
I.J. Information Technology and Computer Science, 2015, 06, 59-65
Published Online May 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.06.08

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

Clustered Webbase: A Repository of Web Pages

Based on Top Level Domain

Geeta Rani
Shobhit University, Meerut, 250110, India

Email:singh.geeta0088@gmail.com

Dr. Nidhi Tyagi
Shobhit University, Meerut, 250110, India

Email: mnidhity@rediffmail.com

Abstract — The World Wide Web is a huge source of

hyperlinked information; it is growing every moment in context

of web documents. So it has become an enormous challenge to

manage the local repository (storage module of search engine)

for to handling the web documents efficiently that leads to less

access time of web documents and proper utilization of

available resources. This research paper proposes an

architecture of search engine with the clustered repository,

organized in a better manner to make task easy for user to

retrieving the web pages in reasonable amount of time. The

research focuses on coordinator module which not only indexes

the documents but also uses compression technique to increase

the storage capacity of repository.

Index Terms— URL, URI, TLD.

I. INTRODUCTION

In an effort to keep up with the tremendous growth of

the World Wide Web, many research projects were

targeted on how to organize such information in a way

that will make it easier for the end users to retrieve

information efficiently and accurately. Information on the

web is present in the form of text documents (formatted

in HTML) and search engines [1] act as a bridge between

end users and web pages. Without search engines, the

unlimited source of information stored in web pages

remain hidden for users. Search engines include various

components for simplifying the task of searching. A

search engine is a searchable module which collects

information from web pages on the internet, indexes the

information and then stores the result in a huge database

that is called repository where from it, information can be

quickly searched. The main module of search engine is

Crawler. A web crawler [2] is a program that retrieves

web pages. A web crawler starts by placing an initial set

of URLs in a seed queue. Uniform Resource Locator

(URL) is a Uniform Resource Identifier (URI), for

example http://www.w3.org/default.aspx, http [3] is a

protocol with the lightness and speed necessary for a

distributed collaborative hypermedia information system

and .org is the top level domain , each web page belongs

to any one of top level domain like .com, .edu etc. A

normal top-level domain (TLD) is one of the domains at

the highest level in the hierarchical Domain Name

System of the Internet. The web crawler gets a URL from

the seed queue, downloads the web page, extracts any

URLs in the downloaded page, puts the new URLs in the

seed queue, and gets the next URL from the seed queue.

The storage module [4] (generally indexer) receives web

pages from a crawler, indexes and stores these web pages

to the repository. A web repository [4] stores a large

collection of ‗data objects‘ referred as web pages.

Repository contains the full HTML of every web page or

repository is the local database of web pages that are

crawled by the crawler. The web pages are compressed in

the repository uses various methods of data compression

can be used e.g. gzip, zlib. The choice of compression

technique is a tradeoff between speed and compression

ratio. In the repository, the documents are stored

sequentially and are prefixed by doc ID, length and URL.

The paper is organized in six sections. Section 2,

discusses about the related work, section 3 highlights the

problem domain. The proposed architecture along with

various components discussion and illustrative example is

discussed in section 4 followed by experimental results

and conclusion in section 5 and 6 respectively.

II. RELATED WORK

Web crawler is the major component of the web. Since

the invention of the web many crawlers have been

introduced. The first web crawler Wanderer [5], followed

by Internet Archive [6] crawler that uses multiple

machines to crawl the web and find duplicate URLs. Web

crawling techniques [2] help to improve the data retrieval

process in effective manner. Based on different web

crawling techniques different crawlers have been

introduced. Parallel crawler, Distributive crawler, focused

crawler[7], hidden web [8] are the crawler that each

crawler has its own technique to crawl the web.

The available literature has not discussed the storing

process of document in the repository. Webbase [9] an

experimental web repository, discussed the repository

preparation in detail with storing as well as searching

process. Webbase is main source of motivation towards

the objective of this paper. A cluster balancing approach

for efficient storage of web documents proposed an

architecture for domain specific cluster based repository.

http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Domain_Name_System
http://en.wikipedia.org/wiki/Internet

60 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

This research paper proposed architecture of crawler with

enhanced repository technique [13] which deals

efficiently with the problem of limited size of storage

resources and searching complexity. As a web page

belong to any one top level domain (TLD) available on

internet like .org, .com, .co etc. The memory is

partitioned into numbers of variable size blocks and these

blocks are called as clusters (figure 1) and the partition of

memory into blocks is done on the foundation of different

domains (.com, .edu, .co etc.) that belongs to web. As the

memory blocks creation is based on specific top level

domain and there users on web so these clusters are also

called as domain specific clusters.

