
I.J. Information Technology and Computer Science, 2016, 11, 8-15
Published Online November 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.11.02

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

Development of Real-Time Capability in

Application Virtual Machine using Concurrent

Automatic Memory Management Algorithm

Charan K V

Siddaganga Institute of technology, Visvesvaraya Technological University, Karnataka, India

E-mail: charanssit@gmail.com

A.S Manjunath
Siddaganga Institute of technology, Visvesvaraya Technological University, Karnataka, India

E-mail: asmanju@gmail.com

Abstract—Superior garbage collection algorithms are

needed for deterministic runtime system in complex

embedded systems to explore the benefits of

contemporary and conquered application programming

language. Android embedded operating system is greatly

used world wide as a mobile platform without denying

this fact it also attracted researchers and engineers to

integrate in other embedded real-time systems. It exploits

Java language for embedded application development and

it can also enhance a certain real time capability with the

adoption of real-time support at Dalvik Virtual Machine

(DVM). Need for Real-time garbage collection

algorithms in embedded systems is identified by

achieving new insights into the existing garbage

collection algorithms through finding blemishes in it. The

space based technique is used in proposed new Real-time

GC algorithm for execution runtime system and Real

time Garbage Collection (GC) schedulability issue is also

addressed. The intuitive performance analysis result

demonstrates reduction in the response time and also

describes the determinism characteristic of the real time

applications using proposed solution.

Index Terms—Contemporary, virtual machine, real-time,

complex embedded systems, schedulability.

I. INTRODUCTION

Dynamic memory management is a characteristic of

runtime system in modern programming language

implementation. It helps for high level of abstraction

through automatic memory management to increase the

software productivity and efficiency of software

development. The automatic garbage collection

algorithms for dynamic memory management during

program execution largely influence on the predictive

responsiveness of the system. Algorithms improvement is

considered as part of improving the performance of Real-

time systems since algorithm are also one of the

discipline that affect the real time system engineering.

The software is made by codifying the algorithms that

intimately control the hardware. Research and

development of algorithms is an art more than a science.

Computer system that perform a desired function or a

group of functions by using a specific embedded software

on a low hardware configuration with small memory

footprint and low power consumption is called embedded

operating system. Android, uClinux, windows CE,

Symbian are few among the many embedded operating

systems. The evolutionary improvement either in terms of

features and supported hardware android is trying to

surpass its origins and started migrating into new devices

other than mobiles further creating rising interest in

adopting android for embedded real-time environments

few of the recent efforts already made [1,2] ensures the

importance of it. The industry’s movement from personal

to embedded computing requires innovative mobile smart

products combining many computing features to help for

Bring your own device (BOD) and Internet of things

(IOT) concepts. Noticing about utilizing android for

embedded systems Karim Yaghmour [3] and gargenta has

authored books for Android system integrators and

programmers. Concurrency is becoming prevalent in

more widely used Real-time embedded systems because

of the multicores and larger heaps created by inexpensive

RAM [15][17] . Real-time ability in concurrent garbage

collection [18][19][20] is one of the enhancements for

using advanced languages in many of the time critical

systems.

The section II covers conceptual details of compile

time, run-time environment in android DVM. It is one of

the application virtual machine uses garbage collector in

its execution engine. There are mainly two ways to

integrate Real time support at VM level in android one is

inclusion of another real time Java VM. There are many

advantages from this approach and integration issues may

also arise between the VM and kernel. Some efforts made

[4] on using explicit memory management for the

creation and freeing of objects to completely avoid GC

pauses but the problem is developers can’t free the

objects that he doesn’t created by himself (e.g. Android

inner class methods for updating the user interface).

Second is using Real time supporting garbage collection

 Development of Real-Time Capability in Application Virtual Machine using 9

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

algorithms at Runtime the proposed work tries to

accomplish second method.

Section III introduces the garbage collection

algorithms including its origin and classification with

illuminating the drawbacks of different techniques. It

also describes the need for Real-time Garbage collection

techniques that will considerably increase determinism

and reduces latency. The proposed system goal is to

prevent the concurrent mode failure situations. Section IV

is made up of proposed algorithm following result

analysis and conclusion.

