
I.J. Information Technology and Computer Science, 2016, 4, 63-73
Published Online April 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.04.08

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

Hybrid Real-time Zero-day Malware Analysis

and Reporting System

Ratinder Kaur and Maninder Singh
Computer Science and Engineering Department, Thapar University, Patiala-147004, India

E-mail: ratinder@thapar.edu, msingh@thapar.edu

Abstract—To understand completely the malicious

intents of a zero-day malware there is really no automated

way. There is no single best approach for malware

analysis so it demands to combine existing static,

dynamic and manual malware analysis techniques in a

single unit. In this paper a hybrid real-time analysis and

reporting system is presented. The proposed system

integrates various malware analysis tools and utilities in a

component-based architecture. The system automatically

provides detail result about zero-day malware’s behavior.

The ultimate goal of this analysis and reporting is to gain

a quick and brief understanding of the malicious activity

performed by a zero-day malware while minimizing the

time frame between the detection of zero-day attack and

generation of a security solution. The results are

paramount valuable for a malware analyst to perform

zero-day malware detection and containment.

Index Terms—Zero-day Attacks, Unknown Attacks,

Static Analysis, Dynamic Analysis, Malware Reporting.

I. INTRODUCTION

Zero day attacks are reality and their number reported

each year increases immensely. In recent years, zero-day

attacks have been dominating the headlines for political

and monetary gains. They are a potent weapon in the

hands of attackers and are being used as essential success

vectors in various sophisticated and targeted attacks.

These secret weapons give attackers a crucial advantage

over their targets to break into traditional security

products that identify only known, confirmed threats.

Attackers always deploy the latest technology and

constantly change techniques to infiltrate systems. The

zero-day attacks are among the top security concerns that

the modern enterprises face today. People talked about

zero-day attacks few years back, but today every industry

faces it. Reports and news on the Internet security shows

an alarming increase of such attacks against both

corporate and home user systems [1].

McAfee Labs [2], Panda Labs [3] reported that the

sheer number of unique malware samples grows

exponentially every year. Attackers use automated tool

kits to generate several thousand malware variants at

once with armoring techniques like run-time obfuscation,

polymorphism and packers. It is estimated by security

experts that more than 70,000 new instances of malware

are released each day [4]. Thousands of new malwares

are emerging and the existing malwares are evolving in

their structure every single day to achieve stealth with

respect to standard intrusion detection and malware

analysis techniques. In the present scenario the existing

detection and analysis methods are inefficient to deal

with the exponential growth of zero-day malware arising

from innumerable automated obfuscations.

To defend against zero-day malware there has been a

shift from signature-based [5-8, 38] to anomaly-based

detection [9] and behavioral-based detection [10-16, 39].

Various behavior-based detection techniques have been

proposed that understands the behavior of zero-day

malware through dynamic execution [10, 11]. Behavior

based techniques look for the essential characteristics

(indicators) of malware which do not require the

examination of payload byte patterns. They focus on the

actual dynamics of the malware execution to detect them.

They monitor the behavior of malicious software in a

controlled environment, no matter what, a piece of

malware will behave badly while running. This is an

effective way to detect zero-day malware without waiting

for them to do any harm. For behavior-based detection

there is a need to monitor the events that characterize the

execution of the malicious program. The most promising

and effective technique to characterize the behavior of a

program is to monitor the system call functions. System

calls provide an intrinsic abstraction of a set of actions

executed by malware. All variants of one malware exhibit

similar behavior and samples with same functionality

may also have similar behavior. Existing system call

behavioral models [17-19] are derived from the results of

malware analysis.

Malware analysis is the art of dissecting malware to

understand how it works, how to identify it, and how to

defeat or eliminate it [20]. It is a critical task for

responding to computer or network security incidents as

it allows to better assess the nature of a security incident

and may even help to prevent further infections.

Therefore, malware analysis is a necessary to develop an

effective detection technique. To turn malicious programs

inside out and to understand their inner workings a core

set of tools and techniques is required for analyzing.

Analyzing malware is a time-consuming task and it

usually involves notable manual effort which by itself

requires significant expertise to be carried out. The

traditional approach of malware analysis requires lots of

manual effort. It involves: (1) allocating physical or

virtual systems for the analysis, (2) isolating analysis

64 Hybrid Real-time Zero-day Malware Analysis and Reporting System

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

systems from the production environment, (3) installing

several open-source or commercial behavioral analysis

tools and code-analysis tools, and (4) utilizing online

analysis tools. It is a tedious time intensive process which

increases observation duration. This traditional approach

is becoming powerless as the number of malware samples

are constantly evolving and increasing. The manual

analysis work increases included delay between the

detection of zero-day malware and its containment.

In this paper a hybrid real-time zero-day malware

analysis and reporting system is proposed. The proposed

system integrates existing malware analysis tools and

techniques in a component based architecture to work as

a single unit. It combines the advantages of static,

dynamic, and manual analysis to generate a

comprehensive report on zero-day malware behavior.

This paper makes the following contributions:

 The proposed system addresses the research

problems with existing approaches in zero-day

malware analysis automatically with minimal

manual intervention. It aims at integrating

traditional steps involved in malware analysis.

 The proposed system integrates the functionalities

of static, dynamic, and manual analysis to generate

a comprehensive report on zero-day malware

behavior. Hence, decreasing actual analysis time.