Fig. 1. Domain Specific Clusters

On the other side, indexing is also an important point

to be discussed. Basically crawlers uses inverted index

for indexing web documents. As a web can have more

than one versions of same page and the pages on the web

also become obsolete. In this direction different

techniques have been proposed for improving index

process. Compact full-text indexing of versioned

document collections [10] proposes new techniques for

organizing and compressing inverted index structures for

such versioned document. Efficient phrase-based

document indexing for web document clustering [11]

presents two key parts of successful document clustering.

The first part is a novel phrase-based document index

model, the document index graph, which allows for

incremental construction of a phrase-based index of the

document set with an emphasis on efficiency, rather than

relying on single-term indexes only. It provides efficient

phrase matching that is used to judge the similarity

between documents. The second part is an incremental

document clustering algorithm based on maximizing the

tightness of clusters by carefully watching the pair-wise

document similarity distribution inside clusters. The

combination of these two components creates an

underlying model for robust and accurate document

similarity calculation that leads to much improved results

in web document clustering over traditional methods. An

improved indexing mechanism to index web documents

[12] presents contextual based indexing considers the

senses of the keyword for preparation of index of web

documents. Huffman coding is an entropy encoding

algorithm used for lossless data compression. The term

refers to the use of a variable-length code table for

encoding a source symbol where the variable-length code

table has been derived in a particular way based on the

estimated probability of occurrence for each possible

value of the source symbol.

III. PROBLEM IDENTIFICATION

The critical look at the available literature reveals that

the following points should be considered to develop a

more efficient system.

1) Scalability – Web is growing every instant and this

growth of web challenges the repository to adopt large

number of new web pages at every instant with its

limited size.

2) Large updates - Web changes every moment.

Therefore, the repository needs to maintain high rate of

modification. These changes occur in the form of web

pages that is new version of web pages are added to

web so the space occupied by old version must be

reclaimed.

3) Obsolete pages – At one side pages are added to web

and at the other side pages are deleted from website but

repository is not notified. So the must be mechanism to

detect such obsolete pages and make space utilization

for new updates.

4) Searching – As repository is local collection web pages

and searching within the local collection must lead to

retrieve the web pages in the reasonable amount of

time.

IV. PROPOSED WORK

A. Architecture

Figure 2 depicts the architecture of the clustered

webbase system in terms of main functional modules and

their interaction. There are mainly eight modules in

architecture –

 Downloader

 Crawler

 Coordinator

 Ranker

 Indexer

 Repository

Fig. 2. Proposed Architecture

.com

mm
.edu .gov .mil

.org .net .int ……

….

Indexer

Internet Downloader Crawler

Coordinator Ranker

Repository Query

Engine

e

Search

Interface User

Document

URL

http://en.wikipedia.org/wiki/Entropy_encoding
http://en.wikipedia.org/wiki/Algorithm
http://en.wikipedia.org/wiki/Lossless_data_compression
http://en.wikipedia.org/wiki/Variable-length_code

 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain 61

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

The associations among these modules represent

exchange of information as indicated by directions.

B. Description of the various modules

1) Crawler Module

The working of the crawl module involves the

following steps:

i) Fetch URL

ii) Extract URLs

iii) Analyze URL

iv) Forward URL

On receiving the seed URL the crawler forwards it for

downloading the Web pages to the downloader.

Downloader forward the downloaded page to crawler

then crawler extracts URLs and analyze whether the

extracted URLs are in syntax error and check duplicate

URLs.

2) Downloader

This component takes a URL from URL collector and

downloads the corresponding webpage to store it in the

local repository.

3) Indexer

Indexer extracts all the uncommon words from each

page and records the URL where each word has occurred.