II. DALVIK VIRTUAL MACHINE

In this section we are focusing on virtual machine

running as a normal application inside an operating

system for supporting a single process. Shi, Yunhe, et al

[5] has mentioned about virtual registers. DVM uses

registers based instruction set having virtual registers to

store, manipulate operands and it also uses zygote process

model similar to fork process of linux. The registers that

dalvik bytecode refers to are not machine registers, but

they are locations on the call stack. When method is

called dalvik allocates enough memory on stack frame to

hold all the registers that method needs. The VM load the

values into a machine register in order to perform

calculations, the results may be reserved in a registers to

be used later without immediately writing it back to the

corresponding stack location that requires push and pop

operations to store intermediate values of the calculations.

The values kept in the registers will be flushed back to

the call stack only when it is needed. Hence virtual

register machines have the potential to significantly

reduce the number of instruction dispatches. Zeeshan I

and Khan [6] reviewed on functionalities of android dvm.

A dalvik is an extremely compact representation for an

executable with devices having limited resources. DVM

is cornerstone of the Android platform provides

multithreading support and memory garbage collection

on the platform. Wen Hu and Yanli Zhao [7] have made a

research on process model of android DVM. Unlike

conventional Java VM design, each instance of the DVM

will not have entire copy of the core library class files and

any associated heap objects.

Unlike standard Java Virtual machine (JVM) the jar

files are not created instead of that DVM introduced

another dex tool feature during compile time as shown in

Fig 1. The dex tool is used to assemble two or more class

files into one single dex file. The structure of dex file

avoids the redundancy of the data and moderates the

overall dex file size compared to larger jar files created

by conservative JVM. Dex loader is used instead of class

loader to load the created .dex file and prepare it for

execution.

The dex files along with certain resources are packaged

using android asset packaging tool (aapt) and apk builder

is used for creating application package file (apk).

The .apk file can be distributed easily and installed on

any android supporting devices. Contrast to JVM, the

DVM consists of single .dex file having shared method

area for multiple java classes and methods in the classes.

Every running application is assigned a separate heap

space on the system physical memory however two

threads of the same process can trample on each other’s

heap area. The application heap size is device dependent

and depending on the device there is a hard heap size

limit in android. Thread stack stores a thread’s state in

discrete frames called stack frames each frame

encompasses of local variables area, operant stack, and

Frame data having metadata of the respective stack frame.

The Program Counter (PC) register is like a pointer to the

current instruction. In the sequence of program

instructions it keeps track of the instruction execution at

any time this is same in DVM also. Inherent multithread

support in java creates PC register for every new thread.

Fig.1. Conceptual structure of compile time and run-time environment
in android DVM.

The Fig.2. is derived from the code analysis in Android

Open Source Project (AOSP) it denotes the process of

dynamic memory allocation to the application thread. The

garbage collection is called with different reasons and

varying kind of collections it perform. Concurrent

garbage collection process is scheduled when your heap

begins to fill up is called GC_CONCURRENT.

GC_FOR_MALLOC is a simple mark sweep technique it

is triggered when application attempted to allocate

memory but already heap was full. The

GC_HPROF_DUMP_HEAP occurs when you create a

HPROF file to analyse the heap, it is only used for

monitoring the heap usage. When you call System.gc()

from an application the explicit garbage collection called

GC_EXPLICIT follows. GC_EXTERNAL_ALLOC

happens only on API level 10 and below for garbage

10 Development of Real-Time Capability in Application Virtual Machine using

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

collection of externally allocated memory.

Fig.2. Memory Management in dalvik virtual machine.

III. GARBAGE COLLECTION ALGORITHMS

Since from the development of modern high level

computer programming languages they are providing

means to create objects. As long as references to the

objects is existed by some series of pointer traversals

starting from member of the root set these are called live

objects. Most of the GC algorithms developed are based

on the basic garbage collection techniques in [8] reported

about this. If the program contains objects to which the

references do not exist they are called Garbage objects

that cannot be reached by traversing through any live

objects. The process of finding reusable garbage objects

and making it available for future allocation is called

garbage collection. Early programming languages like

pascal, C provides means to destroy an objects explicitly

leads to two kinds of problems that will be found as hard

to get right. One is dangling reference problem which

arises due to early destruction of the objects they are still

referenced by some other objects in a program. Second is

memory leakage problem due to the too much delay in

the destruction of garbage objects causes accumulation of

garbage objects and memory to be exhausted easily. The

explicit program memory management may provide

programmer ability to explicitly control destruction of

objects at any time. However it limits the software

productivity because programmers find explicit memory

management can be too costly for getting right amount of

garbage collection and ensure objects destructed is

neither too late nor too early.