 The proposed system is able to analyze malware

that employ anti-analysis techniques to detect

virtual or emulated environment. The system uses

real host with Operating System restore backup for

analysis hence, reducing virtualization and

emulation overheads.

The remainder of the paper is organized as follows. In

Section 2, related work is summarized. In Section 3, the

detailed working of the proposed system is presented.

Finally Section 4, describes the results and the paper is

concluded in Section 5.

II. RELATED WORK

There are basic two approaches for malware analysis,

which security professionals perform: Static (Code)

Analysis and Dynamic (Behavioral) Analysis. Although

both types accomplish the same goal of explaining how

malware works, the tools, time and skills required to

perform the analysis are very different.

The static analysis allows to learn malware’s

capabilities by examining the code from which the

program was comprised. While performing static analysis

anti-virus software is run to confirm maliciousness,

hashes are used to identify malware, strings are searched,

functions, headers and scripts are analyzed. Static

analysis is mostly conducted manually and can be applied

on different representations of a program. If the source

code is available, information such as variables, data

structures, used functions and call graphs can be extracted.

Static analysis is also used on the binary representation of

a program. Static analysis is tricky and time-consuming,

because source code of malware is not always available.

Instead, the complied executable’s functionality is

examined at the assembly level using a disassembler such

as IDA Pro [21], which converts the instructions from

their binary form into the human-readable assembly form.

Various static malware analysis methods have been

proposed [22-24]. Static analysis offers a significant

improvement in malware detection accuracy while

compared to traditional pattern matching. But its main

weakness lies in the difficulty to handle obfuscated and

self-modifying code [25]. Eureka [26] provides a

malware de-obfuscation framework, to assist in static

analysis. It uses a novel binary unpacking strategy based

on statistical bigram analysis and coarse-grained

execution tracing. MaTR [27] combines machine learning

algorithm with static heuristic features for unknown

malware detection. A program analysis tool [28] is

proposed to automatically derive data invariants from

source code, using static analysis. The tool applies

compiler technology to analyze the control and data flows

(e.g., assignments, function calls, and conditional

statements) of a target program and hypothesizes likely

invariants (e.g., constant, membership, bounds, and non-

zero). API-CFG [29] extracts control flow graphs from

programs and combines it with extracted API calls to

have more information about PE files.

During dynamic analysis it is examined how the

malware behaves and interacts with its environment when

executed. In dynamic analysis the malware is executed on

an isolated or virtual system, its interaction with overall

system including file system, registry, system processes

and network is observed [37]. Sometimes, it is required to

interact with the malware to discover its additional

characteristics and for this debuggers are used to examine

the internal state of a running malware. Generally, there

are two main approaches for dynamic malware analysis.

(1) Analyzing the difference between defined states: A

given malware is executed for a certain period of time

and afterwards the modifications made to the system are

analyzed by comparison to the initial system state. In this

approach, comparison report states behavior of malware.

(2) Observing runtime-behavior: In this approach,

malicious activities launched by the malicious application

are monitored during runtime using a specialized tool.

Various automated dynamic malware analysis tools

and frameworks have been proposed. These tools execute

an unknown malware in an instrumented environment

and monitor its execution. The analysis reports generated

by these tools provide insights about the behavior of

running malware. Anubis stands for Analyzing Unknown

Binaries focuses on automated dynamic malware analysis.

It evolved from TTAnalyze [30] and executes the sample

under analysis in an emulated environment consisting of

a Windows XP running as the guest in a modified version

of Qemu [31]. The analysis is performed by monitoring

the invocation of Windows API functions, as well as

system service calls to the Windows Native API. Cuckoo

Sandbox [32] is an open-source tool for dynamic

malware analysis that uses the technique of API-hooking.

The actual instrumentation of the running processes is

 Hybrid Real-time Zero-day Malware Analysis and Reporting System 65

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

done by injecting a dynamic linked library (DLL) that

hooks Windows API functions and logs their parameters

when called. This DLL also randomize the instructions

written to the target function in order to evade anti-

analysis techniques used by modern malwares.

CWSandbox [33] uses API-hooking and code injection

technique to analyze malware dynamically. It executes

the malware either natively or in a virtual Windows

environment. The sandbox injects a monitoring DLL in

the malware process, which implements API hook

functions to trace relevant system calls. Norman Sandbox

[34] emulates whole computer and a network connected

to it. Norman Sandbox executes the sample in a tightly-

controlled environment that simulates a Windows OS,

attached local area network (LAN) and some Internet

connectivity. Norman Sandbox focuses on the detection

of worms that spread via email or P2P networks, as well

as viruses that try to replicate over network shares.

Norman Sandbox also uses function call hooking and

parameter monitoring techniques to detect malware. Joe

Sandbox previously known as JoeBox [35] is specifically

designed to run on real hardware. Joe Sandbox uses client

server model, where a single controller instance

coordinates multiple clients that are responsible for

performing the malware analysis and all analysis data is

collected by the controlling machine.

