
I.J. Information Technology and Computer Science, 2015, 09, 8-14
Published Online August 2015 in MECS (http://www.mecs-press.org/)
DOI: 10.5815/ijitcs.2015.09.02

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

Modern Platform for Parallel Algorithms Testing:
Java on Intel Xeon Phi

Artur Malinowski

Gdansk University of Technology, Faculty of Electronics, Telecommunications and Informatics, Gdansk, Poland
Email: artur.malinowski@pg.gda.pl

Abstract—Parallel algorithms are popular method of
increasing system performance. Apart from showing their
properties using asymptotic analysis, proof-of-concept
implementation and practical experiments are often
required. In order to speed up the development and
provide simple and easily accessible testing environment
that enables execution of reliable experiments, the paper
proposes a platform with multi-core computational
accelerator: Intel Xeon Phi, and modern programming
language: Java. The article includes the description of
integration Java with Xeon Phi, as well as detailed
information about all of the software components. Finally,
the set of tests proves, that proposed platform is able to
prepare reliable experiments of parallel algorithms
implemented in modern programming language.

Index Terms—Parallel programming, parallel algorithms,
testing, Java, Xeon Phi.

I. INTRODUCTION

Multi-core processors – a solution for problem with
maintenance of the trend of Moore's law [1] – have
become a standard. Massively parallel architecture
devices (e.g. CUDA or OpenCL compatible) are more
and more popular. The TOP 500 list presented in
November shows, that 15% of the systems are using
accelerators or co-processors, and 96% of the systems are
composed with processor that include six or more cores
[2]. It is clear, that modern, high performance software
must be able to run concurrently, and it is crucial to focus
on designing algorithms that parallelise efficiently.

Designing an algorithm is a process that consist of a
several phases. At the beginning, the prediction of the
running time is based on asymptotic analysis. According
to M. T. Goodrich and R. Tamassia [3], such approach
has following limitations: underestimates influence of
constants, focuses on worse-case scenario, and appear not
to be very accurate with more complicated algorithms. In
order to verify deductive assumptions, implementation
and a set of experiments is required.

For theoretical computer scientists and mathematicians,
experiments are supposed to be a proof of concept that
presents key features of their solutions, e.g. confirm
asymptotic analysis results or show speed-up of parallel
approach. A modern programming platform could be
useful in order to ease the implementation and speed up

development. Moreover, with parallel algorithms, the
platform should provide mechanisms to cope with
concurrency.

Testing parallel applications require also a hardware
with multi-threaded execution support. Although modern
PCs are equipped with multi-core processors, typical
configuration contains two or four cores, which could be
insufficient to show required properties, e.g. scalability.
Another possibility is to use accelerators, but it is often
connected with low level programming platform (e.g.
CUDA/OpenCL on GPGPU or C/C++ on Intel Xeon Phi).
Distributed platforms (e.g clusters, grids) are not
considered due to higher complexity of software
implementation and less accessibility.

The paper aims to provide both a software and a
hardware setup, that allows to implement parallel
algorithms easily with high level, modern programming
platform, and execute tests in environment, that will be
sufficient to show benefits of running algorithm in
parallel. Java, very popular platform nowadays, is
proposed as a programming language, while Intel Xeon
Phi is a device that has been chosen as a parallel
processor.

The paper continues as follows: Section 2 provides
motivations that resulted in the idea of this research.
Section 3 contains related work that justifies selection of
the platform components. Section 4 describes the steps of
making Java and Xeon Phi work together. Section 5
presents experiments that proves correctness of
environment configuration and ability of running
implementation on many threads in parallel. Finally,
Section 6 summarizes the research and proposes future
work.

II. MOTIVATIONS

The need for software and hardware platform for
parallel algorithms testing comes from author's research
that involves designing sophisticated caching solutions.
The whole problem is split into independent parts, each
part requires selection of best approach. While it is often
difficult to compare ideas using only mathematical
analysis, the project team decided, that it would be useful
to prepare proof of concept implementations and verify it
under conditions similar to target platform.

 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi 9

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

III. RELATED WORK

A. Parallel Algorithms Testing

To the best knowledge of the author, parallel
algorithms testing itself is not the main issue of any
research. However, many works connected to specific
algorithms include a topic of testing.