The result is stored in a large table containing URLs;

pointing to pages in the repository where a given word

occurs. This complete process is termed as indexing

process. The indexer supports inverted indexing

technique. The structure of indexer has four basic Terms:

 keyword

 Domain Name

 Frequency

 Document Names

Table 1. Structure of index

Keyword Domain Name (Cluster) Document Name Frequency

Crawler

.org Document 1, Document 3, Document 4, Document 7

9
.com Document 2, Document 12

.co Document 6, Document 8, Document 10

Network
.in Document 11, Document 5

3
.edu Document 9

…… ….. …….. …..

4) Repository

Web repository is a storage module that stores and

manages a large collection of ‗data objects‘ in this case

web page. So a web repository is basically collection of

web pages or web documents. The repository receives

web pages from a crawler, which is the component

responsible for mechanically finding new or modified

pages on the web. Repository contains the full HTML of

every web page. A web repository need to provide the

following functionalities:

 Retrieval of large quantities of data from the Web

(page addition)

 Manage meta-data about Web resources:

 Efficient access to stored data

Web repository follows simple coherency model that is

store-ones-read-many model for web pages. A web page

once stored need not to be changed until page is updated

to web. This assumption simplifies data coherency issues

and enables high throughput data access. A web crawler

application fits perfectly with this model. At the same

time, the repository offers applications an access interface

(API) so that they may efficiently access large numbers

of up-to-date web pages.

5) Coordinator Module

The most important component of the architecture,

Coordinator Module receives document from crawler as

parameter and performs the following steps:

i) Identify document domain and format

ii) Decide memory block

iii) Compress the document

iv) Update Index

v) Store compressed document

Fig. 3. Working of coordinator module

On receiving the document from the crawler,

coordinator module identifies the format and domain of

downloaded document. On the basis of domain of that

document it decides the cluster to check whether the

document is already downloaded or not using URL

identifier. Thus reducing the search complexity because

Repository

Web

Document

s

Parsing of

Document to

extract keywords

Identify

document

domain and if

document is

fresh one

Huffman keyword code

generation

Compress

document and

update Index

62 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

searching is done only in a specific cluster not in linear

fashion to complete repository. If the document is fresh

one then, coordinator module checks the status of cluster

that the cluster can acquire new document or not. If the

status of cluster is able to have new document then

extract URLs, add them to seed of URLs, the document is

parsed and the keywords are identified along with the

frequency. Coordinator receives frequency from indexer

to generate the Huffman codes using Huffman algorithm.

Table 1 shows structure of indexer. In the proposed

architecture, frequency depends on the presence of

keyword to different documents. The keyword that is

present in more number of documents will have higher

frequency that leads to less length size Huffman code

according to Huffman algorithm. Finally the index is

updated and the document is saved in compressed form or

else the status of cluster is not able to accommodate new

document than less ranked document will be deleted to

store new document. Figure 3 depicts how the

coordinator module deals with web pages and stores them

to repository in compressed form using Huffman

algorithm.

In the case when document already exists then ranking

module decide the importance of the document.

Algorithm of Coordinator module is shown in figure 4.

Coordinator_module(domain,document)

{

Steps:

1.Identify the document domain like doc, html, or pdf

etc.;

2.Check the domain of downloaded document , decide

the memory block and search it only its specific domain

cluster (memory block)whether the document has already

downloaded or not;

3.If (document is fresh one)

{

3.1 extract the links or references to the

other cites from that documents;

3.2 Compress the document using

Huffman algorithm;

3.3 Update Index;

3.4 Check the status of decided cluster

and if there is a need to create space for new

downloaded document then remove less ranked

document;

3.5Store compressed document it into

repository;

}

4. else

{

4.1 Call ranking_module (cluster,

document);

4.2 Convert the URL links into their

absolute URL equivalents;

4.3 Add the URLs to set of seed URLs;

}

}

Fig. 4. Algorithm for Coordinator module

6) Ranking module

This component retrieves cluster and document from

coordinator module, and increases the rank of document

based on popularity to maintain the freshness of

repository also help coordinator module to maintain the

size of clusters. It calculates rank of document on the

basis of popularity, increase rank and return rank. The

main steps of Ranker module are shown in figure 5.

Ranking_module(cluster,document)

{

Steps:

1.Calculate rank of document on the basis of

popularity;

2.Increase rank;

3.Return rank;

}

Fig. 5. Algorithm for Ranking module

Fig. 6. Tree creation

Example:

Step (i) Parse the document and collect the unique

words.