III. PROPOSED SYSTEM

The proposed system is a collection of well-known

malware analysis tools and techniques in a component-

based architecture, where any tool can be replaced in the

future. The tools have been modified and integrated into

the system to behave as a single unit. The integrated tools

and techniques work together automatically and to

provide detailed and efficient result in zero-day malware

behavior. Fig. 1, depicts the basic components of the

Fig.1. Basic System Components

proposed system. Static Analysis Engine (SAE) obtains

basic information of the zero-day malware and stores a

structural profile in central database. Dynamic Analysis

Engine (DAE) records all the execution activities and

stores a behavioral profile in the database. If the malware

analyst requires more insight about malware behavior

then manual analysis can also be done and results can be

updated. These analysis results are accessed by the

reporting engine that generates zero-day malware

analysis report in a HTML or PDF format. Here the main

focus is on analyzing malicious Windows PE files.

3.1 Static Analysis Engine

SAE comprises of static analysis functions, running

parallel in the background in the analysis server as in Fig.

2. The zero-day malware is checked for static properties

and findings are reported. SAE reports about antivirus

scanning, obfuscation, PE structure, hashes and strings.

All these static analysis functions are included by

integrating popular static analysis tools/utilities. SAE is

completely modular and this makes it flexible and

extensible. SAE has a main python script static.py, which

starts each functionality and extracts its output to save in

database. With the preliminary static analysis it is

possible to extract valuable information that will shape

the profile of the malware. The integrated static functions

are:

Antivirus Scanning:

As various antivirus programs uses different signatures

and heuristics, it is useful to scan suspected malware

against different antivirus programs. Therefore,

VirusTotal [36] is used in the first analyzing step to check

which antivirus programs have already identified the

malware under question. VirusTotal provides free

checking of files for malware. It uses more than 50

different antivirus products and scan engines. VirusTotal

generates a report that provides information about the

suspected malware. It report analysis details like malware

name, file size, hash, if available, additional behavioral

information about the malware and the detection rate

(total number of antivirus products that marked the file as

malicious divided by total number of antivirus products).

The malware is scanned by the VirusTotal to check

whether same binary (pe_file) has been earlier identified

by other antivirus program or not. For this VirusTotal

Public API v2.0 is used.

Sending file:

host = "www.virustotal.com"

selector = "https://www.virustotal.com/vtapi/v2/file/scan"
fields = [("apikey", "xyz")]

file_to_send = open("pe_file", "rb").read()

files = [("file", "pe_file", file_to_send)]
json = postfile.post_multipart(host, selector, fields, files)

Retrieving scan report:

url = "https://www.virustotal.com/vtapi/v2/file/report"

parameters = {"resource": "md5 of pe_file", "apikey": "xyz"}
data = urllib.urlencode(parameters)

req = urllib2.Request(url, data)
response = urllib2.urlopen(req)

json = response.read()

The VirusTotal APIs uses HTTP POST request with

JSON object response format for sending and retrieving

scan reports respectively. The request message contains

host details, file information and apikey (for accessing

66 Hybrid Real-time Zero-day Malware Analysis and Reporting System

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

public APIs). For each sent HTTP POST request the

JSON response object contains a parameter known as

response_code, which determines the response result. If

the item searched is not present in VirusTotal's dataset,

response_code will be 0. If the requested item is still

queued for analysis it will be -2. If the item is present and

it could be retrieved it will be 1. Following code snippet

depicts how binary is sent and response is retrieved.

If at first step response_code is 0, then the binary is

processed further for analysis by SAE.

Obfuscation:

Malwares often use obfuscation techniques to evade

detection systems. One such popular obfuscation

technique is packing. To detect the type of packer

employed PEid has been utilized. To integrate this feature,

PEid database, peidDB.txt, is accessed which contains

1832 packer signatures. Once the database is loaded, the

malware is read for matching packer signature. An option

is also provided to add more signatures later in the

database file or to load an alternative database for

aggregating more signatures. The database file has packer

name as the section name and two keys: the signature key

containing the byte pattern and the ep_only key. The

ep_only property can be true or false. This property

specifies if the signature has to be found at the PE file’s

entry point (true) or can be found anywhere (false). The

malware is scanned to find the matching packer signature

which is then updated in the central database.

pe = pefile.PE(pe_file)
signatures = peutils.SignatureDatabase('peidDB.txt')

matches = signatures.match_all(pe, ep_only = True)
update “matches” in database

PE Header Information:

Any executable file includes a header to describe its

structure like, the base address of code section, data

section, list of functions imported, exported, etc. To

execute the file, the Operating System simply reads the

header first and loads the binary data from the file to

code/data segments of the address space for the

corresponding process. During dynamic linking the

Operating System relies on file’s import table to

determine the entry addresses of the system functions.

Most executable files on Windows follows the following

structure: DOS Header (64 bytes), PE Header, sections

(code and data). DOS Header starts with magic number

4D 5A 50 00, and the last 4 bytes is the location of PE

header in the binary file. The PE header contains

significantly more information and is more interesting. At

run time, Windows loader loads the PE header into a

process’s address space. PE header consists of three parts:

(1) a 4-byte magic code, (2) a 20-byte file header and its

data type is IMAGE_FILE_HEADER, and (3) a 224-byte

optional header (type:

IMAGE_OPTIONAL_HEADER32). The optional header

itself has two parts: the first 96 bytes contain information

such as major operating systems, entry point, etc. The

second part is a data directory of 128 bytes. It consists of

16 entries, and each entry has 8 bytes (address, size). The

PE header contains useful information for the malware

analyst and the important fields that can be obtained from

a PE header are:

 Imports: Functions from other libraries that are

used by the malware.