The simplest execution environment is based on a
single computing node. A.J. Umbarkara, M.S. Joshib, and
Wei-Chiang Hongd proposed multithreaded
implementation of Dual Population Genetic Algorithm in
Java [4]. Efficient speedup of the solution was claimed,
but the algorithm was tested only on single, dual core
CPU. Another example, performance of graph algorithms
proposed by G.M. Slota, was verified with 16 cores CPU
[5]. It is clear, that with the increasing number of
concurrent threads, the speedup tests become much more
reliable. Moreover, tests executed on single CPU cannot
easily exceed limit of about 16 concurrent threads
nowadays.

Another popular, but much more complicated testbed
environment is a cluster of nodes. Many parallel
algorithms were tested on a cluster, e.g. tsunami wave
modeling (Supercomputer K with more than 80,000
processors) [6], BLAST – Basic Local Alignment Search
Tool (40 nodes cluster) [7], or RainbowCrack
(supercomputer SHARCNET, 90 nodes) [8]. However,
usage for individual is limited because of the high price–
usually only institutions, e.g. universities or big research
and development departments can afford such equipment.
What is more, programming on a cluster often requires
additional effort to cope with distant communication, data
distribution, shared memory etc.

The third idea of proving advantages of parallel
approach is implementation on the computation
accelerator. GPGPU (General-Purpose computing on
Graphics Processing Unit) is a typical instance. Example
implementations: two-list algorithm for the subset-sum
problem [9] or protein structure similarity search engine
[10] illustrate the approach– parallel algorithms execution
on GPU requires adjusting to the specific architecture.

B. Modern Programming Platform

Popularity of a programming language is an important
factor – it is usually connected with an ease of learn and
large number of libraries developer can use. According to
TIOBE Index for March 2015 [11], Java is the second
most popular programming language. Considering C,
Objective-C and C++ as not modern, the closest
competitor, C#, is about 3 times less popular. Moreover,
Java is attractive for parallel processing. Programmers
can use FastMPJ – message-passing library similar to
well-established MPI [12] or OpenMP-like directives
[13]. An example of parallel, multithreaded Java library
is Parallel Colt proposed by P. Wendykier and J.G. Nagy
[14]. The aim of the library is to speed up scientific
computing and image processing.

Nowadays, programming using computational
accelerators is not limited to C/C++ based languages like

Nvidia CUDA (Compute Unified Device Architecture)
and OpenCL (Open Computing Language). J. Docampo
et. al. evaluated several libraries that enable the use of
Java in GPGPU [15]. One of the tested solutions, Aparapi
framework, was reported to keep high productivity, some
additional effort of knowing the tool is required,
moreover, GPU computations are enclosed in special
routine with limited operations allowed (what limits
usage of external libraries).

Another accelerator, which is based on many x86_64
cores, Intel Xeon Phi, is reported not to have Java support
[16].

C. Cost Of The Platform

One of the main factor that decides about availability
of the platform for individuals is the price of hardware
components. At the time of writing the paper, there is a
possibility to obtain a processor with maximum of
16 cores. Motherboards with dual or quad sockets allow
to install more processors in a single node, however, it
increases the price significantly. According to Table 1,
building a platform based on GPU seems to be the best
option, however, GPU architecture requires specific
programming techniques that makes development more
difficult. Xeon Phi accelerator has relatively small price
for a single multi-purpose core. Cluster environments are
not included because of much higher price compared to a
single node.

Table 1. Cost of example components included in testing platforms

Type Example Price

CPU Intel Xeon E3-1220
(4 cores)

193 USD [17]

CPU AMD Opteron 6274
(16 cores)

746.99 USD [18]

GPU Nvidia GeForce GTX 750
(512 CUDA cores)

150.00 USD [19]

Xeon
Phi

Intel Xeon Phi Coprocessor 3120A
(57 cores)

1695 USD [20]

IV. CONTRIBUTION

A proposal of parallel algorithms testing platform
consists of a Java as a software part, and Intel Xeon Phi
as a hardware. Java language is chosen because of
popularity, productivity, and the amount of additional
libraries programmer can use. The main advantage of
Xeon Phi accelerator is providing multi-threaded
execution environment with reasonable price for a single
processing core. As stated before, Java is not an officially
supported programming language on the accelerator,
however, the architecture based on x86_64 processors
seems to be more flexible than GPU architecture.

