
I.J. Information Technology and Computer Science, 2016, 01, 54-66
Published Online January 2016 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2016.01.07

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

Some Observations on Dependency Analysis of

SOA Based Systems

Pawan Kumar
Department of Computer Science, MMV Banaras Hindu University Varanasi-221005

E-mail: pawan.bhuphd@gmail.com

Ratneshwer
Department of Computer Science, MMV Banaras Hindu University Varanasi-221005

E-mail: ratnesh@bhu.ac.in

Abstract—This paper presents some observations on

Dependency Analysis of Service Oriented Architecture

(SOA) based systems. In general, dependency analysis is

based on the internal properties of artifacts

(objects/components/services) and inter-relationship

between the artifacts in the system. In order to make a

dependency analysis for SOA based systems, one have to

consider the special features of SOA that make them

different with other approaches. This paper surveys the

previous works taken on dependency analysis of service

oriented systems. The present work provides insights

about definitions related to service dependency, the

modeling and analysis techniques of service dependency

analysis, failure results to service dependence and some

research challenges of the topic.The contribution of this

paper is for novice researchers working on this topic as

they can get an overview of dependency analysis of SOA

based systems for their further research.

Index Terms—Service oriented architecture, Software

services, Dependency analysis, Data Dependency,

Control Dependency.

I. INTRODUCTION

Dependency analysis is widely addressed in modular

design of various software systems, ever since the early

days of software engineering. However a systematic and

disciplined way to review dependency analysis works for

Service Oriented Architecture (SOA) based systems has

not yet been observed. This paper presents literature

review of Dependency Analysis of SOA based systems.

Different research questions related to dependency

analysis in SOA based systems are identified. The present

work provides insights about definitions related to service

dependency, the modeling and analysis techniques of

service dependency analysis techniques, failure results to

service dependence and some research challenges of the

topic. Since this is a comparatively new topic in software

engineering, so we have taken an open search strategy. In

this study, standard journals related to software

engineering and service oriented architecture have been

selected. Appropriate key-words have been chosen. A

devastating situation may occur if some dependencies

among services are not identified carefully. Some SOA

based systems may be real time systems. In real time

system, it is inevitable to identify every dependency

because any deficiency leads to catastrophic situation [1].

Our purpose of doing this review is to get an overview

of dependency analysis of SOA based systems. SOA

presents newer aspects of dependency analysis due to its

different architectural style and programming paradigm.

There is similarity between service oriented development

and component based development but we strictly focus

on the dependency analysis works related to software

services only and do not include the dependency analysis

works for component based software or object oriented

software. In this way this review work will naturally

strengthen the coherency between the SOA and

dependency analysis and traces a better picture of major

issues, challenges and possible solutions of dependency

analysis of SOA based systems.

The present work is organized as follows. In sectionII,

we briefly mention some existing works related to

review/survey of dependency analysis. In Section III, we

briefly describe the concepts of SOA and dependency

analysis. In section IV, we mentioned the identified

research questions. In section V and its following

subsections, we made an attempt to answer the identified

research questions. Finally we conclude the topic on

section VI.

II. RELATED WORK

In literature, the problem of dependency has been

addressed widely but few works has been observed

regarding systematic review of dependency analysis.

Parnas (1979) [2] pointed out the problems of having

uncontrolled dependencies between software modules

and introduced the concept of information hiding. One

significant work found in the literature is performed by

Arias et al [3]. In their workextensive survey of

dependency analysis has been performed that gives

relevant information about dependency analysis. An

industrial survey of requirements interdependencies in

software product release planning has been given in [4].

This paper describes the complexity of interdependency

analysis in relation to metrics of requirements coupling.

 Some Observations on Dependency Analysis of SOA Based Systems 55

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

 A survey of Data Dependency Analysis Techniques for

Automated Parallelization is given in [5]. This paper

discusses the dependencies that exist between statements

in that program and detailing several different classes of

dependence analysis techniques. Bhuyan, Prakash and

Mohpatra[6] have performed a survey of regression

testing of SOA based systems. This paper gives valuable

information pertinent to testing in SOA, but it has not

discussed about dependency analysis. Motlagh has done a

survey of testing of SOA based system. Motlagh has

described about testing challenges of SOA based systems

[7]. Lewis, Smith and Kontogiannis[8], in their report,

outlined the SOA Research Agenda. It also provides

detail on specific research challenges related to the

maintenance and evolution of service-oriented systems.

Trigos[9] has analyzed different approaches for

dependency analysis amongst services in a business

process.

The above contributions demonstrate that although

some approaches of survey and review works are

available in the literature but a systematic and disciplined

review work of dependency analysis especially in context

of SOA is yet not found. The proposed work extends the

above contributions further by presenting an extensive

review on dependency analysis of SOA based systems.

III. SOA AND DEPENDENCY ANALYSIS

The one major problem that we have encountered

during this work is the divisive definition of SOA and the

confusion associated with the service oriented

architecture and service oriented implementation. We

made a general understanding of SOA based on following

definition.

“SOA is a design philosophy independent of any

vendor, product, and technology or industry trend. SOA

may be realized via web services but web services are not

necessary required to implement SOA. With an SOA the

application’s functionality is exposed through a collection

of services. These services are independent and

encapsulate both the business logic and its associated data.

The services are interconnected via messages with a

schema defining their format; a contract defining their

interchanges and a policy defining how they should be

exchanged [10]”.

“Service-Oriented Architecture (SOA) is a software

architecture where functionality is grouped around

business processes and packaged as inter operable

services. SOA also describes IT infrastructure which

allows different applications to exchange data with one

another as they participate in business processes. These

services communicate with each other by passing data

from one service to another, or by coordinating an

activity between two or more services [11].

In essence, it is a way of designing a software system

to provide services to either end user applications or other

services through published and discoverable interfaces

[12]. Loose Coupling between services is one of its

design principles that help system or architecture to

maintain its efficiency because services are less

dependent on each other [13]. Service coupling shows

how much a service has dependency to other services.

Since business process choreography is performed by

calling services according to business process control

flow, it is possible that input of a service is obtained from

output of other services, and these results in coupling of

two services. A request to a service is implemented

through a message which is sent to service operations

[14]. Understanding dependencies in a SOA based system

is essential to perform two functions: impact analysis

(understanding which other components are affected

when a component become unavailable or malfunctions)

and software component level root cause analysis

(understanding the cause of a component by looking at

the other components it relies on) [15]. In an SOA based

systems, software services depend on other software

services by service providing/ receiving relationships.

A service-oriented system consists of a set of services

and includes various types of dependencies among them

such as business processes, semantic, messages, and non-

functional requirements and the underlying information

models shared by these service dependencies. Discovery

of dependencies among services of large distributed

systems is crucial for management software. Higher

dependency leads a complex system vulnerable, which

results in poor understanding and a higher maintenance

cost in SOA. Dependency is a relationship involving two

or more services where a change of state in one or more

service(s) leads to a potential for a change of state in one

or more other services. Dependency analysis involves the

identification of interdependent services of a system.

The knowledge of a service’s dependencies is

important for a number of management activities and

development of a SOA based system. Fault management

needs this information to track problems in a distributed

service network. Configuration management needs this

information to know which services are currently in use

and appropriately adapt to changes in the environment.