 Exports: Functions in the malware that are meant

to be called by other programs or libraries.

 Time Date Stamp: Time when the program was

compiled.

 Sections: Names of sections in the file and their

sizes on disk and in memory.

 Subsystem: Indicates whether the program is a

command-line or GUI application.

 Resources: Icons, menus, and other information

included in the file.

To extract this valuable information the SAE uses a

Python PE parsing module, Pefile 1.2.10-139, to inspect

PE header, to retrieve all the sections, imports, exports,

resources, their information and data. The output is get in

the desired format and stored in the central database.

Attributes

Image Base: hex(pe.OPTIONAL_HEADER.ImageBase)
Address Of Entry Point:

hex(pe.OPTIONAL_HEADER.AddressOfEntryPoint)

Required CPU type: pefile.MACHINE_TYPE[machine]
dll = pe.FILE_HEADER.IMAGE_FILE_DLL

Subsystem:
pefile.SUBSYSTEM_TYPE[pe.OPTIONAL_HEADER.Subsyste

m]

Compile Time:
datetime.datetime.fromtimestamp(pe.FILE_HEADER.TimeDateSt

amp)
Number of RVA and Sizes:

pe.OPTIONAL_HEADER.NumberOfRvaAndSizes

Sections

Number of Sections: pe.FILE_HEADER.NumberOfSections
for section in pe.sections:

section.Name, hex(section.VirtualAddress),

hex(section.Misc_VirtualSize),\
section.SizeOfRawData, E(section.data)

#Resources

For res in pe.DIRECTORY_ENTRY_RESOURCE.entries

update “res.name, res.data.struct.OffsetToData,
res.data.struct.Size, res.filetype, res.data.lang” in database

Imports

for entry in pe.DIRECTORY_ENTRY_IMPORT:

update “entry.dll” in database
for imp in entry.imports:

update “hex(imp.address), imp.name” in database

Exports

for exp in pe.DIRECTORY_ENTRY_EXPORT.symbols:
update hex(pe.OPTIONAL_HEADER.ImageBase + exp.address),

exp.name, exp.ordinal

Hashing:

The main purpose of using this feature is to generate

various hashes for the binary. These hashes provides a

unique fingerprint for the malware. The SAE generates

various hashes like MD5, SHA-1 and SHA-256 for the

malware. SAE also returns a ten digit representation of

 Hybrid Real-time Zero-day Malware Analysis and Reporting System 67

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

the size of file processed. Therefore, along with hash

value the file size is extracted as well and saved in

database. This functionality is implemented by the system.

For this hashlib module is used which implements a

common interface to many different secure hash and

message digest algorithms.

fileStr= open('pe_file','rb').read()

hashlib.md5(fileStr).hexdigest()
hashlib.sha1(fileStr).hexdigest()

hashlib.sha256(fileStr).hexdigest()

update in database

Strings:

A malware program contains strings if it has to print a

message, connect to a URL, or has to copy a file to a

specific location. Searching these strings can help to get

hints about the program functionality. Like, the legitimate

programs always include many embedded strings but an

obfuscated or packed malicious program contains very

few strings. So, if few embedded strings are returned,

either make sense or not, then the tested binary is likely

to be malicious. SAE examines ASCII and Unicode

strings in binary data. All the printable strings from the

binary file are saved in database and reported. This is also

system implemented using string python module.

fileStr=open(pe_file, 'rb').read()

if fileStr in string.printable:

result += fileStr

update database

Fig.2. Zero-day Malware Analysis and Reporting System

3.2 Dynamic Analysis Engine

After reporting static properties the binary is passed to

DAE for dynamic analysis since static analysis is not

foolproof. DAE focuses on “behavioral analysis”, by

executing and monitoring the malware. This helps to

understand the nature and the purpose of the zero-day

malware and reveals which files are read or accessed and

which operations has been carried out. DAE (Figure 2)

comprises of an analysis component, a real host and a

network attached storage (NAS). It is possible that

malware authors design their malware to check execution

environment by employing anti-analysis techniques. If

the execution environment is detected, the malware can

either stop running or raise an exception or loop for a

long time, thus evading its detection. The proposed

system addresses this problem by running the malware on

a real host isolated from the production network. The real

host has an advantage of real Operating System services

and applications, which helps to provide more authentic

behavioral information about the unknown malware.

Zero-day malware is executed on real hardware without

relying on any virtualization or emulation techniques.

The real host is a Windows 7 machine which runs

integrated analysis tools and utilities to track various

system activities performed by the malware. After each

execution on real host, the original system image is

restored from NAS for next execution. The analysis

component logs high level information of the malicious

actions regarding file system activity, registry activity,

process activity and network activity. These logs are then

sent to analysis server and uploaded to central database.

Following dynamic analysis features are incorporated in

the analysis component for automatic monitoring. They

use windows utilities combined to run in one batch file.

68 Hybrid Real-time Zero-day Malware Analysis and Reporting System

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

Process Activity:

This functionality provides insight into processes

currently running on a system when malware is executing.