Unique Words: Internet, Crawler, Information,

Network, Society, Download

1
0 29

Download: 11

1

0

18

0
1

0 1
8

Information:

4
4

Society:

1
Crawler: 3

1
0

1

0

Network: 5 Internet: 5

Download: 11

Society: 1 Crawler: 3 Information: 4

Network: 5 Internet: 5

Information: 4 Network: 5

Internet: 5 Download: 11

4

Society: 1 Crawler: 3

Fig. 6(c)

Fig. 6(a)

Fig. 6(b)

 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain 63

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

Step (ii) Check indexer to find the frequency of

existing words and the frequency of new keyword is

assigned as zero.

Step (iii) Increment each frequency by one and arrange

them in increasing order, as shown in Figure (a).

Step (iv) Huffman tree is created using Huffman

algorithm. Figure (b) and (c) shows different levels of

tree creation.

Step (v) Mapping of Huffman codes to keywords after

applying Huffman‘s algorithm as shown in figure 6.

Step (vi) File is stored in compressed form using

variable size Huffman codes

Table 2. mapping of keyword to Huffman codes

Serial no Keyword Huffman Code

1. Download 1

2. Information 101

3. Internet 111

4. Network 110

5. Crawler 1001

6. Society 1000

V. IMPLEMENTATION AND RESULTS

Demo of Crawler Module is implemented in java starts

with crawling process with a set of seed URLs. The

crawler module downloads web pages from the web. Java

Tika application is used for parsing the document which

are downloaded by Crawler module. By parsing the

downloaded documents, all the keywords are extracted

and a text file is created with all keywords. This text file

is submitted to the Coordinator module. Coordinator

module of proposed system is implemented in object

oriented programming (C++) language. Module read

contents of text file and assigns frequency. In the

proposed architecture, the frequency assigns to the

keywords the total no of documents in repository in

which the keyword is present but here is an assumption

for assigning the frequencies to keywords. The frequency

of keywords is assigned by using random function.

Fig. 7. Parsing of document

After the assignment of frequency, Huffman

compression is applied by generating Huffman tree and

Huffman codes are created for keywords and finally the

page is stored using Huffman codes. At the end there is a

equality test is conducted to compare the size of actual

file and compressed file.

1) Parsing of document: Tika application parses the

downloaded document. Figure 7 shows the parsing

process of document.

Fig. 8. Implementation Code for parsing of document

Figure 8 represents keyword fetching process by Tika

application.

2) Frequency Assignment: Co-ordinator module assigns

frequency to all the keywords using Random()

function. . Figure 9 shows frequency assignment

process.

Fig. 9. Processing of document(assignment of frequency to keywords)

Here figure 10 shows how Random() Function assigns

a random number to each keyword.

Fig. 10. Implementation Code assignment of frequency to keywords

3) Huffman Tree creation:Huffman tree is created

assuming each keyword as a character. Figure 11

represents Huffman tree nodes values.

for(int i=0;i<listOfFiles.length;i++)

{

 if(listOfFiles[i].isFile())

 {

 is = new FileInputStream(listOfFiles[i]);

 ContentHandler contenthandler = new

BodyContentHandler();

 Metadata metadata = new Metadata();

 Parser parser = new AutoDetectParser();

 parser.parse(is, contenthandler, metadata, new

ParseContext());

 String str=contenthandler.toString().trim();

 String[] result = str.split("\\s");

 for (int x=0; x<result.length; x++) {

 fetched_token.add(result[x]);

 }

}

 }

ifile.open(file_name1,ios::in);

while(ifile)

{

Keyword=ifile.getline();

 x=random(1000);

add. Node();

 }

ifile.close();

64 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

Fig. 11. Processing of document(tree creation)

Figure 12 showing steps of Huffman tree creation by

adding two smallest frequencies and creating a node until

all the frequencies are not added.

Fig. 12. Implementation Code for creation of tree

4) Compresed file : Finally the document is compressed

using variable length huffman code. Figure 13

represents file with variable length Huffman code.