Several approaches are exist for automatic garbage

collection having different pause time, memory usage,

implementation complexity, execution time, correctness,

Fig.3. Garbage collector performance Metrics.

Comprehensiveness, robustness these design metrics

will compete for one another [8] has identified the

general goals in garbage collection schemes. The Fig 3

shows some of the factors influencing on performance of

GC algorithm and varying values of the GC metrics leads

us with a trade-off based on the suitability of the

algorithm in particular platform. Some of the essential

characteristics of ideal garbage collection algorithms is

minimal overall execution time, optimal space usage,

minimal pause time, improved locality for mutator

unfortunately ideal scheme to fulfil all these goals is not

possible in general. The fundamental Question of how to

guarantee the worst-case pause time and how to maintain

the regularity in pause time is addressed in the proposed

algorithm by providing a novel method for garbage

collection to ensure real-time support during application

using automatic memory management.

A. Classification of Garbage collection algorithms

Garbage collection has been in use since its invention

for the Lisp programming language that is reported in [9].

The smalltalk is the first language to use both object

oriented programming and garbage collection. All GC

algorithms are built upon three different key

methodologies of garbage collection as shown in Fig 4.

There are mainly two types of garbage collection

techniques one is reference counting system in which

each dynamically allocated object is associated with

reference count representing the number of object

references to the corresponding object. The second

approach takes a global perspective on the aliveness

property of the objects. It is brute force like approach of

recognizing reusable objects, in this technique garbage

collection problem is formulated as a graph problem and

it is a more straight forward technique of finding

aliveness of the objects using pointer traversals starting

from some root nodes to all reachable nodes is called

tracing method of garbage collection. The tracing method

of garbage objects relinquishing is subdivided into

copying and marking technique. Copying will eliminates

the fragmentation problem by copying all live objects

into to space and marking technique requires additional

memory compaction step to alleviate the fragmentation

Efficiency

Expedienc

y

Comprehensiveness

Correctness

Concurrenc

GC

Performance

 Development of Real-Time Capability in Application Virtual Machine using 11

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

after marking the objects. The objects that are reachable

are marked by either altering bits within the objects or

recording them in a bitmap. Android uses bitmap marking

to store mark bit’s in a separate bitmap table, the size of

the bitmap table is inversely proportional to the smallest

object in the heap. Bitmap tables are expensive to access

the mark bits but there are technically good reasons for

using bitmaps in android one is mark bits held in RAM

can be read or written without page faults. Second is no

object or page is dirtied during marking because there is

no swap disk to write back any pages. Third is a live

object need not be touched during sweep. Fourth is

objects live and die in clusters, so that 32 bits at a time.

Finally less chance of program messing with bits also

increases safety.

Fig.4. Key methods of GC.

Limitations of existing garbage collection methods for

lack of support in real-time garbage collection.

 The Reference counting is not comprehensive

because it can’t reclaim cyclic data structure

and also the support for any form of concurrency

does not exist.

 The conservative mark-sweep is commonly called

as stop the world garbage collection technique

since it is a basic version of GC algorithm does not

use concurrency leads to long zombie times for

garbage collection.

 The CPU becomes idle more frequently in

incremental garbage collection technique because

for every allocation garbage collector will be

called.

 Garbage collectors based on the object lifetime

will creates memory regions for objects of

different survival time as presented in [10] GC

algorithm based on life time of an objects. This

kind of dynamic memory management is known as

Generational garbage collection it will not

improve the expected pause time during worst case

and also constrains the structure of the application

for getting acceptable pause time.

 Copying garbage collection technique consumes

twice as much of memory than the program

actually requires and all mutator threads will be

stopped during copying to avoid inconsistency.

 RTSJ (Real Time Specification for Java) is a

variant of java designed for real time programming

it uses new memory management schemes like

immortal and scoped memory since Dalvik is not

an RTSJ implemented virtual machine it is very

difficult to use RTSJ for android java.

