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Abstract— Recently, with the emergence of mobile technology 

and mobile banking, debit and credit transactions have been the 

most common transactions that are widely spreading, using such 

technologies. In this research, we specify the concurrent debit 

and credit transactions in temporal logics such as CTL 

(Computational Tree Logic) and LTL (Linear-Time Temporal 

Logic). These specifications describe the infinite histories that 

may be produced by the iterations of such concurrent 

transactions infinitely many times. We represent the infinite 

histories as a model of temporal logics formulae. Then, model 

checkers, such as NuSMV or SPIN, can carry out exhaustive 

checks of the correctness of the concurrent debit and credit 

transactions. Moreover, in this paper, we presume that the 

serializability condition is too strict. Therefore, a relaxed 

condition has been suggested to keep the database consistent. 

Moreover, the relaxed condition is easier to encode into 

temporal logics formulae. 

 

Index Terms— Debit And Credit Transactions, Temporal 

Logics Specifications, Model Checking, Serializability of 

Transactions. 

 

I. INTRODUCTION 

In recent times, temporal logic stands out as one of the 

tools that is useful to specify and reason about concurrent 

and reactive systems because it provides a natural way to 

describe the temporal behavior of these kinds of systems 

[1]. It is possible to represent the systems and their 

properties by using temporal logics formulae. Also, we 

can express the implementations and specifications of the 

system as two formulae written using temporal logics, 

and then, verify whether the implementations imply the 

specifications. Modern operating systems and most of 

DBMS's extensively make use of concurrent algorithms 

[2], [3]. Hence, the correctness of these algorithms is very 

important to achieve system reliability. Now, the wide 

use of mobile and banking technologies has led to a huge 

number of concurrent users, may be, processing their 

database transactions simultaneously. In this case, infinite 

histories will be produced. The importance of 

representing such infinite histories has been considered 

[4], [5] and [6]. Usually, database techniques deal with a 

finite number of transactions concurrently executing [7] 

and [8]. 

Our research issue, in this paper, is to specify an 

infinite history of the debit and credit transactions in term 

of serializability, as a correctness criterion, using 

temporal logics formulae. The availability of model 

checkers gives importance to the temporal logics 

specifications. In this context, model checkers can carry 

out exhaustive checks for a correctness criterion of 

concurrent debit and credit transactions automatically 

with no need to the expertise in carrying out the 

verification [9] and [10]. 

Some researchers, in general, have taken into their 

accounts representing infinite histories in temporal logics 

[11] and [12]. And, they presumed that the serailizabiity 

is the correctness condition. In this research, we will 

introduce a computationally efficient condition of 

serializability that can be used to specify the correctness 

of concurrent transactions in temporal logics such as CTL 

and LTL. The serializability condition is relaxed in a way 

that keeps database in a consistent state. This condition is 

based on the nature of debit and credit transactions. 

This paper is organized as follows. In Section II, we 

shall discuss the debit and credit transactions, conflict 

serializability condition and the relaxed condition of 

serializability. The syntaxes and the semantics of LTL 

and CTL are introduced in Section III . In Section IV, the 

properties of transition structure for read and write 

operations and their interpretations on LTL and CTL 

paths are depicted. Furthermore, The encoding of debit 

and credit transactions into LTL and CTL and the relaxed 

serializability condition are also given in Section IV. The 

conclusions are drawn in Section V. 

 

II. DEBIT AND CREDIT TRANSACTIONS MODEL 

A. Debit and Credit Transactions Model 

In general, transaction is a collection of one or more 

operations on one or more databases. Formally as in [9], 

[4], [11] and [12], a transaction is a sequence of 

read/write operations partially ordered such that: 

A transaction iT  is a partial order with ordering 

relation i , such that if ( ), ( )i i ir x w x T  then either 

( ) ( )i i ir x w x  or     ( )i i iw x r x  
1 2. { , , }mx x D x x x    . 