Accounting management needs to know dependencies to

appropriately charge for service access. Policy-based

management needs to know dependencies and must be

able to change them to enforce the policies. All these

management activities must have ways to learn the

current dependencies, discover their properties, and

possibly perform rebinding of services [16].

IV. RESEARCH QUESTIONS

Research questions have pivotal role in literature

review. Dependency analysis in any system is inevitable

for checking the quality of the system. Dependency

analysis helps in testing, maintaining, identifying the

error of the system. It prevents chaos of the system failure.

Since SOA is an active research area and it can solve a

number of real problems, to address dependency issues in

SOA based development becomes inevitable to avoid

undesirable situation.

Some basic questions related to dependency analysis of

SOA based systems have been taken. The research

questions addressed by this study are as follows:

56 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

RQ1. What is the uniqueness of dependencies of SOA

based systems?

Motivation: How the dependence problem among

services is different from components and objects?

RQ2. What are the proposed definitions of dependency

of SOA based system?

Motivation: The first step is to understand about

dependency related to SOA.

RQ3. What are the available ‘dependency analysis and

modeling’ techniques for SOA based System?

Motivation: Obtain an overview of existing solutions

so that one can build newer solution according to existing

solutions. Using overviews one can highlight pros and

cons of existing solutions.

RQ4. What are the impacts of fault caused by service

dependence?

Motivation: Obtain the impact of failure of SOA based

system due to service dependence.

RQ5. What are the ‘research challenges’ observed for

dependency analysis of SOA based system?

Motivation: To identify hindrance to do the work for

dependency analysis of SOA. By reviewing the existing

research, it becomes easy to find research challenges.

RQ6. What are the available tools for dependency

analysis in SOA based system?

Motivation: By this question, it has been tried to

identify the existing tools and their pros and cons.

Since ‘Dependency Analysis in SOA based System’ is

relatively new topic, so we choose the open search

strategy. SOA is a new paradigm and most of the

significant works related to dependencies are observed

after 2006. Because of this reason, journals and

proceeding have been selected since 2006. In random

searching, search has been performed at random using

keyword related ‘dependency in Service Oriented

Architecture’, ‘dependency management in SOA’,

‘dependency among software services’ etc. We have used

Google, Live and Babylon search engine for the purpose.

Searching has been done manually. We have gone

through those papers which are related to dependency

analysis of service oriented architecture. We have

included some survey papers also. General software

engineering papers are excluded. Papers based on object

oriented analysis/component based software are also

excluded. For understanding purpose some papers related

to only SOA and general dependency are included. The

selected study acts as a primary studies for literature

review. Inclusion and exclusion criteria are done on the

basis of studying abstract and introduction of papers from

selected journals and proceeding conferences.

V. OBSERVATIONS

In this section, possible answers of aforementioned

questions have been discussed.

RQ1. What is the uniqueness of dependencies of SOA

based systems?

Although objects, components and services have

common concepts of reusability in their origin but they

have differences at their architectural, internal description

and abstraction levels. An Object is known by its member

data and member functions; components are known by

their classes and interfaces whereas services are known

by their service contracts. Objects have tight coupling but

components and services have loose coupling. The major

differences are in their connections and the way they

provide services to third party. Service oriented

computing provides a way to create a new architecture

that reflects components trend towards autonomy and

heterogeneity [17]. Software components support black

box and white box encapsulation both but software

services support only black box encapsulation. In CBSE,

there is a limited composition support for components of

different models but software services are implementing

in diverse technologies, on different platforms. In general,

dependency analysis is based on the internal properties of

artifacts (object/components/services) and inter-

relationship between the artifacts within the system. In

order to make a dependency analysis for SOA based

systems, one have to consider the special features of SOA

that make them different with other approaches. The

dependency between the service provider and the service

client is a run-time dependency, not a compile-time

dependency. The service consumer does not know the

format of the request message or response message or the

location of the service until it needs a particular service

[18].

There is a need to make separate dependency analysis

approach for SOA based systems due to following

reasons.

 A service should be stateless to ensure that it is not

dependent on the context or state of other services.

Any dependencies between services should be

defined in terms of common business process,

function and data models [19].

 Services have to be largely independent from

implementation specific attributes.

 Services are invoked through defined

communication protocols that stress interoperability

and location transparency [20].

 The global collaboration pattern between constituent

services is located inside a single entity; the

composition schema which expresses the overall

behavior in terms of work flow and data flow. In

component based systems the communications are

located inside the connectors which split the global

 Some Observations on Dependency Analysis of SOA Based Systems 57

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

behavior and the work flow is not explicit [21].

 A service defines in terms of data contracts,

operation contracts and service contracts.

Dependency analysis of SOA based systems should

be based on these contracts whereas dependency

analysis of component based systems is based on

their interfaces.

 A service has taken concept of ownership to the

extreme and thus, the providers of the services are

responsible for the development, quality of service,

maintenance, deployment and execution. On the

contrary, components split the responsibilities at the

deployment level [21].

 If we work with components, we are predominantly

working with the code within the language

boundary. If we work with services, we use some

remote functionality over network under some

contract [20].

 Services operate in distributed environment and

focus on document centric communication. In

contrast, component based development does not

take that much stand on how the components

interact with one another –this depends on the

technology that the components are based on [22].

The discussions above clearly suggest that there are

fundamental operational differences between software

services and software components and there is a need for

a fresh look at dependency analysis for SOA based

systems.

RQ2. What are the proposed definitions of Dependency

of SOA based system?

In the present literature, the dependency relations

among software services are mentioned in circumstantial

manner and vary widely in concepts. Although various

dependency definitions are available in the literature but

here we considered only those that are especially given in

context of SOA based systems.

Winkler et al. [19] define service dependency as “A

service dependency is a directed relation between

services. It is expressed as a 1: n relationship where one

service (dependant) depends on one or multiple services

(antecedent). A service S1 is dependent on a service S2 if

the provisioning of service S1 is conditional to the

provisioning of service S2, i.e. if a property of service S1

is affected by a property of S2.”

Another definition of service dependency is given in

[23] as ‘The concept of Web Services consists in the

dynamic advertisement, discovery and access of business

functionality among multiple cooperating partners.

Consequently, failures occurring in one service affect

other services being offered to a customer, i.e., services

have dependencies on other services.’

The service dependency is assumed as a relationship of

services offering functionality to other services. Service

dependency is beyond traditional poor service description,

and directed by various sources such as data, resource,

procedure control, utilizing techniques etc [24].

The above definitions describe dependencies in SOA

based system as service providing relation between

software services. A relationship among software services

can only be treating as dependency relationship if the

making change in one service affects the

functionality/behavior of other services related to this.

The above definitions reflect this concept. But these

definitions only concern specific types of dependencies

and do not take into account the context of the system or

the organization. Also these definitions are concerns to

application level dependency only and do not take the

network level aspect into consideration. These definitions

take a general concept and do not distinguish regarding

kind of dependency that is dependency in the source code,

during execution time or due to hardware resources.

Therefore the current definitions are not across-the-board

to accommodate different types of dependencies. If all

services come from same service provider then

dependency analysis is easy, but if services are obtained

by different service providers (and also from different

locations) then dependency analysis becomes complex.