Fig. 13. Processing of document(Compresed file)

5) Efficiency_Test: compare the size of comresed file with

the original document. Figure 14 (a) repesents the size

of compressed file and Figure 14 (b) the final result.

Fig. 14(a). Processing of document(Equality_Test)

Fig. 14(b). Processing of document(Equality_Test Result)

Fig. 15. Implementation Code for equality test

Figure 15 depicts the implementation code for original

file and compressed file size comparison that will

compare the size of both files and will result either both

files are equal or not.

From the above results it is clear that the document is

compressed 37%. Such method can be used to utilize the

repository.

VI. CONCLUSION

The proposed work presentes Clustered Webbase

search engine architecture, supporting clustered web

repository, and meta-data management. Clustered

Webbase search engine architecture uses repository and

working modules to distribute data among domain

specific clusters which compose a clustered web

repository having the following characteristics-

void Huff_man::Tree_create(P_queue & Q)

{

Node *ptr1,*ptr2;

while((Q.Q_front->link)->link!=NULL)

{

 ptr1=Q.del(); ptr2=Q.del();

 Node* New=new Node;

 New->frq=ptr1->frq+ptr2->frq;

 New->RC=ptr2;

 New->LC=ptr1;

 Q.insert(New);

 }

 ptr1=Q.del(); ptr2=Q.del();

 Node* New=new Node;

 New->frq=ptr1->frq+ptr2->frq;

 New->RC=ptr2;

 New->LC=ptr1;

 ptr1=ptr2=NULL;

 Tree_head=New;

 cout<<"\n\nCreated tree is:\n\n";

 Tree_show(Tree_head);

 return;

}

cout<<"\n\n\tEquality test\n\n";

 char ch1,ch2;

 ifile2.open("decomp.txt",ios::in);

 ifile1.open(f1,ios::in);

 ifile1.get(ch1);

 ifile2.get(ch2);

 while(ifile1 && ifile2 && ch1==ch2)

 {

 ifile1.get(ch1);

 ifile2.get(ch2); //cout<<ch1<<ch2<<"\n";

 }

 if(ifile1==ifile2)

 cout<<"\n\n\tThe files are equal";

 else

 cout<<"\n\n\tThe files are not equal";

 ifile1.close();

 ifile2.close();

 Clustered Webbase: A Repository of Web Pages Based on Top Level Domain 65

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 06, 59-65

(1) Full Distribution: Distribution of web pages to

different domain specific blocks reduces searching

complexity.

(2) Capacity improvement: The proposed work also

representing an indexing mechanism to store the

keywords present in the document in compressed

form by mapping variable length Huffman code. It

also focuses on the presence of keyword in

different document because the keyword in

maximum number of documents will be mapped to

less length Huffman code thus mechanism reduces

the size of document and after updates the index.

(3) Fast search: The data structure of the indexer

fastens the search for matched results from the

Inverted Index with the cluster information. It also

helps the user to process the user query with fast

and more relevant results.

Future work on Clustered Webbase search engine

includes a detailed study on performance issues, working

complexity of different modules and management

improvement of extensible metadata.

REFRENCES

[1] Sergey Brin and Lawrence Page, ―The Anatomy of a

Large-Scale Hypertextual Web Search Engine‖,

International Conference on Computer networks and ISDN

systems, pp. 107-177,1998.

[2] Ashutosh Dixit and Niraj Singhal,― Web Crawling

Techniques : A Review‖, National Seminar on Information

Security: Emerging Threats and Innovations in 21st

Century, pp. 34-43, 2009.

[3] Nidhi Tyagi and Deepti Gupta, ―A Novel Architecture for

Domain Specific Parallel Crawler‖, Indian Journal of

Computer Science and Engineering, Vol 1 No 1 44-

53,2010.

[4] Jun Hirai Sriram Raghavan Hector Garcia-Molina Andreas

Paepcke,―WebBase : A repository of web pages‖, Ninth

International World Web Conference , pp. 277-293 ,2000.

[5] Gray, M., ―Internet Statistics: Growth and Usage of the

Web and the Internet‖, http://www.mit.edu/people/

mkgray/net/,1996.

[6] Burner, M., Crawling towards Eternity: ―Building An

Archive of The World Wide Web‖, Web Techniques

Magazine, Vol. 2, No. 5, 37-40,1997.