The Android Mark-Sweep algorithm presented here

shows how simple Mark-Sweep is performed in

Gingerbread and early versions of it. However entire

garbage collection cycle will run at the cost of application

pauses of around 500-1000 ms range. It is articulated in

[11] that when heap size expands in android powered

devices mark-sweep can be time consuming if it is

applied to large heap area with lot of live data objects.

Simple mark-sweep is stop-the-world kind of garbage

collection technique this can blocks all mutator threads

until the completion of GC. The panacea to this problem

is found by developing many improvements for

significantly reducing garbage collection pause time.

IV. PROPOSED ALGORITHM

Compared to existing garbage collection schemes

[21][24][25] the proposed algorithm makes use of space

based technique for scheduling the garbage collector.

This technique will schedules and runs the collector

according to the memory usage and availability of the

memory in the heap as shown in Fig 5. Here there are two

boundaries, one is depending on the initial available

memory I and another one is depending on the previous

available memory Pr since from the last GC cycle. The

RTCMS is invoked when any of the two dynamically

formulated boundaries will exceed. The circumscribe in

scheduling the collector assures the enough heap memory

before calling the collector. This is in contrast to

scheduling GC_CONCURRENT process as shown in Fig

2 when memory is about to be exhausted. It is very much

prone to the concurrent mode failure situations; the

proposed schedulability condition will avoid this by

ensuring more memory when GC is running. It enhances

the real-time support in GC algorithm without constraints

on the application virtual machine, programming

language or need for any special hardware.

The proposed garbage collector design will gives

generalised solution for avoiding the pause time length

and reducing the inconsistency in GC pauses. It improves

12 Development of Real-Time Capability in Application Virtual Machine using

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

deterministic program execution time in embedded

systems where memory is considered as time. In the

proposed approach the garbage collection schedulability

is propositional to the availability of the space in heap

and the amount of memory used since from the last GC

cycle. The amount of work to be done with the creation

of new objects by the mutator threads before calling the

next GC cycle is constrained by the difference between

previous availability and initial availability of the heap

memory as well as currently available and previous

available memory.

Step 1: Root scanning

Root scanning is one among the two major sources of

blocking exist in any garbage collection algorithm it is a

vital step and necessarily takes very minute amount of

time as a part of every garbage collection. The pointers

into the heap from stack will set up the root set and it

must ensure consistent view of the root set to avoid

incorrect reclamation of objects. Stack frames of

respected mutator threads are scanned atomically by the

garbage collection thread to assert the root nodes of the

object graphs. This can be generalized by delegating

work to the individual mutator threads itself. Research

efforts are made in [12][13][14] on Real-time GC by

proposing a solution to complicated issues in GC like root

scanning and heap compaction and concurrent collection.

The parallel scanning of the stack frames by the

application threads and acknowledging to the GC thread

void the atomic scanning however the pause time is not

completely eliminated. The further investigations is

needed on root scanning phase of CMS GC algorithm

running in multiprocessor system to reduce time spent by

the collector for scanning the root set.

Step 2: Concurrent marking

In this step the GC thread performs the tracing activity

starting from the objects in the root set to find every

reachable object allowing all the mutator threads continue

execution concurrently with the GC thread. Update bit of

the object is set when the references of the corresponding

object are changed during this step. It is not appropriate

to use another bitmap table for storing mark bits of

updated objects we can store those objects in dynamically

created update list.

Step 3: Final marking

All mutator threads are stopped for a while during

remarking and objects stored in the updated object list are

investigated to change the status of the mark bit.

Step 4: Concurrent sweeping

There are two main tasks of any garbage collection

algorithm one is identification of garbage objects is also

called as scavenging, the above three steps are used to

perform scavenging with the help of object tracing

method. Second is removal of garbage objects is called as

evacuation that is to be executed in this step and

compaction is a additional task to increase performance

of garbage collection algorithm by mitigating as well as

trying for eluding fragmentation. In order to satisfy

predictability in response time of real-time systems using

garbage collected languages the Real-time Concurrent

Mark Sweep (RTCMS) is pursued in a CMS context but

we have made special attention to how the collector will

be called to carry out its work. The space based

scheduling policy will execute the collector when heap

space consumption reaches dynamically set threshold

value.

Fig.5. GC schedulability condition in RTCMS.