When the malware is executed, the active processes are

monitored to identify loaded DLLs, run-time DLLs,

memory statistics, threads and open handles. PsList

utility is used to dump statistics like memory usage and

thread detail for the running malware. ListDlls and

Handle utilities return DLLs loaded and open Operating

System resource handles (such as a file, directory or

registry key) respectively.

PsList = <Name, Pid, Pri, Thd, Hnd, Priv, CPU_Time,
Elapsed_Time>

PsList –m = <Virtual_Mem, Working_Set, Priv_Virt_Mem,
Priv_Virt_Mem_Peak, Page_Faults, Non_Paged_Pool,

Paged_Pool >

ListDlls = <Module_Name, Version, Base_Address, Size>
Handle = <Handle_Value, Object_Type, Object_Name>

Network Activity:

It is important to keep a check on network connections

and this functionality provides information about active

connections established by the running malware. This

functionality retrieves network information from the

system like network connections (both incoming and

outgoing), number of bytes transferred and network

protocol statistics. It also records network traffic for

malicious communication attempts, such as DNS

resolution requests, bot traffic, or downloads. Netstat and

Tshark (the command line version of Wireshark) utilities

are integrated. Network logs and Pcaps are also captured.

Netstat = <Proto, Local_Address, Foreign_Address, State>

Tshark -i, -p -a "filesize" -w "log.pcap"= <Pcap_Logs>

System Calls:

System calls provide useful information about process

behavior. So, to intercept and record the system calls

which are called by a process and the signals which are

received by a process, strace utility is used. It monitors

interactions between processes and the Operating System

kernel, which include system calls, signal deliveries, and

changes of process state.

Strace –p “pid” = <System_Call, Args, Return_Value,

Exe_Time>

File System Activity:

This functionality monitors real-time file system and

registry activity. It returns list of added, deleted and

modified files and registry keys. Procmon is used to log

file system and registry changes.

set PM=C:\sysint\procmon.exe

start %PM% /quiet /minimized /backingfile logs.pml

%PM% /waitforidle

pe.exe

%PM% /terminate

3.3 Manual Analysis

It is an indispensable step in analyzing zero-day attacks

as both static analysis and dynamic analysis have their

own limitations. However, the information collected from

both static analysis and dynamic analysis will be useful

for a human analyst while dissecting a zero-day binary.

But still, if some part of analysis is left in SAE and DAE

then that can be manually performed by an expert. For

this the binary is run in a debugger, OllyDbg, to animate

instructions in a slow and controlled fashion. To do so,

the Ctrl+F8 (ANIMATE OVER) is used to stepover until

an address is arrived, which is the call to the main

function. Next, the Crtl+F7 (ANIMATE INTO) is used to

step-into the call to the main function. This is continued

to step forward using F7 and F8 while noting the

behavior of the sample. To evade anti-debugging

techniques of malicious binary, anti-anti-debugger plugin

(aadp) for OllyDbg has been used. The aadp plugin

avoids anti-debugging techniques like anti-debugging

APIs or flags. In debugger a running program can be

resumed in three different ways:

 breakpoint: stops a program whenever a particular

point in the program is reached.

 watchpoint: stops a program whenever the value

of a variable or expression changes.

 catchpoint: stops a program whenever a particular

event occurs, analyze CPU environment (memory,

registers).

3.4 Reporting Engine

The proposed system generates a zero-day malware

analysis report in HTML and PDF format using

JasperReports. Firstly, a report template (.jrxml file) is

created. This template file is then complied to get a

Jasper object which is further processed using Java utility

to populate the data. Finally, Jasper print file is exported

to HTML and PDF format. The report is generated from

static and dynamic analysis data uploaded by the analysis

server in central database. Additionally, manual analysis

findings are uploaded directly in form of notes by the

analyst. Fig. 3, shows reporting attributes captured. All

the attributes are captured during analysis phase and are

used to generate analysis report which covers following

areas:

 Analysis Summary: Key outcome from the

analysis report regarding the malware's nature,

origin, capabilities, relevant characteristics,

indicators of compromise, follow-up actions and

lessons learned.

 Identification: The file type, its size, hashes (such

as MD5, SHA1, and SHA256), file name, anti-

virus detection potential.

 Characteristics: Capability to infect files, self-

preserve, spread, data leakage, communicate with

the attacker, etc.

 Dependencies: System resources (like files,

 Hybrid Real-time Zero-day Malware Analysis and Reporting System 69

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

network, and memory) related to the malware's

functionality, initialization files, DLLs,

executables, URLs, and scripts.

 Supporting Artifacts: Logs, pcaps, dumps, string

extracts, function listings, figures and other

relevant system and network statistics.

 Manual Analysis Findings: Overview of the

manually done static and dynamic code analysis

observations.

Fig.3. Reporting Attributes

70 Hybrid Real-time Zero-day Malware Analysis and Reporting System

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

Algorithm 1 represents the big picture, the bird’s-eye

view of the total zero-day malware analysis and reporting

system’s working.

Algorithm 1: Zero-day Analysis & Reporting

1: procedure Analysis()

2: List malware_list = getMalware();
3: for malware in malware_list do

4: SAE(malware);

5: DAE(malware);
6: end for

7: end procedure

8: function List getMalware()

9: Read pe_file from /usr/home/PE_files/.