Types of Dependency Relations

One of the possible classifications of service

dependency relations are with respect to their occurrences

that is either between the two individual services or

among services in a composite service. Winkler et al [19]

have named dependencies that occur between the

individual services of a service composition as horizontal

dependencies because they affect services on the same

hierarchical level of composition. Dependencies can also

have direct effects on the overall composition. These

dependencies, which occur across a hierarchical level of

composition, are named as vertical dependencies.

One classification of dependency is proposed to

distinguish between inter-service, service-resource, and

inter-resource dependencies. These denote dependencies

between services, services and resources as well as

between resources, respectively [24].

Caswell and Ramanathan [25] describe dependencies

for services. They define five kinds of dependencies:

Execution dependency (performance of an application

server process depends on the status of the host), Link

dependency (performance of a service depends on the

link status), Component dependency (in case of a web

service that is provided on different front-end servers

which are selected by a round-robin DNS scheduling the

performance depends on the currently selected server),

Inter-service dependency (this type of dependency occurs

between services, e.g. e-mail service depends on an

authentication service and on an NFS service),

Organizational dependency (services and/or server may

be mapped to different domains of responsibility).

Service dependency can also be categorized on the

basis the reason of the cause that creates dependency.

Some such dependency relations, observed from literature,

are summarized here in the table below (table 1).

It can be observed that there is no unanimous concern

regarding the types of dependency. Dependency analysis

provides a visual representation of the services in SOA

based systems and helps one to monitor and understand

58 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

how various services are providing/receiving services to

each other. One can get idea about what services are

deployed, how dependency relation affects in case of

adding new services/deleting services. In SOA based

systems, dependency relationships can be observed at

architecture level, design level and at execution time. The

level of detailed available for software services is limited,

and as a result, dependency relationships of software

services may be obtained at architecture level. At

architecture level, dependencies can be identified based

on syntactic and semantic information available in a

formal specification of software architecture and the

connections among services and the constraints on their

interactions. In SOA, the analysis of dependencies at

architecture level is important for understanding the

coordination and orchestration of services. At design

level different modules are constructed according to the

basis of core SOA principle. Dependency analysis at

design time provides information about which service

depend on other services before they execute. If proper

dependency analysis, among software services, is

performed then the design level weaknesses can be easily

identified and then design modifications can be made

early in the design cycle and reduce the cost of

development. Analysis of service dependencies at

execution time is crucial in order to understand the effect

of services in case of failure. When a service has a failure

or performance degradation, all other services that

depend directly or indirectly on this service might be

impacted. Dynamic dependencies involve with handling

unpredictable changes of runtime environment that

cannot be handled using static composition techniques

[27].

Table 1. Observed Dependency Relationships among software services

Types of Dependencies Short Description References

Design Time Dependencies Design time dependency refers to the dependency of a service as it exists

after deployment but before execution.

[26]

Cyclic Dependency Suppose there are three services s1, s2 and s3. If s1 is dependent on s2, s2

on s3 and s3 on s1, then it is cyclic dependency.

[27]

Input/output Dependency It occurs when a service requires/provides data from /to another service. [27]

Cause and Effect Dependency It occurs when a service has preconditions to be satisfied based on the effect

of the other services.

[27]

Transitive Dependency Assume there are three services s1, s2, and s3. If s1 is dependent on s2, s2

on s3 then s1 is dependent on s3.

[27]

Price Dependency A price dependency exists when the price of a service depends on the price

of other services.

[19]

Location Dependencies Location dependencies occur between two services that need to be executed
at the same or at a different location.

[19]

Resource Dependency Two services have a resource dependency, when the availability of a

resource, which is needed by one service, depends on another service.

[19]

RQ3. What are the available ‘dependency analysis and

modeling’ techniques for SOA based System?

If we have the knowledge of internal code and

operations of a system then operational dependencies can

easily be computed. However, if the system is complex

and source code and implementation details of the system

are unknown (like web services, components etc), a

different approach is required for dependency analysis.

Success of a SOA based system is not only depends on

the properties of individual services but also on how these

services interact/coordinate with each other. The

knowledge of this interaction/coordination is essential at

the early stage of life cycle to avoid confusion and

unpredictable situation. Knowledge about dependencies

between services in SOA based system is not explicitly

available but is rather implicitly contained in service

interfaces, service level agreements and service

descriptions. Depending on the specific application and

the function of the dependency information, the

approaches to analyzing and modeling dependencies vary

greatly. A careful reading of literature helps in identifying

research efforts that have made into classification of

concepts and understandings regarding dependency

analysis of SOA based systems. Here we have two

possible factors for classification. One classification is

possible based on the source of information used by the

different approaches and the other one is the type of

outcome the different approaches have. One way of

classification is that whether we are measuring the

service dependency at network level or application

program level. For our discussion, we have taken the

factor ‘type of outcome’. The type of outcome used

among existing dependency analysis approaches can be

classified in following three groups: graph based

approach, formal modeling/algorithmic approach and

artificial intelligence and other approaches.

(A) Graph Based Approach

In a SOA based system, it would be easy to understand

the dependencies among services by their textual

description for a simple system having fewer services.

But as the number of involved services, in a SOA based

system, increases it becomes difficult to analyze and track

dependencies among services based on their textual

descriptions only. To represent the dependencies among

services, in an effective manner, a graphical

representation is an efficient and easy to understand

approach. Graph Based Approach is very powerful tool

for dependency analysis for SOA based system.

Significant works have been observed in Graph based

 Some Observations on Dependency Analysis of SOA Based Systems 59

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

service dependency analysis. The table below (Table 2)

summarizes the Graph based approaches for Service

dependency analysis.

Table 2. Summary of Graph based Dependency Modeling Approaches

Approach Source of Dependency

information

Strengths/

Weaknesses

Type of output Architecture/

design/

execution

Time

Reference

Discover dynamic

dependencies among
services

Correlations among

message exchanges
between services, logging

mechanism provided by

SOA Manager

Poor message log data

may affect the
measurement.

A probabilistic

dependency graph in
which edges are labeled

with a confidence level

Execution time [15]

Combine approach of
semantic matching of

inputs and outputs
interfaces and process

cases for analyzing

dependencies

Service interface, service
contracts

Measure the strength of
dependencies

frequency table,
dependency Graph,

algorithm to automatically
detect the conflicts by

using the structure of

dependency

Graph.

Design time [17]

Active-perturbation

approach to infer

dynamic dependencies

Initial knowledge of the

implementation detail of

system

Compute dependency

strength, identifying

cross-domain
dependencies

Active dependency

discovery (ADD) Graph

Execution time [32]

Extraction of

dependencies among
services

local repository with

abstract semantic
description of web services

extract cyclic

dependency,
Input/output

dependency, Cause and

Effect dependency

A dependency Graph Design/

execution time

[27]

Dependency Markup

Language to capture

dependencies amongst
activities

Service interface, service

contracts

Resulting specification is

more abstract than a

concrete control flow

Service Flow/Control Flow

Graph,

Design/

execution time

[30]

Applying XML,

XPath and RDF to the
problem of describing,

querying and

computing the

dependencies among

services

A web–based architecture

for retrieving and handling
dependency information

Fault management

applications,

Dependency Graph Design/

execution time

[22]

Track the
dependencies of

services and represent

them in graphical
models.