V. RESULTS AND DISCUSSION

The implementation of various garbage collection

algorithms is different from one another in terms of how

they manage the heap. There are some simulation tools

like a gcSim and Glacier [26] but they are not currently

supported for concurrent garbage collection algorithms.

We implemented the various garbage collection

scheduling techniques using modern programming

language. The random numbers are used to denote object

allocations and object de allocations because these are

random events. The reason we choose to do this is we

could conduct studies on how variations of the number of

object allocations and collections affect the performance

of the given GC algorithms. The objects in heap are

shown using matrix elements matrix M1 is empty heap

and matrix M2 is full heap. Table.1. Results are obtained

from our observation by executing different basic GC

techniques. It shows decrease in the number of garbage

collection scheduling pauses in proposed scheduling

technique compared to other existing GC scheduling

techniques. The results superimposed in Graph of the Fig

6 shows the comparison between time-based scheduling,

slack-based scheduling and proposed space-based

scheduling of the basic tracing collectors. This

comparison also gives better understanding of how the

different garbage collector scheduling policies will

influence on decreasing the total GC pause time by

guaranteeing sufficient mutator utilization. Minimum

 Development of Real-Time Capability in Application Virtual Machine using 13

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

mutator utilization (MMU) is the matric to measure

mutator share of the processor in a given time interval.

𝑀𝑀𝑈 =
T𝑐

N𝑐

𝑀1 = [
0 0 0 0 0 …
0 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋯

]

𝑀2 = [
1 1 1 1 1 …
1 1 1 1 1 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋯

]

The above equation represents how MMU depends on

pause time during program execution. Nc is the number of

times collector is invoked. Tc is the total time collector is

running concurrently in a given GC cycle. The value of

Tc ranges from 1 to 10, the simple mark sweep algorithm

will be assigned a minimum value and fully concurrent

GC algorithm is assigned a maximum value.

Fig.6. Minimum Mutator Utilization of different GC scheduling policies.

Table 1. Scheduling cost comparison between different GC Scheduling Techniques

Periodic Slack-based Work-based Space-based

Time Nc Time Nc Time Nc Time Nc

20 5 20 2 20 45 20 1

50 11 50 4 50 98 50 4

100 20 100 6 100 126 100 7

200 31 200 F 200 182 200 11

300 40 300 F 300 235 300 14

400 51 400 F 400 290 400 18

𝑁𝑐(periodic scheduling) =
𝑊𝑖𝑛𝑑𝑜𝑤 𝑠𝑖𝑧𝑒

𝐺𝐶 𝑝𝑒𝑟𝑖𝑜𝑑

Nc for slack-based scheduling can be find out based on

the number of times low priority GC thread is triggered

when high priority thread will stop working. Nc of space

based scheduling depends on number of times heap

memory falls in the range Pr < 0.25 * I or C < 0.5 * Pr.

For a given window size of 5s and GC period of 1ms the

calculated MMU for periodic scheduling policy is 6 due

to the equally spaced GC pauses it is predictable with

undesirable high cost of total pause time. The MMU for

slack-based is 8.2 but it is unpredictable and space-based

technique will bring MMU to 9.5 because of reduced Nc

value. The Tc value of CMS is less than the RTCMS as a

result of more possible concurrency failures in CMS. The

RTCMS is diverging towards an ideal RTGC by avoiding

likely occurrences of concurrency failure situations and

mitigating Nc value. Consider the two same programs one

running with CMS GC system and another one with

proposed RTCMS GC system.

We also consider the case where concurrent system

suffers from bursty allocation requests from many

application threads it might cause failure situations.

During program execution the runtime response from two

systems certainly exhibit different execution time patterns

with varying pause times having allocation rate of N

objects per 10ms where the value of N varies depending

on executing program. With all these assumptions the

Fig.7. percentage of Program Execution vs GC time.

following graphs have been drawn intuitively with

predictable outcomes for performing comparative

performance analysis between CMS and RTCMS. Graph

in Fig 7 shows the situation where RTCMS is superior to

CMS. Mutator share of the processor is decreased as a

result of concurrent mode failure at particular time slice

in CMS compared to RTCMS. Timing diagram shown in

Fig 8 provides good way to visualize timing properties of

CMS, RTCMS and ideal Real-time garbage collector.