10: return pe_file;
11: end function

12: function SAE(pe_file)
13: invoke uploadVirusTotal(pe_file);

14: repeat

15: response = getVirusTotalResponse();
16: until response==null

17: if (detectionRatio != 0) then

18: Upload VirusTotal result in database.
19: BREAK;

20: else Continue;
21: end if

22: packer = obfuscation(pe_file);

23: Upload packer information

24: header= PEstructure(pe_file);

25: Upload header
26: hash= hash(pe_file);

27 Upload md5sum, sha

28: response[] = strings(pe_file);
29: Upload list of embedded strings in database

30: end function

31: function DAE(pe_file)

32: process_activity [0] = PSList(pe_file);

33: process_activity [1] = ListDlls(pe_file);
34: process_activity [2] = Handle(pe_file);

35: Upload database process_activity

36: network_activity [0] = netstat();

37: network_activity [1]= tshark();

38: Upload database network_activity

39: system_activity [] = strace(pe_file);

40: Upload database system_activity

41: file_activity [] = filemon(pe_file);

42: registry_activity []= regmon(pe_file);

43: Upload database file_activity and registry_activity

44: end function

45: function Debugger(pe_file)
46: Manually add and upload notes

47: end function

48: function Reporting(pe_file)
49: Create .jrxml file using iReport

50: Complie .jrxml to .Jasper
51: Fill .Jasper with data from central database

52: Export the report into HTML or PDF

53: end function

IV. RESULTS

To evaluate the proposed system a prototype was

implemented using the Oracle Java6 SDK, Eclipse IDE,

Python and MySql database. Various off-the-shelf

solutions have been employed wherever possible in an

attempt to allow existing tools and utilities to be

integrated into the system. For that many existing tools

and utilities were modified and incorporated in the

system to work as a single unit. The zero-day malware

from detection server (it can be honeypot or anomaly

detector) is forwarded to analysis server for static and

dynamic analysis. A real host machine is connected

directly to the analysis server for executing the malware

in controlled environment. After every execution in the

real host, the Operating System image is updated from

NAS. All the analysis results are stored in the central

database. Reporting server fetches the analysis result

from the database and represent it in the form of HTML

or PDF format reports. A manual analysis machine is also

attached to the database from where the malware analyst

can view the reports and at the same time can do

debugging of the malware (if required) and update results.

Fig.4. Basic Static Information

Some of the snapshots from the generated report are

shown. They present the behavior of an email worm

captured from detection server during validation. The

worm code was tweaked and packed to act as unknown

for our system. Fig. 4, represents general static

information captured for the email worm sample. Static

information like file name, file size, its MD5 sum, packer

with which it was encrypted and file header information-

header sections, imports, exports, resources. This static

information helps to structure the profile of a malware.

Fig. 5, shows process activities performed by the

malware while it was executed. Process activity shows

load dlls (dynamic link libraries), run-time dlls, mutexes

created by the worm sample or any exceptions thrown.

Fig.5. Process Activity

Fig. 6, shows network communication of the worm

sample. It does DNS queries and uses this information to

send email over SMTP connections. The worm sends

DNS queries to xyz.mail.yahoo.com domains to get their

respective IP addresses. It then sends email over SMTP to

those IP addresses with a malicious attachment.

 Hybrid Real-time Zero-day Malware Analysis and Reporting System 71

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

Unknown traffic over UDP by the worm is also recorded

A normal UDP connection is established and terminated

after sending and receiving some bytes of data.

Fig.6. Network Activity

Fig.7. File System Activity

Fig.7, shows file system access by the worm sample

while it was running. Files created, read and modified are

listed in the report.

Fig.8., shows system registry access by the worm

sample during execution. Registry keys modified, read

and monitored are listed in the report.

Fig.8. Registry Activity

Graph in Fig. 9, depicts high level file system behavior.

Worm sample does maximum registry read activity

which is 77% of overall file system activity.

Fig.9. File System Access

Fig.10. Process Behavior

Graph in Fig. 10, depicts high level process behavior.

Worm sample further started 2 threads and 15 other

processes for its working. Rest shows percentage of

different libraries loaded.

Graph in Fig.11, shows number of bytes transferred for

inbound and outbound UDP connections made by the

worm sample. Graph shows for first connection, 111

Outbound UDP bytes and 889 Inbound UDP bytes.

Fig.11. Inbound-Outbound Bytes Transfer

Fig.12, shows CPU and memory statistics recorded

during the execution of worm sample.

72 Hybrid Real-time Zero-day Malware Analysis and Reporting System

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

Fig.12. CPU and Memory Usage

V. CONCLUSIONS AND FUTURE WORK

In this paper, a hybrid real-time zero-day malware

analysis and reporting system is proposed. It aims to

bridge the gap between zero-day malware detection and

analysis by delivering the first inclusive behavioral report

about a zero-day attack. It integrates various malware

analysis tools and utilities in a component-based

architecture where any of the function or utility can be

replaced in the future. The SAE combines popular static

tools and provides the basic information to profile the

malicious binary. The DAE captures run-time behavior

and has the capability to evade anti-analysis and anti-

debugging checks of a malicious binary which may

hinder the malware analysis process. Manual analysis is

also intromitted to do step by step analysis of binary if

needed. It also generates reports about zero-day malware

behavior in HTML or PDF format.