Typically, Java applications are compiled to a bytecode,
and then executed on Java virtual machine (JVM).
Compilation could be done with standard tools on host
system, while the JVM is needed to be ported on Xeon
Phi. JVM Specification is publicly available [21] and
many implementations were proposed, however, only a

10 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

few became popular. Two of them were considered as a
part of a solution: HotSpot (primary reference
implementation, currently managed by Oracle [22]) and
JamVM (lightweight and small implementation, that used
to be the default Java environemt on Ubuntu ARM
[23][24]). Both implementations are platform dependable,
on the other hand, both are also well prepared to be built
without assembler using libffi library. Finally, JamVM
was chosen because of lower number of compilation
problems.

JVM execution includes native calling (e.g. related
with memory management or thread support), which is
often related to hardware architecture. In order to provide
an interface between native call and a hardware layer,
libffi library is commonly used. Libffi [25] provides high
level programming interface that allows to build
application on the top of it without architecture specific
code; unfortunately, the library does not support Xeon
Phi.

Proposed platform includes libffi support for Xeon Phi.
Single accelerator core is compatible with x86_64
architecture, but it does not enable SSE extension, widely
used in libffi x86_64 routine implementation. The
solution is based on replacement of SSE instructions and
XMM registers using AVX-512 instructions and ZMM
registers, that are available on Xeon Phi [26].

The third element of Xeon Phi JVM compilation is
Java Class Library – set of libraries that could be called
by application on JVM [27]. Although JamVM supports
both most popular implementations, GNU Classpath and
OpenJDK, GNU Classpath was used due to better
compatibility with JamVM.

All of the software used to prepare a platform, i.e.
JamVM, Libffi, Gnu Classpath, is open source.

It should be also noted, that the only purpose of
proposed technology stack is testing of algorithms
properties. The platform does not offer fast or efficient
environment that can be useful in performing complex
computations. One reason is Java compilers, that generate
bytecode that is very efficient on modern x64 SSE
processors, however, it often makes impossible to use
Xeon Phi optimization techniques like loop unrolling.
Another issue is connected to lack of JVMs optimization
for vector instructions commonly used in accelerators.
Although it is not in the main scope of this research,
simple tests confirm, that Java applications running on
proposed platform are slower than executed on any
modern PC.

V. EXPERIMENTS

Experiments consist of the execution of selected
parallel algorithms with various number of threads:
quicksort, calculation of PI using Monte Carlo method,
Fast Fourier transform, discrete cosine transform, and
simulation of distributed cache algorithm that was the
motivation for this paper described in section II. For each
execution, time and speedup are presented. Speedup is
defined by the following formula:

S=
T sequential

T parallel

where T is a time of execution. The aim of the
experiments is to prove, that proposed platform is capable
of executing an algorithm in parallel in order to provide
an information of the speedup according to number of
concurrent threads.

A. Testbed Environment

All the tests are performed on single Intel Xeon Phi
Coprocessor 5100 accelerator, parameters of testing
platform are presented in Table 2.

Table 2. Intel Xeon Phi Coprocessor 5100 specification

Memory size 8GB DDR5

L2 cache size 30MB

Number of cores 60

Base processor frequency 1.1GHz

It is expected, that with 60 independent cores a parallel

algorithm execution should scale smoothly up to tens of
simultaneously executed threads.

B. Quicksort

First test is based on parallel version of quicksort
implementation. The input was an array of 1500
randomly selected complex numbers, result time includes
the time of data generation. Table 3 and Figure 1
illustrates near-linear speedup at a reasonable level up to
30 threads. After exceeding 30 threads, speedup stops at
the level of 23, what is probably caused by increasing
memory usage. Although performance drop was expected
after exceeding 60 threads, it is not observed - further
analysis confirmed, that the overhead for management of
threads is not significant in uncomplicated
implementations.

Table 3. Quicksort: Average execution times and speedup

Number of
threads

Execution time Speedup

1 43.04s 1.00

2 22.23s 1.94

4 11.41s 3.77

8 6.09s 7.07

15 3.4s 12.66

20 2.58s 16.68

30 2.00s 21.52

40 1.95s 22.07

50 1.90s 22.65

60 1.91s 22.53

70 1.90s 22.65

80 1.90s 22.65

 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi 11

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

Fig. 1. Speedup of quicksort implementation by number of threads

C. Calculation of PI using Monte Carlo Method

Second experiment is based on an uncomplicated
algorithm, that can be easily implement in parallel –
calculation of PI using Monte Carlo method. The
implementation includes not only a calculation part, but
also a simple random number generator (separate instance
is created for each thread). Monte Carlo methods are
iterative, and the test is based on 107 iterations. Almost
linear speedup up to 60 threads shown in Table 4 and
Figure 2 is a result of simplicity of implementation and
relatively high independence of calculation parts.
Similarly to the previous experiment, uncomplicated
algorithm and straightforward implementation caused no
significant performance drop observed in scenarios that
included more than 60 threads.