The Regularity and consistency in pause time to obtain

predictable timing is essential for qualifying to become

ideal RTGC and pause time pattern of RTCMS in Fig 8

also shows consistency in pause time compared to CMS.

0

2

4

6

8

10

2
0
0
m
s

5
0
0
m
s

1
s

2
s

3
s

4
s

5
s

M
 M

 U

Window size

Periodic

Slack-based

Space-based

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6 7 8 9

G
C

 t
im

e
(m

se
c
)

Program execution (%)

CMS

RTCMS

14 Development of Real-Time Capability in Application Virtual Machine using

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

The proposed system gives more endurance against

number of failure situations when burst allocations during

garbage collection, this continues for a long time in worst

case. It will defer the concurrent mode failure.

Fig.8. Timing pattern.

Fig.9. Program Execution time vs Number of failure situation.

VI. CONCLUSION AND FUTURE WORK

Integration of RTGC algorithms in runtime system to

obtain predictable program execution time is one of the

important concerns in process virtual machine to make

widely adopted modern programming language more

suitable for real-time embedded systems. The birth and

evolution of garbage collection algorithms is presented

here and also takes a look at the runtime environment in

android dalvik virtual machine. The runtime system

research work carried out in this paper is for the

development of RTGC algorithm by decreasing number

of garbage collection pauses. The proposed algorithm

mainly focused on garbage collection schedulability

problem it is a challenging issue in dynamic memory

management for hard real-time systems. Our future work

involves analysing response time of multiprocessor

system using space based RTCMS algorithm.

REFERENCES

[1] Datta, Soumya Kanti, Sophia Antipolis, and France

Soumya-kanti, Android stack integration in embedded

systems’, International Conference on Emerging Trends

in Computer & Information Technology, 2012, Vol.7, No.

4, pp. 139-158.

[2] Yin Yan, Shaun Cosgrove, Varun Anand, Amit Kulkarni,

Sree Harsha Konduri, Steven Y. Ko and Lukasz Ziarek.

Real-Time Android with RTDroid, MobiSys’14

Proceedings of the 12th annual international conference

on Mobile systems, applications, and services, 2014,

pp.273-286.

[3] Karim Yaghmour. Embedded Android first edition

O’Reilly publications, 2013.

[4] Igor Kalkov, Dominik Franke et all. A Real-time

Extension to the Android Platform’, Proceedings of the

10th International Workshop on Java Technologies for

Real-time and Embedded Systems, ACM, 2012, pp. 105 -

114.

[5] Yunhe Shi, David Gregg, Andrew Beatty, M. Anton Ertl.

Virtual Machine Showdown: Stack versus Registers’

ACM Transactions on Architecture and Code

Optimization (TACO), 2008, Vol. 4, No. 4.

[6] Zeeshan I and Khan. A review on the functionality of

dalvik virtual machine present in android operating

system, International Journal for Technological Research

in Engineering, 2014, pp. 627-638.

[7] Wen Hu and Yanli Zhao, Analysis on Process Code

schedule of Android Dalvik Virtual Machine,

International Journal of Hybrid Information Technology,

2014, Vol. 7, No. 3, pp. 401-412.

[8] Niels Christian Juul and Eric Jul. Comprehensive and

Robust Garbage Collection in a Distributed System,

International Workshop on Memory Management, 1992,

pp.1–42.

[9] David F. Bacon Realtime Garbage Collection It’s now

possible to develop real-time systems using Java. ACM

new Applicative conference, 2007, 3(24):305 - 307.

[10] Henry Lieberman and carl Hewitt. Real time Garbage

Collector based on the Lifetime of Objects’,MIT Artificial

Intelligence Laboratory, 1981, Vol. 26, No. 6, pp. 419-

429.

[11] Patrick Dubroy. ‘Memory Management for Android

Apps’, Google I/O, 2011.

[12] Martin schoeberl and Wolfgang Puffitsch., Nonblocking

Real-Time Garbage Collection, ACM Transactions on

Embedded Computing Systems, 2010, Vol. 10, No. 1,

Article 6, pp. 13-18.

[13] A. W. Appel, J. R. Ellis, K. Li. Real-Time Concurrent

Collection on Stock Multiprocessors. Proceedings of the

ACM SIGPLAN’88, Conference on Programming

Language Design and Implementation, 1988.