In the future work it is planned to: (1) Achieve

scalability and improve throughput of the system by

analyzing multiple zero-day malwares at a time. (2)

Automate full analysis process without any sort of human

intervention. (3) To address multiple execution path

problem in dynamic analysis by fuzzing different types of

inputs.

REFERENCES

[1] R. Kaur and M. Singh, “A Survey on Zero-Day

Polymorphic Worm Detection Techniques”, in IEEE

Communications Surveys & Tutorials, vol. 16, no. 3, pp.

1520-1549, March 2014.

[2] McAfee Labs, “McAfee threat report”. [Online] Available:

http://www.mcafee.com/us/resources/reports/rp-quarterly-

threat-q2-2014.pdf. [Accessed: May 2015].

[3] Panda Labs, “Panda Labs Threats Report”. [Online]

Available:

http://press.pandasecurity.com/wpcontent/uplo-

ads/2014/05/Quaterly-PandaLabsreportQ1.pdf. [Accessed:

May 2015].

[4] F. Y. Rashid, “How to detect zero-day malware and limit

its impact”. [Online]. Available:

http://www.darkreading.com- /attacksbreaches/how-to-

detect-zero-day-malware-and-limit/240062798. [Accessed:

May 2015]

[5] S. Kaur and M. Singh, “Automatic attack signature

generation systems: A review”, vol. 11, no. 6, pp. 54-61,

December 2013.

[6] J. Newsome and D. Song, “Dynamic Taint Analysis for

Automatic Detection, Analysis, and Signature Generation

of Exploits on Commodity Software”, 12th Annual

Network and Distributed System Security Symposium

(NDSS'05), February 2005.

[7] R. Perdiscia, W. Leea and N. Feamster, “Behavioral

Clustering of HTTP-Based Malware and Signature

Generation Using Malicious Network Traces”, 7th

USENIX Symposium on Networked Systems Design and

Implementation (NSDI'10), pp. 1-14, April 2010.

[8] M. Zubair Rafique and J. Caballero, "FIRMA: Malware

Clustering and Network Signature Generation with Mixed

Network Behaviors", 16th International Symposium,

RAID 2013, LNCS vol. 8145, pp. 144-163, October 2013.

[9] C. Azad, V.K. Jha, “Data Mining in Intrusion Detection:

A Comparative Study of Methods, Types and Data Sets”,

International Journal of Information Technology and

Computer Science (IJITCS), vol.5, no.8, pp.75-90, 2013.

[10] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos,

“Network-level Polymorphic Shellcode Detection using

Emulation”, in Journal in Computer Virology, vol. 2, no.

4, pp. 257-274, July 2006.

[11] M. Polychronakis, K. G. Anagnostakis and E. P. Markatos,

“Emulation-based Detection of Non-self-contained

Polymorphic Shellcode”, Proc. of the LNCS Springer

10th International Conference on Recent Advances in

Intrusion Detection (RAID’07), Gold Goast, Australia,

2007, pp. 87-106.

[12] A. Abbasi, J. Wetzels, W. Bokslag, E. Zambon and S.

Etalle, “On Emulation-Based Network Intrusion Detection

Systems”, Proc. of the LNCS, Springer 17th International

Symposium on Research in Attacks, Intrusions and

Defenses (RAID’14), Gothenburg, Sweden, 2014, pp.

384-404.

[13] I. Santos, F. Brezo, X. Ugarte-Pedrero and P. G. Bringas,

“Opcode sequences as representation of executables for

data-mining-based unknown malware detection”, in

Information Sciences, vol. 231, pp. 64–82, May 2013.

[14] H. Lu, X. Wang, B. Zhao, F. Wang and J. Su, “ENDMal:

An anti-obfuscation and collaborative malware detection

system using syscall sequences”, in Mathematical and

Computer Modelling, vol. 58, no. 5, pp. 1140–1154,

September 2013

[15] Y. Hou, J.W. Zhuge, D. Xin and W. Feng, “SBE - A

Precise Shellcode Detection Engine Based on Emulation

and Support Vector Machine”, Proc. of the LNCS,

Springer 10th International Conference on Information

Security Practice and Experience (ISPEC’14), Fuzhou,

China, 2014, pp. 159-171.

[16] M. Zolotukhin and T. Hamalainen, “Detection of zero-day

malware based on the analysis of opcode sequences”,

Proc. of the IEEE 11th International Conference on

Consumer Communications and Networking Conference

(CCNC’14), Las Vegas, Nevada, USA, 2014, pp. 386-391.

[17] A. Lanzi and et. al., “AccessMiner: Using System-Centric

Models for Malware Protection”, 17th ACM conference

on Computer and communications security, pp. 399-412,

October 2010.

[18] D. Mutz and et. al, “Anomalous System Call Detection”,

ACM Transactions on Information and System Security

(TISSEC), vol. 9, no. 1, pp. 61-93, February 2006.

[19] A. Reina, A. Fattori and L. Cavallaro, “A System Call-

Centric Analysis and Stimulation Technique

Automatically Reconstruct Android Malware Behaviors”,

6th European Workshop on System Security (EUROSEC

2013), April 2013

 Hybrid Real-time Zero-day Malware Analysis and Reporting System 73

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 4, 63-73

[20] M. Sikorski and A. Honig, “Practical Malware Analysis:

The Hands-On Guide to Dissecting Malicious Software”,

No Starch Press, February 2012.