Design time dependency of
deployed SOA artifacts in

an OC4J container.

Layout Flexibility,
Single Console for End-

to-End Visibility

sCrawler: SOA
Dependency Tracker tool

Design/
execution time

[26]

Dependency Impact

Analysis Model

Change specification of

software services

Capture the changing

entities

Graph-based service

dependency matrix

Design time [16]

Extract Dynamic

Dependencies by

Vector Clocks

Use the vector clocks to

infer dependencies among

services.

Implementation into the

Apache CXF4

framework

Dynamic dependency

graphs of web services

Design Time [29]

Discovering Service
Dependencies in

Mobile Ad Hoc

Networks

Monitoring
agents collect dependence

data by intercepting the

message
traffic between services

Evaluate the
performance of the

method through a series

of extensive simulation-
based experiments

Dependence Graph Execution
Time

[31]

Basuet. al. [15] have presented a module that

automatically analyzes service execution data to discover

dynamic dependencies among services. Construction of a

probabilistic dependency graph is concatenation of all

identified dependencies between pairs of messages by

taking into account the assignment of services to nodes.

Edges are labeled with a confidence level, which is the

probability of the identified dependency. They

experimentally analyzed his approach on HP internal data

about the execution of business processes invoking

various services within HP. Yan et al [17] have given an

approach that combines the semantic matching of inputs

and outputs interfaces between service operations and the

analysis of process cases to identify service dependencies.

The main contributions of this approach are that it can be

used to identify the direction of the service dependencies

and non-conflict property and non-redundancy property

of discovered service dependencies are guaranteed based

on a dependency graph. Romano, et al. [29] has given the

idea of using explicit system perturbation to elucidate

dependencies that they denoted as active dependency

discovery (ADD). They have used Active-perturbation

approach in which they explicitly inject problems into the

system, monitor service behavior, and infer dynamic

60 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

dependencies. The ADD procedure builds an operational

dependency graph for a particular combination of system

and workload while requiring very few details of the

internal implementation of the system. Omer and

Schill[27] have investigated a method of automatic

composition plan creation that relies on automatic

extraction of dependencies among services. Extracted I/O

dependencies are represented using a directed graph. This

approach utilizes existing graph traversal based

algorithms to extract cyclic dependency and generate the

execution plan. Tolksdorf [30] has proposed a

Dependency Markup Language to capture dependencies

amongst activities and generalizations/specializations

amongst processes. He described composite services at

more suited levels of abstraction and has several options

to use such descriptions for service coordination, service

discovery and service classification. Ensel and Keller [22]

have described a novel approach for applying XML,

XPath and RDF to the problem of describing, querying

and computing the dependencies among services in a

distributed computing system. Its output is a consolidated

dependency graph that can then be used by fault

management applications to perform additional problem

determination tasks or event correlation. Phukan [26] has

discussed some of the problems inherent in the SOA

service life cycle, and shows how graph based automated

dependency tracking can help to analyze and alleviate

these problems. Wang andCapretz [16] have proposed a

service dependency graph model and service dependency

and relations matrices to analyze the dependency of Web

services. They performed ripple-effect analysis by

calculating service dependency, cohesion, and impact

effect within and among services. They also proposed the

change specification to the web services, so that the

service developer can apply the changes directly to the

web service definition. Romano, Pinzger and Bouwers

[29] have given an approach to build up dynamic

dependency graphs of web services. These graphs are

commonly weighted, where the weights indicate the

number of times a particular service is invoked or a

particular execution path is traversed. Novonty et al. [31]

proposes a visualization and dependency analysis

framework for a Web application. Based on the deep

analysis for the text feature of hyperlink, a regular

expression-based linkage information extraction method

is presented.

The goal of the above approaches is to represent the

SOA based system in the form of graph and identify

relationships among service

(B) Formal Modeling/Algorithmic Approach

The importance of formal modeling of syntactic and

semantic characteristics of software systems has long

been accredited. It is practicable to use mathematical

foundations to capture the essential behavior of service

oriented software systems for the purpose of dependency

analysis. Some major contributions of this approach are

summarized in the table given below (Table 3).

Yanchuk, Ivanyukovich and Marchese, in their work

[33], have proposed mathematical definitions for

individual service, service-oriented environment and

service-oriented application. Winkler et al.[19]have

proposed an approach for analyzing dependencies

between services in a composition in a semi-automatic

manner at design time and capturing them in a

dependency model. Later they applied this model for

validating negotiated Service Level Agreements (SLA)

and determining the effects of events such as service

failure or SLA renegotiation on other services. Zheng,

Zhou and Krause [34] have demonstrated how to model

BPEL data dependencies with proposed web service

automata (WSA). They focus on analyzing BPEL data

dependencies. The proposed WSA is implemented in

XML. Sell et al [20] have compared two approaches for

modeling dependencies as a base for managing

adaptations of complex business processes. Based on two

use cases from the domain of workflow management and

service engineering they illustrated the need for capturing

dependencies and derive the requirements for dependency

modeling. For dependency modeling we discuss two

alternative solutions. One is based on OWL-DL ontology

and the other is based on a meta-model approach. Kuang

et al. [21] have explained the importance of importing

dependency between interfaces into service matchmaking;

propose a service specification that describes dependency

between interfaces in a concise and easily-extended way

and proposed a novel service matchmaking algorithm

considering different characteristics. Bodenstaff et al [35],

in their paper, have demonstrated how to analyze SLAs

during development phase and how to monitor these

dependencies using event logs during runtime. They

named their approach MoDe4SLA (Monitoring

Dependencies for SLAs). With the MoDe4SLA approach

they analyze during development phase different types of

dependencies between services, and the impact services

have on each other.

Keller and Kar [36] have introduced the concept of

dependency lifetime that traces the flow of dependency

information from the design to installation to runtime

stages of a service. A dependency may be directly

available from system information repositories such as

ODM (AIX) or RPM (Linux) in machine-readable format

(high degree of formalization); or a dependency mayexist

only in the notebook of a system administrator (very low

degree of formalization). This dimension is important

because it serves as a metric that helps to evaluate how

expensive and/or difficult it is to acquire, identify,

represent and track this dependency during the lifetime of

the component. Alda [28] have given a novel way for

handling service dependencies in peer-to-peer

architectures is proposed. His approach is based on

presumes two assumptions. The first assumption implies

that any consumer peer can subscribe to a list maintained

by a provider peer if the peer relies on a public service

offered by that provider. If an adaptation is planned, the

operator of a provider peer is able to consult all

subscribed peers before the adaptation can be carried out.

The second assumption states that peers of a peer group

have agreed to a common adaptation policy in the run-up

to the adaptation of a service. Liu, Ma and Zhao [37]

 Some Observations on Dependency Analysis of SOA Based Systems 61

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

have proposed an approach to identifying conversation

dependency between business processes to facilitate the

dynamic evolution of SOA based system. In their

approach, a business process is represented as a directed

graph, and the matrix method is used to identify the

execution order of activities in the business process,

which determines the conversation dependency.

(C) Artificial Intelligence and other Approach

In recent years artificial intelligence has gained

popularity in every field of modern technology. Seminal

works for dependency analysis in SOA based system

using artificial intelligence technique are being done.