[14] Bacon, David F., Perry Cheng, and V. T. Rajan. A real-

time garbage collector with low overhead and consistent

utilization, Concurrency and Computation: Practice and

Experience, 2003 Vol. 23, No. 14.

[15] Dr Ali Ebrahim EI Desokey, Dr Amany Sarhan, Eng.

Seham Moawad. Using Multiple Servers in Concurrent

Garbage Collector. Journal of Object Technology, 2008

Vol.7, No. 4, pp. 139-158.

[16] Schoeberl, Martin. Real-Time Garbage Collection for

Java, Object and Component-Oriented Real-Time

Distributed Computing, Ninth IEEE International

Symposium, 2006.

[17] Kalibera, Tomas, et al. A family of real-time Java

benchmarks, Concurrency and Computation: Practice

and Experience, 2011, Vol. 23, No. 14 pp. 1679-1700.

[18] Lorenz Huelsbergen, Phil Winterbottom. Very Concurrent

Mark and Sweep Garbage Collection without Fine-Grain

Synchronization’, International Symposium on Memory

0

1

2

3

4

0 2000 4000

N
u

m
b

e
r
 o

f
F

a
il

u
r
e
 s

it
u

a
ti

o
n

s

Program excution time(msec)

CMS

RTCMS

 Development of Real-Time Capability in Application Virtual Machine using 15

Concurrent Automatic Memory Management Algorithm

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 11, 8-15

Management, 1998, Vol. 34. No. 3, pp. 166-175.

[19] Martin Kero, Johan Nordlander and Per Lindgren. A

Correct and Useful Incremental Copying Garbage

Collector, Proceedings of the 6th international symposium

on Memory management. ACM, 20017, pp 129-140.

[20] Martin Kero. Garbage Collecting Reactive Real-Time

Systems, Lund University of Technology, Department of

Computer science and Electrical engineering, EISLAB,

2007, ISSN:1402-1757.

[21] Roger Henriksson (1998) Scheduling Garbage Collection

in Embedded Systems, Ph.D. dissertation, Lund

University.

[22] Robin Milner. Communicating and mobile systems: the Π

calculus, Cambridge University Press, 1999.

[23] E. W. Dijsktra, L. Lamport, A. J. Martin, C. S. Scholten,

E. F. M. Steffens, On-the-Fly Garbage Collection: An

Exercise in Cooperation’, Communications of the ACM ,

1978, Vol. 21, No. 11, pp. 966-975.

[24] Tomas Kalibre, Filip Pizlo, Antony L. Hosking, Jan Vitek.

Scheduling Real-time Garbage Collection on Uni-

Processors, 30th IEEE Real-Time Systems Symposium,

2011, pp. 81-92.

[25] Wilson, Paul R. Uniprocessor garbage collection

techniques, ACM Computing survey in Memory

Management, 1997, pp. 527-540.

[26] Bruno Dufour, Glacier: A Garbage Collection Simulation

System, Sable Research Group McGill University.

Authors’ Profiles

Dr A.S Manjunath received his Ph.D

degree from Bangalore University, India in

2001 This author is Rashtriya Rattan

Awardee in 2004 for outstanding

individual achievements and distinguished

services to the Nation. He is working in the

potential as a professor in C.S.E dept, S.I.T,

Tumkur and also C.E.O of the ManVish eTech Pvt Ltd

company. He is having 30 years of experience in industry and

academics the areas of expertise include embedded systems,

RTOS, Networking, Embedded Linux etc.

Charan K.V received Bachelor of

Engineering degree in 2010 from V.T.U,

Balguam, Karnataka, India and currently

pursuing integrated (M.Tech.+PhD) dual

degree at siddaganga institute of

technology Research Center, Tumkur

under Visvesvaraya Technological

University, Belguam, Karnataka. His

interested areas in research is operating systems, embedded

systems, real-time computing.

How to cite this paper: Charan K V, A.S Manjunath,

"Development of Real-Time Capability in Application Virtual

Machine using Concurrent Automatic Memory Management

Algorithm", International Journal of Information Technology

and Computer Science(IJITCS), Vol.8, No.11, pp.8-15, 2016.

DOI: 10.5815/ijitcs.2016.11.02