Table 4. Calculation of PI using Monte Carlo Method: Average
execution times and speedup

Number of
threads

Execution time Speedup

1 30.49s 1.00

2 15.29s 1.99

4 7.66s 3.98

8 4.24s 7.19

15 2.83s 10.77

20 2.20s 13.86

30 1.50s 20.33

40 1.29s 23.64

50 1.10s 27.72

60 0.99s 30.80

70 1.01s 30.19

80 0.98s 31.11

Fig. 2. Speedup of PI calculation with Monte Carlo by number of
threads

D. Fast Fourier Transform

Parallel implementation of fast Fourier transform
utilized in this test comes from Parallel Colt library [14].
Library was not modified in order to show, that
applications can be easily build with any existing Java
library. Moreover, previous Parallel Colt performance
tests was performed using maximum of 8 concurrent
threads; proposed platform allows for testing it with more
threads.

The input data was a matrix of 2000x2000 size filled
with randomly generated complex numbers. Time of
memory allocation and preparing the data is not included
into results.

The experiment differs from two previous because of
higher complexity of implementation. Table 5 and Figure
3 presents almost linear speedup up to 40 threads.
Speedup between 40 and 60 threads is constant – the gain
from greater number of concurrent threads is balanced
with an overhead for thread management (i.e. creation
and termination of threads, communication, shared
resources access). When exceeding 60 – the number of
cores in accelerator – the overhead causes significant
drop in performance.

Table 5. Fast Fourier transform: Average execution times and speedup

Number of
threads

Execution time Speedup

1 63.04s 1.00

2 32.56s 1.94

4 17.69s 3.56

8 9.46s 6.66

15 4.99s 12.63

20 3.61s 17.46

30 2.47s 25.52

40 1.72s 36.65

50 1.72s 36.65

60 1.76s 35.82

70 3.54s 17.81

80 3.94s 16.00

12 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

Fig. 3. Speedup of fast Fourier transform by number of threads

E. Discrete Cosine Transform

The test is based on discrete cosine transform,
algorithm similar to fast Fourier transform. The
implementation also comes from Parallel Colt library.
The input was a randomly generated 2000x2000 matrix
of double numbers. Time of memory allocation and
preparing the data is not included into results.

Results presented in Table 6 and Figure 4 are similar to
the results of previous test: near linear speedup can be
observed up to 40 threads, constant speedup between 40
and 60 threads. and performance drop When the number
of threads exceeds the number of physical cores in the
processor.

Table 6. Discrete cosine transform: Average execution times and
speedup

Number of
threads

Execution time Speedup

1 85.02s 1.00

2 50.14s 1.70

4 26.01s 3.27

8 13.13s 6.48

15 6.84s 12.43

20 4.71s 18.05

30 3.45s 24.64

40 2.31s 36.81

50 2.33s 36.49

60 2.33s 36.49

70 4.95s 17.18

80 5.23s 16.26

Fig. 4. Speedup of discrete cosine transform by number of threads

F. Distributed Cache

The last experiment is a use case based on a distributed
cache solution mentioned in section II. Because the
whole architecture is composed of several entities with
complex dependencies, it is difficult to predict scalability
using theoretical analysis. In order to verify whether
solution design is expected to fulfills requirements, a
simplified Java implementation was created (to provide
high performance of final implementation, C was selected
as a programming language, and Message Passing
Interface library as a standard of distributed processing).
Although the first solution performed well in most of test
cases, it turned out to have performance problems under
heavy load – result presented in Table 7 and Figure 5
show no speedup with increasing number of threads.
With proposed testing platform, defects of the algorithms
was easily detectable at the early stage of the project.