Neural network, fuzzy logic, genetic algorithm based

dependency solutions can be categorized under artificial

intelligence technique. Some major contributions of this

approach are summarized in the table given below.

Ensel has presented a new methodology to

automatically generate service dependency models. The

approach specially aims for heterogeneous environments.

It is based on two key parts. The first are the underlying

concepts of dependency determination that are carried out

with the help of neural networks. The second part deals

with questions of installation efforts and scalability to

seamlessly integrate the modeling into real IT-

environments [38].Ai and Tang have given a repair

genetic algorithm, namely minimal-conflict hill-climbing

repair genetic algorithm, to address the Web service

composition optimization problem in the presence of

domain constraints and inter service dependencies and

conflicts [39].

As it is clear from the above observations, that most of

the dependency analysis and modeling techniques are

centered on Graph based approach or algorithmic

approach. The most common source of information is

service interface/service contracts.

Table 3. Summary of Algorithm based Dependency Modeling Approaches

Approach Source of Dependency

information

Strengths/

Weaknesses

Type of output Architecture/

design/

execution time

Reference

Dependency
analysis

between

services in a
composition

Process structure and SLA
information.

Used for SLA
validation/renegotiation,

Semi-automatic solution

A set of algorithms for
finding dependency

types

Design
time/execution time

[19]

Web service

automata
approach

Business Process Execution

Language (BPEL)
description of software

system

Considered internal and

external data dependencies

An Eclipse based tool Design Time [34]

Dependency

Modeling with

OWL-DL

ontology and a
meta-model

approach

Knowledge about terms of a

domain (e.g., activity or

service names) and their

interrelations.

Requires specific

validation support for

validation of dependency

model

A meta-model which

allows the creation of

Dependency Models.

Design time [22]

Dependency

between
interfaces into

service

matchmaking

Service interface, service

contracts

Consider the internal

behavior of service
interfaces

A service match-

making algorithm

Design /execution

time

[21]

Monitoring

Dependencies

for SLAs

SLAs during development

phase and using event logs

during runtime

Identifying causes for SLA

violations, calculate the

impact a service has on a
depending composite

service

monitoring results

with analyzed

dependencies and
impacts of the

composite service

Development time [35]

Concept of

dependency
lifetime that

traces the flow

of dependency
information

System information

repositories such as ODM,
configuration and installation

files, etc.

A classification to identify

the various aspects of
dependencies

Dependency

Architecture for
Application Service

Management

Design/ execution

time

[33]

Dependency

management in
service-

Oriented peer-

to-Peer
architectures

A list of depending peer

services that is maintained by
each service providing peer.

Rating dependencies to

analysis of dependencies,
Visualization Tool for

Dependency Analysis

Adaption policies to

clarify how a service
provider peer should

handle existing

dependencies.

Design/ execution

time

[28]

Identifying
conversation

dependency

between
services

A business process is
represented as a directed

graph

Identify the conversation
dependency to facilitate

the dynamic evolution in

SOAs

An algorithm that uses
matrix method to

identify the execution

order of activities in
the services

Design Time [37]

62 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

Table 4. Summary of Artificial Intelligence based Dependency Modeling Approaches

Approach Source of Dependency

information

Strengths/Weaknesses Type of output Architectur/des

ign/execution

time

Reference

Propose a service
specification that

gain management

relevant
dependency

information

Priori description of the
environment with its

services and

dependencies,

Specially aims for
heterogeneous

environments, based on

neural networks

Constructed and
trained neural

networks with data,

an agent based
architecture

enabling the model

creation

Execution Time [38]

Inter-Service
Dependencies

Using Minimal-
Conflict Hill-

Climbing Repair

Genetic Algorithm

abstract specification
of workflow

inter-service dependencies
and conflicts caused by

domain constraints,
technological constraints and

context-based constraints

A repair genetic
algorithm (MCHC-

repair GA)

Design Time [39]

RQ4. What are the impacts of fault models caused by

service dependence?

Detection of dependencies between a failing service

and the services that depend on the failing service is

important because if a service fails or has changed its

service agreement such as its SLA, it can affect other

services in the composition [40]. If dependencies exist

among services, then developer must be aware about

these dependencies so that appropriate actions should be

taken in adverse conditions. When a service has a failure

or performance degradation, all other services that

depend directly or indirectly on this service might be

impacted. It is important to understand what the service

dependencies are, so that management tools can display

and alert users about the business impact of failures and

performance degradations. Furthermore, knowledge of

dependencies considerably simplifies service-level root-

cause analysis that is, trying to understand the origin of a

failure [16]. The knowledge of dependencies between

services may further be useful for the prediction of

impacts on other services due to management operations

[41]. Service related fault reports are more ambiguous.

They relate to how the quality of the service is perceived

by the users and not limited to a complete failure of a

service, but also indicate that a service is provided with a

low quality [42]. When a customer experiences problems

with a service, the provider needs to react quickly in

order to honor the Service Level Agreements (SLA) in

effect between provider and customer. Conversely, it is

desirable to determine the impact onto services and

Service Level Agreements when problems with resources

or subservices are detected [40].

Dynamic binding of services enables their self-

adaptivity and self-management. Nevertheless, all these

options do not only bear prospects of improved

infrastructure - they can also be sources of serious

failures [43]. IT has long been established that many

software faults are caused by violated dependencies that

are not recognized by developers during designing and

implementing a software system [44].

Some of the impacts of faults observed in literature,

caused by service dependence, are mentioned in Table 5.

Table 5. Summary of Fault Impacts due to Service Dependence

Possible Fault (due to

service dependence)

Impacts of the faults Reference

Transitive nature of

service dependency

The failure of one service may not only affect the direct consumer but all other services

which handle the same resource.

[19]

Inaccuracies in
Dependency

specification

Wrong dependency identification among services. [15]

Faulty software
documentation

Software documentation is the important source for dependency identification. Fault
documentation may result in wrong dependency identification.

[36]

Lack of coordination in

service adaption

The uncoordinated adaptation of public services potentially leads to malfunctions in the

environment of depending peer services in SOA based systems.

[28]

Change in service

operations

A direct impact occurs when the service elements within a service are affected due to their

dependency on the changing service element, while an indirect impact may happen when

the service elements of dependent services are affected.

[16]

Resource failures Resource failures could endanger the SLAs by affecting the provided services. [40]

SLAviolations If a service fails or has changed its service guarantees such as its SLA, it can affect other

services in the composition.

[9]

RQ5. What are the ‘research challenges’ observed for

dependency analysis of SOA based system?

Researchers and practitioners have been considering

various aspects of dependency analysis of SOA based

systems and related issues. It is required to consider these

efforts for the purpose of identification of research

challenges and problems in the field so as to be able to

 Some Observations on Dependency Analysis of SOA Based Systems 63

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

 ascertain some important considerations that need urgent,

and possibly immediate attention. This research question

attempts to present, in a concise manner, the research

challenges related to the topic of discussion.

Some of the research challenges, observed from

literature, are mentioned below.

 The automated service dependency is a challenging

problem in the administration of large distributed

system. The difference in behavior, together with

the structure of the composition, makes it difficult to

manage the dependencies between services [35].

