining technique, discussed in Section

8.3.

A last notation used in the example is the operation ”||”.

This is also part of the UNIX extension, and implements

the UNIX pipe operation.

As a universal scripting language, FOBS-X will often

be required to interact with stateful environments. The

FOBS-X library gives FOBS-X that ability, although

such interaction diminishes the referential transparency of

the language. To ameliorate the situation, the library is

structured to isolate all operations with side effects in the

FOB FOBS.

X. CONCLUSION

We have briefly described a core FOBS-X language.

This language is designed as the basis of a universal

scripting language. It has a simple syntax and semantics.

FOBS-X is a hybrid language, which combines the

tools and features of object oriented languages with the

tools and features of functional languages. In fact, the

defining data structure of FOBS is a combination of an

object and a function. The language provides the

advantages of referential transparency, as well as the

ability to easily build structures that encapsulate data and

behavior. This provides the user with a choice of

paradigms.

Core-FOBS-X is the core of an extended language, SE-

FOBS-X, in which programs are translated into the core

by a macro processor. This allows for a language with

syntactic sugar, that still has the simple semantics of our

core-FOBS-X language.

Because of the ability to be extended, which is

provided by SE-FOBS-X, the FOBS-X language gains

the flexibility that enables it to be a universal scripting

language. The language can be adapted syntactically,

using the macro capability, to new scripting applications.

The Extension FEDELE allows the semantics of the

language to be adapted to new applications. FEDELE

makes the process of extending the library easier, by

automatically generating new library modules from a

high-level specification language.

We are currently working on developing extensions for

various scripting environments. Our next project is to

produce a UNIX extension. Further in the future, we plan

to investigate using FOBS for web scripting applications.

REFERENCES

[1] A. Alexandrescu The D Programming Language, Adison

Wesley, 2010.

[2] M. Beaven, R. Stansifer, D. Wetlow, ”A functional

language with classes”, Lecture Notices in Computer

Science, vol. 507, Springer Verlag, 1991.

[3] D. Beazley, G. Van Rossum: Python; Essential Reference.

New Riders Publishing, Thousand Oaks, CA. 1999.

[4] J. Gil de Lamadrid, J. Zimmerman, ”Core FOBS: a hybrid

functional and object-oriented language”, Computer

Languages, Systems & Structures, vol. 38, 2012.

[5] J. Gil de Lamadrid, ”Combining the functional and object-

oriented paradigms in the FOBS-X scripting language”,

International Journal of Programming Languages and

Applications, vol. 3, no. 2, AIRCC, Oct. 2013.

[6] J. A. Goguen, J. Mesegner, ”Unifying functional, object-

oriented, and relational programming with logical

semantics”, Research Directions in Object-Oriented

Programming, pp. 417-478, MIT Press, 1987.

[7] S. C, Johnson, Yacc: Yet Another Compiler-Compiler.

AT&T Bell Laboratories. 2014.

[8] X. Leroy, D. Doligez, A. Frisch, J. Garrigue, D. Remy, J.

Vouillon, The OCaml System Release 4.00:

Documentation and Users Manual. Institut National de

Recherche en Informatique et en Automatique, 2012.

[9] M. Page-Jones, Fundamentals of Object-Oriented Design

in UML, pp. 327-336, Addison Wesley, 2000.

[10] S. L. Peyton Jones, P. Wadler, ”Imperative functional

programming”, POPL, Charleston, Jan, 1993.

[11] S. S. Yau, X. Jia, D. H. Bae, ”Proof: a parallel object-

oriented functional computation model”, Journal of

Parallel Distributed Computing, vol. 12, 1991.

[12] M. Odersky, L. Spoon, B. Venners, Programming in

Scala, Artima, Inc. 2008.

[13] T. Walid, T Sheard, ”MetaML and multi-stage

programming with explicit annotations”, Proceedings of

ACM SIGPLAN Symposium on Partial Evaluation and

Semantic Based Program Manipulation, pp. 203-217,

Amsterdam, NL, 1997.

 Extending the Syntax and Semantics of the Hybrid Functional-Object-Oriented 27

Scripting Language FOBS with FEDELE

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 5, 13-27

Authors’ Profiles

James Gil de Lamadrid: has a PhD. in

computer science, from the University of

Minnesota, Minneapolis, Minnesota, USA.

He is currently an Associate Professor at

Bowie State University. He has multiple

publications in the fields of robotics, and

programming languages.

How to cite this paper: James Gil de Lamadrid,"Extending the

Syntax and Semantics of the Hybrid Functional-Object-

Oriented Scripting Language FOBS with FEDELE",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.8, No.5, pp.13-27, 2016. DOI:

10.5815/ijitcs.2016.05.02