Table 7. Distributed cache, first solution: Average execution times and
speedup

Number of
threads

Execution time Speedup

1 6.28s 1.00

2 6.28s 1.00

4 6.35s 0.99

8 6.59s 0.95

15 6.84s 0.92

20 6.96s 0.90

30 7.46s 0.84

40 7.73s 0.81

50 7.71s 0.81

60 8.38s 0.75

70 9.06s 0.69

80 9.34s 0.67

 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi 13

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

Fig. 5. Speedup of distributed cache (first solution) by number of
threads

The problems with first distributed cache algorithm
was caused by a bottleneck – entity responsible for thread
management was prone to overloading. After redesigning
of the algorithm and changes in implementation, new
algorithm version fulfilled the scalability requirements.
Modern programming language Java properties such as
modularity and productivity allowed to prepare new
implementation fast and easily. Table 8 and Figure 6
show the result of the test under heavy load: algorithm
scales up linearly up to 40 threads, performance does not
decrease rapidly when the number of threads exceeds 60
(number of physical cores).

Table 8. Distributed cache, second solution: Average execution times
and speedup

Number of
threads

Execution time Speedup

1 310.19s 1.00

2 155.28s 2.00

4 78.47s 3.95

8 39.15s 7.92

15 21.53s 14.41

20 16.45s 18.86

30 10.90s 28.46

40 8.34s 37.19

50 7.77s 39.92

60 7.42s 41.80

70 7.35s 42.20

80 7.46s 41.58

Fig. 6. Speedup of distributed cache (second solution) by number of
threads

VI. CONCLUSION AND FUTURE WORK

A. Conclusion

The paper proposes software and hardware platform
for parallel algorithm testing. The platform gives a
possibility to run modern programming language
implementation on about 40-60 concurrent threads on a
single node machine. Software technology stack is based
on Java – well established, productive, easy to learn and
considered as quite modern programming environment.
Selection of Intel Xeon Phi Accelerator as a hardware
provides concurrent, multithreaded execution platform.
Although Java is not officially supported on the
accelerator, the paper provides a detailed description of
extending Xeon Phi with Java support.

Experiments confirmed, that the proposed environment
is useful to test parallel algorithms. Examples show, that
testing of speedup is reliable up to tens of concurrent
threads, depending on the type of algorithm.

B. Future Work

First future task is connected with publishing a manual
and set of scripts that will allow to build the whole
software platform easily.

Moreover, an additional effort will be put in order to
verify whether Java on Intel Xeon Phi could be treated
not only as a tool to obtain performance tests result, but
also as a fast and efficient computation platform. The
research will probably include major changes in Java
compiler optimizations and particular JVM
implementation.

REFERENCES

[1] J. Chen, “Analysis of Moore's Law on Intel Processors”.
Proceedings of the 2013 International Conference on
Electrical and Information Technologies for Rail
Transportation (EITRT2013), vol II. Springer, 2014, 391-
400.

[2] Top500. November 2014,
http://www.top500.org/lists/2014/11/, accessed: Mar. 16,
2015.

14 Modern Platform for Parallel Algorithms Testing: Java on Intel Xeon Phi

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 09, 8-14

[3] M. T. Goodrich, R. Tamassia, “Algorithm Design:
Foundations, Analysis and Internet Examples”, John
Wiley & Sons, Inc., 2009.

[4] A. J. Umbarkar, M. S. Joshi, Wei-Chiang Hong,
“Multithreaded Parallel Dual Population Genetic
Algorithm (MPDPGA) for unconstrained function
optimizations on multi-core system”, Applied
Mathematics and Computation, vol. 243, 2014, 936-949.

[5] G. M. Slota, “BFS and Coloring-Based Parallel
Algorithms for Strongly Connected Components and
Related Problems”, Parallel and Distributed Processing
Symposium, 2014 IEEE 28th International, 2014, 550-559.

[6] T. Baba, N. Takahashi, Y. Kaneda, K. Ando, D. Matsuoka,
T. Kato, “Parallel Implementation of Dispersive Tsunami
Wave Modeling with a Nesting Algorithm for the 2011
Tohoku Tsunami”, Pure and Applied Geophysics,
Springer, 2015.

[7] N. Dhankher, O. P. Gupta, “Parallel Implementation &
Performance Evaluation of Blast Algorithm on Linux
Cluster”, International Journal of Computer Science and
Information Technologies, vol. 5 (3), 2014, 4818-4820.

[8] E. R. Sykes, W. Skoczen, “An improved parallel
implementation of RainbowCrack using MPI”, Journal of
Computational Science, vol 5, 2014, 536-541.