 Automatically analyzes service execution data to

discover dynamic dependency among services is

another challenge. The problem is far from trivial as

it requires understanding correlations among

message exchanges between services [15].

 The discovery of dependencies between Web

service executions in distributed environments is a

challenging problem in general. Due to the wealth

of possible different software and hardware

infrastructures and the considerable number of

different protocol specifications that can be used in

a specific implementation; the dependency

discovery problem comes in a variety of different

flavors [15].

 It is often undesirable and sometime impossible to

store a complete, instantiated dependency model at a

single place [45].

 It is practically unfeasible to obtain the dependency

information and keep the information up-to-date

manually. So it is necessary to detect accurate and

up-to-date operation dependencies in an automatic

manner [17].

 The dependency analysis problem becomes very

challenging in situations where the resources in the

system are dynamic in nature. In such cases,

resources can appear and disappear during system

lifetime because of failures, or deployment of new

sub-systems, and the dependency relations can

change as a result of change of resource availability

or new service level agreements being negotiated

[46].

 Measuring indirect dependencies among services.

 Obtaining dependence information in such a system

is made difficult by the inherent loose coupling of

services, as many dependencies are unknown at

design time, and only established at run time

through a dynamic service binding mechanism [31].

RQ6. What are the available tools for dependency

analysis in SOA based system?

In this section a concise summary of dependency

analysis tools, in context of SOA based systems, are

given. The purpose is to get an overview of various tools

used for Dependency analysis and modeling. The idea is

to get to know that whether existing tools are sufficient

for the purpose or it is require modifying the tools or

proposing a new one in context of newer requirements of

SOA based systems.

Some tools are mentioned in the section, but there is no

implication that these are the only meant for SOA based

applications.

These tools are listed in Table 6.

Table 6. Dependency Analysis Tools

Dependency Analysis Tools References

sCrawler [26]

JDepend [47]

DepAn [48]

ADaM [49]

SOA Dependency Analyser [50]

eDepend [51]

HP OpenView SOA Manager [15]

Serviz [52]

The dependencies among services can be explored in

tools such as HP Open View SOA Manager, and the

performance metrics of all the dependent services are

captured. Any change in dependencies of a SOA business

application on the underlying services can then be

captured in a database and updated in SOA Manager [15].

SCrawler is a dependency tracking utility that tracks

dependencies and presents information about them in an

application-agnostic manner. It maps the design time

dependency of deployed SOA artefacts in an OC4J

container. It makes analysis intuitive and less time-

consuming, and presents information in a well-structured

manner. SCrawler extracts all the process dependencies

from the Oracle Application Server and presents the same

as graphs in a 2D graphical console. It gets information

on all the deployed processes and creates a selection tree.

For each leaf in the process tree, it recursively builds the

dependencies. The end user need not know anything

about SOA or Application Server to find the

dependencies [26].

SOA Dependency Analyzer is a tool for graphical

visualization of the dependencies between the processes

(BPEL-WS) and services (Service Bus). This tool was

developed for easy and simple understanding of the

dependencies between services and processes, sometimes

in very complex environments SOA. It is built on Eclipse

RCP (SWT) framework and to visualize the dependency

graph used Eclipse GEF/ZEST framework [50].

Serviz is a tool that visualizes how services are

activated, and how much they interact over time. It

encompasses both a data collection component and the

visualization component. Data collection relies on the

Turmeric SOA platform, while the visualization is web-

based and makes use of open source JavaScript

visualization and graphing libraries. Serviz is an open-

source tool and its user-interface allows system

maintainers to visualize and inspect the runtime data

collected from web-service based systems. By using

Serviz, maintainers are presented with a topology of a

running SOA system and are therefore able to analyze the

system’s usage over user-defined periods of time [52].

http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://wiki.eclipse.org/index.php/Rich_Client_Platform
http://www.eclipse.org/gef/
http://www.eclipse.org/gef/zest/

64 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

Spassov et al. [53] have implemented a Data

Dependency Analysis Tool (DDAT) to support the testing,

validation and verification of both functional and non-

functional behavior of service-based applications at

design time as well as at runtime. The Data Dependency

Analysis Tool (DDAT) solves two tasks. Firstly, for a

given set of BPEL activities, the tool finds a path that

goes through all activities in the set starting from one

initial activity. Secondly, it finds all control activities on

the discovered path and calculates the condition that

should be met in order for the process to continue

execution along the path.

Wang [54] has developed an impact analysis tool that

allows change analysts to identify service dependencies,

make changes, and to perform impact analysis. Wang has

used this tool to evaluate the actual industry Web

Services for service synchronization.

DepAn[48] is a direct manipulation tool for

visualization, analysis, and refactoring of dependencies in

large applications. DepAn deals with direct manipulation

of heterogeneous dependency information in an Eclipse

RCP environment, analysis and visualization of very

large applications, collapse child dependency into parent

entities to reveal class level interactions and import of file

systems as source of dependency information.

EDepend [51] integrates a set of tools to effectively

manage and control class & package dependencies. Well

controlled code dependencies ensure easy maintenance

and evolution of code is a graphical, interactive and real-

time dependency analysis solution for Java projects in

Eclipse. It integrates a rich set of tools to effectively

detect, display, navigate and analyze

class/package/project dependencies.

VI. CONCLUSION

A software service dependence analysis process

consists of multiple activities that need to be carried out

for achieving the desired goals. These activities may

involve human elements and possibility of automation

also exists. Software services dependence analysis

process must be improved through learning from

experiences and the knowledge resulting from the

experiences must be analyzed and made use of for the

purpose of improvement of the concerned process. One

basic idea is to assess the organization’s current practice

and improve its dependence analysis process on the basis

of the competencies and experiences of the practitioners

working in the organization. A major challenge is to

create strategies and mechanisms for managing relevant

and updated knowledge about software services

dependence for the purpose of testing and configuration

management. It is our conjecture that most of the cost of

dependency analysis process can be reduced by using a

knowledge base supported by a software tool which

gathers and manages the experts’ knowledge. To change

software developers practices, the organization should

improve the practitioners’ existing knowledge (both

theoretical and practical) of its software practices. In

other words, knowledge about the new services should be

made available on different organizational levels. This

would require to judiciously considering the various

activities in a SOA based system for this purpose. Such

an effort would finally aim at redefinition of software

services dependency analysis processes in context of

SOA.

This work explores the literature review of various

dependencies in the context of SOA based systems. We

understand that the identified issues and challenges

regarding the dependencies among services may help in

future research in this area. This initial proposition of

such a review may be purposefully used by the

academician/researchers and the corresponding useful

feedback may be analyzed. It calls for further extensive

research oriented studies, by all concerned, for

identification of newer issues and challenges.

REFERENCES

[1] P. Kumar, and Ratneshwer, "A Review on Dependency

Analysis of SOA based System", 2014 Fifth International

Conference on Recent Trends in Information,

Telecommunication and Computing, (IEEE Explore), 21-

22 March,2014, Chandigarh, pp. 69-81.

[2] D. L. Parnas, “Designing software for ease of extension

and contraction”, IEEE Transaction on Software

Engineering, 1979, Vol. 5 pp. 128-138.