[21] C. Eagle, “The IDA Pro Book, 2nd Edition- The

Unofficial Guide to the World's Most Popular

Disassembler”, pp. 672, June 2011.

[22] M. Christodorescu and S. Jha, “Static analysis of

executables to detect malicious patterns”. 12th USENIX

Security Symposium, pp. 1–12, August 2003.

[23] M. Christodorescu, S. Jha, S. A. Seshia, D. X. Song, and

R. E. Bryant. “Semantics aware malware detection”. In

IEEE Symposium on Security and Privacy, pp. 32–46,

May 2005.

[24] H. Flake, “Structural comparison of executable objects”.

In Detection of Intrusions and Malware & Vulnerability

Assessment (DIMVA’04), July 2004.

[25] A. Moser, C. Kruegel and E. Kirda, Limits of Static

Analysis for Malware Detection, IEEE 23rd Annual

Computer Security Applications Conference, Florida, pp.

421-430, December 2007.

[26] M. Sharif and et. al, Eureka: A Framework for Enabling

Static Malware Analysis, 13th European Symposium on

Research in Computer Security, Spain, pp. 481-500,

October 2008.

[27] T. Dube and et. al, “Malware Target Recognition via

Static Heuristics”, Computers & Security, vol. 31, no. 1,

pp. 137-147, Feburary 2012.

[28] F. Zhu and J. Wei, “Static Analysis based Invariant

Detection for Commodity Operating Systems”,

Computers & Security, vol. 43, pp. 49-63, June 2014.

[29] M. Eskandari and S. Hashemi, “A Graph Mining

Approach for Detecting Unknown Malware”, Journal of

Visual Languages and Computing, vol. 23, pp. 154-162,

March 2012.

[30] U. Bayer and et al, “Dynamic Analysis of Malicious

Code”, Journal in Computer Virology, vol. 2, no. 1, pp.

66-77, May 2006.

[31] F. Bellard, “Qemu: A Fast and Portable Dynamic

Translator”, in USENIX Annual Technical Conference,

pp. 1-41, April 2005.

[32] Cuckoo Sandbox, “Open Source Automated Malware

Analysis”, [Online] Available:

https://media.blackhat.com/us-13/US-13-Bremer-Mo-

Malware-Mo-Problems-Cuckoo-Sandbox-WP.pdf,

August 2013. [Accessed, Jan 2015]

[33] C. Willems, T. Holz and F. Freiling, “Toward Automated

Dynamic Malware Analysis Using CWSandbox”, IEEE

Security and Privacy, vol. 5, no. 2, pp. 32-39, April 2007.

[34] Norman Sandbox, [Online] http://download01.norman.no-

/product_sheets/eng/SandBox_analyzer.pdf. [Accessed,

Jan 2015]

[35] Joe Sandbox Technology, [Online] http://www.joe-

security.org/joe-sandbox-technology. [Accessed, Jan 2015]

[36] VirusTotal, “Public API v2.0”, [Online] https://www.vi-

rustotal.com/en/documentation/public-api/. [Accessed,

Jan 2015]

[37] M. Egele and et. al, “A Survey on Automated Dynamic

Malware Analysis Techniques and Tools”, ACM

Computing Surveys (CSUR), vol. 44, no. 2, pp. 1-49,

February 2012.

[38] S. Sarkar, M. Brindha, “High Performance Network

Security Using NIDS Approach”, International Journal of

Information Technology and Computer Science (IJITCS),

vol.6, no.7, pp.47-55, July 2014.

[39] R. Wason, A.K. Soni, M. Qasim Rafiq, “Estimating

Software Reliability by Monitoring Software Execution

through OpCode”, International Journal of Information

Technology and Computer Science (IJITCS), vol.7, no.9,

pp.23-30, April 2015.

Authors’ Profiles

Ratinder Kaur is a PhD scholar at Thapar

University carrying out her research in the

field of Network Security. She holds strong

academic record. She received her

Bachelor's Degree from Punjab Technical

University and holds a Master's Degree,

with honors in Software Engineering from

Thapar University. She showcases strong

inclination towards Computer Security field

which is evident from her master thesis on Operating System

fingerprinting, for which she won TCS (Tata Consultancy

Services) Best Student Project Award, and now exploring Zero-

day attack frontiers.

Maninder Singh received his Bachelor's

Degree from Pune University in 1994, and

holds a Master's Degree, with honors in

Software Engineering from Thapar

Institute of Engineering & Technology, as

well as a Doctoral Degree specialization in

Network Security from Thapar University.

He is currently working as Associate

Professor in Computer Science and

Engineering Department at Thapar University. Dr. Singh is on

the Roll-of-honour at EC-Council USA, being certified as

Ethical Hacker (C|EH), Security Analyst (ECSA) and Licensed

Penetration Tester (LPT). Dr. Singh has successfully completed

many consultancy projects for renowned national bank(s). His

research interests include network security and grid computing,

and he is a torchbearer for the open source community. He can

be reached at, msingh@thapar.edu.

How to cite this paper: Ratinder Kaur, Maninder

Singh,"Hybrid Real-time Zero-day Malware Analysis and

Reporting System", International Journal of Information

Technology and Computer Science(IJITCS), Vol.8, No.4,

pp.63-73, 2016. DOI: 10.5815/ijitcs.2016.04.08