[9] Lanjun Wan, Kenli Li, Jing Liu, Keqin Li, “GPU
implementation of a parallel two-list algorithm for the
subset-sum problem”, Concurrency and Computation:
Practice and Experience, vol. 27, 2015, 119-145.

[10] D. Mrozek, M. Brożek, B. Małysiak-Mrozek, “Parallel
implementation of 3D protein structure similarity searches
using a GPU and the CUDA”, Journal of Molecular
Modeling, Springer, 2014.

[11] TIOBE Software Corporation, “TIOBE Index for March
2015”,http://www.tiobe.com/index.php/content/paperinfo/
tpci/index.html, accessed: Apr. 2, 2015.

[12] R. R. Exposito, S. Ramos, G. L. Taboada, J. Tourino, R.
Doallo, “FastMPJ: a scalable and efficient Java message-
passing library”, Cluster Computing – The Journal of
Networks, Software Tools and Applications, vol. 17,
Springer, 2014, 31-1050.

[13] M. E. Kambites, J. Obdrzalek, J. M. Bull, “An OpenMP-
like interface for parallel programming in Java”,
Concurrency and Computation: Practice and Experience,
vol. 13, 2001, 793-814.

[14] P. Wendykier, J. G. Nagy, “Parallel Colt: A High-
Performance Java Library for Scientific Computing and
Image Processing”, ACM Transactions on Mathematical
Software (TOMS), vol. 37, 2010.

[15] J. Docampo, S. Ramos, G. L. Taboada, R. R. Exposito, J.
Tourino, R. Doallo, “Evaluation of Java for General
Purpose GPU Computing”, Advanced Information
Networking and Applications Workshops (WAINA),
2013 27th International Conference on, 2013, 1398-1404.

[16] Intel Corporation, “Intel® Xeon Phi™ Coprocessor
February Developer Webinar Q&A Responses”,
https://software.intel.com/en-us/articles/intelr-xeon-
phitm-coprocessor-february-developer-webinar-qa-
responses, accessed: Oct. 30, 2014.

[17] Intel Corporation, “Intel® Xeon® Processor E3-1220 v3”,
http://ark.intel.com/products/75052/Intel-Xeon-Processor-
E3-1220-v3-8M-Cache-3_10-GHz, accessed: Apr. 6, 2015.

[18] AMD Corporation, “AMD Opteron 6200 Series Processor
6274”, http://shop.amd.com/en-
us/business/processors/ecxOffUS798864, accessed: Apr. 6,
2015.

[19] Nvidia Corporation, “GeForce GTX 750 Specyfication”,
http://www.geforce.com/hardware/desktop-gpus/geforce-

gtx-750/specifications, accessed: Apr. 6, 2015.
[20] Intel Corporation, “Intel® Xeon® Coprocessor 3120A”

http://ark.intel.com/products/75797/Intel-Xeon-Phi-
Coprocessor-3120A-6GB-1_100-GHz-57-core, accessed:
Apr. 6, 2015.

[21] T. Lindholm, F. Yellin, “Java Virtual Machine
Specification”, Addison-Wesley Longman Publishing Co.,
Inc., 1999.

[22] Oracle Corporation, “Java SE HotSpot at a Glance”,
http://www.oracle.com/technetwork/articles/javase/index-
jsp-136373.html, accessed Mar. 19, 2015.

[23] R. Lougher, “JamVM – A compact Java Virtual Machine”,
http://jamvm.sourceforge.net/, accessed Mar. 19, 2015.

[24] Open Source Community, “Openjdk-6 package”,
https://launchpad.net/ubuntu/+source/openjdk-
6/6b23~pre4-0ubuntu1, accessed Mar. 19, 2015.

[25] Open Source Community, “Libffi. A Portable Foreign
Function Interface Library”, https://sourceware.org/libffi/,
accessed Mar. 19, 2015.

[26] Intel Corporation, “Intel Xeon Phi Coprocessor
Instruction Set Architecture Reference Manual”,
https://software.intel.com/sites/default/files/forum/278102
/327364001en.pdf, accessed Mar. 19, 2015.

[27] Open Source Community, “GNU Classpath”,
http://www.gnu.org/software/classpath/, accessed Apr. 6,
2015.

Author’s Profile

Artur Malinowski: PhD student at the
Gdansk University of Technology,
Department of Computer Architecture,
Faculty of Electronics,
Telecommunications and Informatics;
received engineering degree in 2013 and
master's degree in 2014. Research interests:
high performance computing and modern
programming platforms.