[3] T. B. C. Arias, P. Spek, and P. Avgeriou, “A practice-

driven systematic review of dependency analysis

solutions,” Empirical Software Engineering, 2011 Vol. 16,

pp. 544-586.

[4] P. Carlshamre, K. Sandahl, M. Lindvall, B. Regnell, and J

N Dag, “An industrial survey of requirements

interdependencies in software product release planning,”

In: Proceeding of 5th IEEE International Symposium on

Requirements Engineering, Toronto, Canada,2001, pp.

84-91.

[5] J C Libby, and K. B. Kent, “A survey of data dependence

analysis techniques for automated parallelization,”

Technical Report, TR07-188, 2007, pp.1-34.

[6] P. Bhuyan, C P Kashyap, and D P Mohapatra, “A survey

of regression testing in SOA. International Journal of

Computer Applications,” 2012, Vol. 44, pp.22-25.

[7] E S Motlagh, “A survey of service oriented architecture

systems testing,” International Journal of Software

Engineering & Applications (IJSEA), 2012, Vol. 3(6)

pp.19-27.

[8] G Lewis, D. Smith, K. Kontogiannis et al., “ A research

agenda for maintenance & evolution of SOA-based

system ,” In Proceedings of IEEE International

Conference on Software Maintenance,2007, pp. 481-484.

[9] E D Trigos, “Master thesis service dependency analysis

based on process models and service level agreements”,

Dissertation, Dresden University of Technology, 2007.

[10] D Linthicum, “Understanding service oriented

architecture. MSDN, Microsoft”.

http://msdn.microsoft.com/en-us/library/bb833022.aspx.

Accessed on 19 May 2013.

[11] R. Cover, “The xml cover pages”, 2000,

http://www.oasis-open.org/cover/xml.html. Accessed

on 19 May 2013.

[12] A El Sharkawi, and A. Shouman, “Service Oriented

Architecture for Remote Sensing Satellite Telemetry Data

Implemented on Cloud Computing,” International Journal

of Information Technology and Computer Science

http://www.oasis-open.org/cover/xml.html

 Some Observations on Dependency Analysis of SOA Based Systems 65

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

(IJITCS), Vol. 5, No. 7, June 2013, PP.12-26.

[13] J. S. M. Khalid, and M. Asif, “Grid Approach with

Metadata of Messages in Service Oriented Architecture,”

International Journal of Information Technology and

Computer Science (IJITCS), Volume 6, Number 2,

January 2014, PP.64-71.

[14] A Kazemi, A. Rostampour, et al., “A genetic algorithm

based approach to service identification ,” In Proceedings

of IEEE World Congress on Services, Washington, DC,

USA, ., 2011, pp. 339-346.

[15] S. Basu, F. Casati, and F. Daniel, “Toward web service

dependency discovery for SOA management,” In:

Proceedings of IEEE International Conference on

Services Computing, doi: 10.1109/SCC.2008.45, 2008,

Vol. 2 pp. 422-429.

[16] S. Wang, and M. A. C. Capretz, “A Dependency Impact

Analysis Model for Web Services Evolution,” In:

Proceedings of the IEEE International Conference on In

Web Services, 2009, doi: 10.1109/ICWS.2009.62 pp. 359-

365.

[17] S. Yan, J. Wang, C Liu, and L Liu, “An approach to

discover dependencies between service operations,”

Journal of Software, 2008, Vol. 3(9), pp.36-43.

[18] M. P. Papazoglou, and W. Heuvel, “Service Oriented

Architectures: Approaches, technologies and research

issues,” The VLDB (The International Journal on Very

Large Data Bases) Journal, Volume 16, Issue 3, July 2007,

pp. 389-415.

[19] M. Winkler, T. Springer, E D Trigos, and A.Schill,

“Analyzing dependencies in service compositions,” In:

Proceedings of the 2009 International conference on

Service-oriented computing, 2009, Springer-Verlag Berlin,

Heidelberg. pp. 123-133.

[20] C. Sell, M. Winkler, T. Springer, and A. Schill, “Two

Dependency Modelling Approaches for Business Process

Adaptation,” Knowledge Science, Engineering and

Management(KSEM) Lecture Notes in Computer Science

Vol. 5914, Springer, 2009, pp. 418-429.

[21] L. Kuang, J. Wu, Y. Li, S. Deng and Z. Wu, “Exploring

dependency between interfaces in service matchmaking,”

In: Proceeding of IEEE International Conference on

Services Computing, doi: 10.1109/SCC.2007.60, 2007, pp.

506-513.

[22] C. Ensel, and A. Keller, “Managing application service

dependencies with XML and the resource description

framework,” In: Proceedings of IEEE/IFIP International

Symposium on Integrated Network Management, 2001,

doi: 10.1109/INM.2001.918072, pp. 661-674.

[23] J. Zhou, et al., “Dependency-aware service oriented

architecture and service composition,” In: Proceedings of

IEEE International Conference on Web Services, 2007,

doi: 10.1109/ICWS.2007.71. pp. 1146-1149.

[24] A. Hanemann, M. Sailer, and D. Schmitz, “Towards a

Framework for IT Service Fault Management,” In

Proceedings of the European University Information

Systems Conference (EUNIS 2005), Manchester, England,

June 2005. EUNIS.

[25] D. Caswell, and S. Ramanathan “Using service models for

management of internet services,” In HP Technical Report

HPL-1999-43, HP Laboratories, Palo Alto, California,

USA, March 1999.

[26] S. Phukan, “sCrawler: SOA dependency tracker,”

Available at

http://www.oracle.com/technetwork/articles/scrawler-

sandeep-phukan-085368.html, 2009, Accessed on 23rd

May 2013.

[27] A. M. Omer, and A Schill, “Dependency Based

Automatic Service Composition Using Directed Graph,”

In: Proceedings of Fifth International Conference on Next

Generation Web Services Practices, 2009, Prague, doi:

10.1109/NWeSP.2009.20, pp. 76-81.

[28] S. Alda, “Peer group – based dependency management

peer-to-peer architectures,” Proceedings of the 2005

International Conference on Databases, information

systems, and peer-to-peer computing, 2005, pp.195-202.

[29] D. Romano, M. Pinzger, and E. Bouwers, “Extracting

dynamic dependencies between web services using vector

clocks,” In: Proceeding of IEEE International Conference

on Service-Oriented Computing and Applications, 2011,

pp. 1-8.

[30] R. Tolksdorf, “A Dependency Markup language for web

services,” In: Web, Web-Services, and Database Systems,

2003, Springer Berlin Heidelberg. pp. 129-140.

[31] P. Novotny, A. L. Wolf, B. J.Ko, and S Lee, “Discovering

service dependencies in mobile ad hoc networks”,

Proceedings of the IFIP/IEEE International Symposium

on Integrated Network Management (IM 2013), 2013 pp.

527-533.

[32] A Brown, and D. Patterson, “An Active Approach to

Characterizing Dynamic Dependencies for Problem

Determination in a Distributed Environment,” In Seventh

IFIP/IEEE International Symposium on Integrated

Network Management, Seattle, WA, May 2001, pp.377-

390.

[33] A. Yanchuk, A. Ivanyukovich, and M. Marchese,

“Towards a mathematical foundation for service-oriented

applications design,” Journal of Software vol. 1, 2006, pp.