[7] Shikha Maan and Mukesh Rawat ―Design and

Implementation of Specialized form Focused Crawler‖ ,

International Journal of Contemporary Research in

Engineering & Technology, Vol. 3, No. 1&2,2013

[8] Kavita Saini ―Extraction of Lables from Search Interfaces

for Domain Specific HiWE‖, International Journal of

Contemporary Research in Engineering & Technology,

Vol. 3, No. 1&2,2013

[9] Jun Hirai, Sriram Raghavan, Hector Garcia-Molina and

Andreas Paepcke ―WebBase : A repository of web pages‖,

Ninth International World Web Conference ,pp. 277-

293 ,2000.

[10] Jinru He, Hao Yan, Torsten Suel, ―Compact Full-Text

Indexing of Versioned Document Collections ‖, ACM

conference on Information and knowledge management,pp.

415-424, 2009.

[11] Khaled M. Hammouda and Mohamed S. Kamel,

―Efficient Phrase-Based Document Indexing for Web

Document Clustering‖ , IEEE transactions on knowledge

and data engineering, vol. 16, no. 10, pp. 1279-1296 , 2004.

[12] Pooja Mudgil, A. K. Sharma and Pooja Gupta ―An

Improved Indexing Mechanism to Index Web Documents‖,

International Conference on Computational Intelligence

and Communication Networks, pp. 460-464, 2013.

[13] Geeta Rani and Nidhi Tyagi ―A Cluster Balancing

Approach for Efficient Storage of Web Documents‖

National conference on recent trends in advanced

computing, electronics and information technology,

CICON-2014.

[14] Cho, J., Garcia-Molina, H., Haveliwala, T., Lam,

W.,Paepcke, A., Raghavan, S., Wesley, G., ―WebBase

Components and Applications‖,ACM Transactions on

Internet Technology,pp. 153-186 ,2006.

[15] Frank McCown and Michael L. Nelson, ―Evaluation of

Crawling Policies for a Web -Repository Crawler”, 17th

conference on Hypertext and hypermedia, pp. 157-

168,2006,

[16] Konstantin Shvachko, Hairong Kuang, Sanjay Radia and

Robert Chansler, ―The Hadoop Distributed File System‖,

IEEE 26th Symposium on Mass Storage Systems and

Technologies , pp. 1-10, 2010.

[17] Jeffrey Dean and Sanjay Ghemawat, ― MapReduce:

Simplied Data Processing on Large Clusters‖, OSDI , Vol

51,pp. 107-113 , 2004.

[18] Junghoo Cho and Hector Garcia-Molina‖ The Evolution of

the Web and Implications for an Incremental Crawler”,

International Conference on very large database, pp. 200-

209, 2000.

[19] Burner, M., ―Crawling towards Eternity: Building An

Archive of The World Wide Web‖, Web Techniques

Magazine, Vol. 2, No. 5, pp. 37-40,1997.

[20] http://en.wikipedia.org/wiki/Domain-name

[21] Fred Douglis, Thomas Ball, Yih-Farn Chen, and

Eleftherios Koutsofios, WebGUIDE: Querying and

Navigating Changes in Web Repositories, International

Conference world wide web,pp. 6-10 , 1996.

[22] Lorna M. Campbell, Kerry Blinco and Jon Mason,

―Repository Management and Implementation‖, Altilab04-

repositories ,11 July 2004.

Authors’ Profiles

Geeta Rani has completed her B.Tech,

computer science degree from Uttar Pradesh

Technical University in 2012 and received her

M.Tech. in Computer Engineering in july 2014

from Shobhit University. Presently. Presently,

she is working as Assistant Professor in

Department of Computer Science and

Engineering at Shobhit University, Meerut. Her area of interest

includes Computer Network, Database Management System

and Information Retrieval.

Nidhi Tyagi, received her M.Tech. in

Computer Engineering (first class with

Honours) in 2009, and Ph.D. in Computer

Engineering in 2013, from Shobhit

University, Meerut. Presently, she is working

as Associate Professor in Department of

Computer Science and Engineering at

Shobhit University, Meerut. She has a teaching experience of

more than 13 years. Her research interest includes Search

Engine, Crawlers and Data Mining.