32-39.

[34] Y. Zheng , J. Zhou, and P. Krause, “Analysis of BPEL

data dependencies,” In: Proceedings of 33rd IEEE

EUROMICRO Conference on Software Engineering and

Advanced Applications, Washington, DC, USA, 2007,

pp.351-358.

[35] L. Bodenstaff, A. Wombacher, R. Wieringa, M.C. Jaeger,

and M. Reichert, “Monitoring service compositions in

MoDe4SLA: design of validation,” ICEIS 2009 -

Proceedings of the 11th International Conference on

Enterprise Information Systems, Volume SAIC, Milan,

Italy, May 6-10, 2009, pp. 114-121.

[36] A. Keller, and G. Kar, “Dynamic dependencies in

application service management,” In: Proceedings of the

International Conference on Parallel and Distributed

Processing Techniques and Applications, Las Vegas,

NV,USA, 2000, pp. 1-7.

[37] M. Liu, D. Ma, and Y. Zhao, “An approach to identifying

conversation dependency in service oriented system

during dynamic evolution,” In: Proceedings of the 2009

ACM symposium on Applied Computing, 2009, pp. 1072-

1073.

[38] C. Ensel, "A Scalable Approach to Automated Service

Dependency Modeling in Heterogeneous Environments,"

In Proceeding of 5th IEEE International Enterprise

Distributed Object Computing Conference (EDOC ’01),

Seattle, WA, USA, September 2001, pp.128-139.

[39] L. Ai, and M. Tang, “QoS-based web service composition

accommodating inter-service dependencies using

minimal-conflict hill-climbing repair genetic algorithm,”

In: Proceedings of IEEE Fourth International Conference

on eScience, doi: 10.1109/eScience.2008.110, 2008, pp.

119-126.

[40] A. Hanemann, D. Schmitz, and M. Sailer, “A framework

for failure impact analysis and recovery with respect to

service level agreements,” IEEE International Conference

on Service Computing, July 11-15,Orlando, Florida, 2005

http://www.oracle.com/technetwork/articles/scrawler-sandeep-phukan-085368.html
http://www.oracle.com/technetwork/articles/scrawler-sandeep-phukan-085368.html

66 Some Observations on Dependency Analysis of SOA Based Systems

Copyright © 2016 MECS I.J. Information Technology and Computer Science, 2016, 01, 54-66

pp. 49-56.

[41] C.R.B. de Souza, “On the Relationship between Software

Dependencies and Coordination: Field Studies and Tool

Support,” PhD dissertation, Donald Bren School of

Information and Computer Sciences, Univ. of California,

Irvine, 2005.

[42] A. Hanemann, and P. Marcu, “Algorithm Design and

Application of Service Oriented Event Correlation,” In

Proceedings of the 3rd IFIP/IEEE International Workshop

on Business Driven IT Management (BDIM 2008),

Salvador Bahia, Brazil, April 200, pp. 61-70.

[43] S. Bruning, S. Weissleder, and M. Malek, “A Fault

Taxonomy for Service-Oriented Architecture,”

Proceedings of the 10th IEEE High Assurance Systems

Engineering Symposium, 14-16 Nov. 2007, doi:

10.1109/HASE.2007.46 pp.367-368.

[44] M. Cataldo, A. Mockus, J. A. Roberts, and J. D. Herbsleb,

“Software dependencies, work dependencies, and their

impact on failures,” IEEE Transactions on Software

Engineering, Vol. 35(6), 2009 pp. 864-878.

[45] A. Keller, and G. Kar, "Determining service dependencies

in distributed systems," IEEE International Conference on

Communications, 2001. ICC 2001, vol.7, pp.2084-2088.

[46] S. Bagchi, G. Kar, and J. Hellerstein, “Dependency

Analysis in Distributed Systems using Fault Injection:

Application to Problem Determination in an e-commerce

Environment,” In Proceeding of 12th International

Workshop on Distributed Systems: Operations &

Management, 15 - 17 October 2001, Nancy, France,

pp.151-164.

[47] M. Clark, "JDepend," available at

http://clarkware.com/software/JDepend.html,
accessed on 24 May 2013.

[48] L. Carver, “DepAn: a dependency analysis tool,”

available at http://google-

opensource.blogspot.in/2008/09/depandependency-

analysis-tool.html, accessed on 24th May 2013.

[49] “ADaM - Automated Dependency analysis Manager,”

availableat http://www.3di-ltd.co.uk/adam.html,
Accessed on 24th May 2013.

[50] T. Frastia, "SOA Dependency Analyzer User Guide",

Released June 5, 2011 downloaded 30 April 2014, pp.1-

22.

[51] “EDepend - Graphical Dependency Analysis Tool 3.5.0,”

available at

http://marketplace.eclipse.org/content/edepend-graphical-

dependency-analysis-tool, accessed on 24 May 2013.

[52] T. Espinha, A. Zaidman, and H G Gross," Understanding

the runtime topology of service-oriented systems,"

Proceedings of 19th Working Conference on Reverse

Engineering Kingston 2012, Ontario, Canada, pp. 187-196.

[53] I. SpassovI, V. Pavlov, A. D. Petrova, and S. Ilieva,

“DDAT: data dependency analysis tool for web service

business processes,” In: Proceedings of International

Conference of Computational Science and Its

Applications (ICCSA), Springer Berlin Heidelberg, 2011,

pp. 232-243.

[54] S. Wang, “A dependency based impact analysis

framework for service-oriented system evolution,” PhD

Dissertation, University of Western Ontario, Canada,

2010.

Authors’ Profiles

Pawan Kumar is working as a Senior

Research Fellow at Department of

Computer Science (MMV), Banaras

Hindu University, Varanasi (India). He

is currently working on ‘Dependency

Analysis of SOA based Systems’. He is

pursuing his doctoral work under the

supervision of Dr. Ratneshwer.

Ratneshwer did his Ph.D. in Component

Based Software Engineering from Indian

Institute of Technology, Banaras Hindu

University, Varanasi (IIT-BHU), India. His

research area is CBSE and SOA. He is

serving as an Assistant Professor in

Department of Computer Science (MMV),

Banaras Hindu University, India. He is

actively involved in teaching and research for last 8 years. One

research monograph is published by LAP Germany and one

book chapter has been published by IGI Global Publication. He

has 16 research papers in International journals and 16 research

papers in international/national conference proceedings in his

credit.

How to cite this paper: Pawan Kumar, Ratneshwer,"Some

Observations on Dependency Analysis of SOA Based Systems",

International Journal of Information Technology and Computer

Science(IJITCS), Vol.8, No.1, pp.54-66, 2016. DOI:

10.5815/ijitcs.2016.01.07

http://clarkware.com/software/JDepend.html
http://google-opensource.blogspot.in/2008/09/depandependency-analysis-tool.html
http://google-opensource.blogspot.in/2008/09/depandependency-analysis-tool.html
http://google-opensource.blogspot.in/2008/09/depandependency-analysis-tool.html
http://www.3di-ltd.co.uk/adam.html
http://marketplace.eclipse.org/content/edepend-graphical-dependency-analysis-tool
http://marketplace.eclipse.org/content/edepend-graphical-dependency-analysis-tool