In this paper, we shall denote to the set of data items that 

are accessed by all transactions by D . 

Definition 1: 

A debit or credit transaction iT , accesses a set of data 

items 1 2{ , , , }i kD x x x D   , is a sequence of 

(totally ordered) of read and write operations, where 
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every read operation ( )ir x  precedes write operation 

( ), .i iw x x x D  , such that 

1 1( ) ( ) ( ) ( ).i i i i k i kT r x w x r x w x   

As in [11],[9] and [13], a set of debit and credit 

transactions is denoted by { : 1,2,..}iT T i  . A 

history h  is an interleaving sequence of read and write 

operations belonging to different transactions in .T  

Hence, a transaction iT T participating, in a history h , 

is a subsequence of operations where every read and 

write operations occurring in a history h  in the same 

order as they do in iT . We shall denote to the operation 

io  (where io  is a read or write operation in a transaction 

iT ) occurs in a history h before operation 'i
o by 

'i h i
o o . In this paper, we assume that history h  is 

considered to be serializable or correct (preserve the 

database in a consistence state) if it is equivalent to a 

serial execution of all transactions in T [14]. We 

formally define that two histories are equivalent as 

follows: 

Definition 2: 

Histories 1h and 2h of    :   1,2,..iT T i   are 

equivalent, written as 1 2~h h , iff for all 

1 2 1 2, 1,i i i i  , and for all x D , 

1) If  
1 1 2

  ( )
ii hr x w x , then  

1 2 2

  ( ),
ii hr x w x  

2) If  
1 1 2

  ( )
ii hw x w x , then  

1 2 2

  ( )
ii hw x w x  and 

3) If  
1 1 2

  ( )i h iw x r x , then  
1 2 2

  )( .i h iw x r x  

We say that the history h  is serializable if h is 

equivalent to a serial history Sh , as in the next definition. 

Definition 3: 

A history h of    :  1,2,..iT T i   is serializable 

iff there is a serial history Sh of T  of the form, for each 

 1,2,..i  , 

only (all) steps of

( ) ( )

i

S i i

T

h r x w y      

such that ~ Sh h . 

B. Conflict graph and serilizability 

Conflict graph is a directed graph that is built and used 

to test whether a history h , of the concurrent transactions, 

is serializable, and subsequently is a correct history. We 

consider that the history h  is serializable if there is no 

cycle in the corresponding conflict graph. The importance 

of this graph is that the test of serializability can be done 

in a polynomial time [14]. We shall consider that two 

operations are conflicting, if belonging to different 

transactions, accessing the same data item and one of 

them is a write operation. Next, we shall define how we 

can build a conflict graph of concurrent transactions 

participating in a history h . 

Definition 4: 

For each history h , there is a directed graph  CG h  

called the conflict graph of h . This graph has the 

transactions of h as its nodes, and contains an arc 

1 2
( , )i iT T , where 

1i
T and 

2i
T  are distinct transactions of 

h , whenever there is a operation of 
1i

T  which conflicts 

with a subsequent (in h ) operation of 
2i

T . 

C. Serilizability of Debit and Credit Transactions 

Usually, bank customers are interacting with bank 

database by invoking debit and credit transactions. Debit 

and credit transactions are representing the deposit and 

withdrawal to and from current balance of a bank account 

[15]. So, to understand the serializabiity of debit and 

credit transactions that are concurrently executing in a 

database, we shall give the following example: 

Suppose that we have two data items x  and y  which 

are representing two bank accounts in a bank database, 

two transactions such that: 

1) 
1 1 1 1

1

: ( ); 100; ( ); ( );

100; ( )

T r x x x w x r y y y

w y

   
 

2) 
2 2 2 2

2

: ( ); 200; ( ); ( );

200; ( )

T r y y y w y r x x x

w x

   
 

and assume that the concurrent execution of the 

transactions as follows: 

1 1 2 2 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).h r x w x r y w y r y w y r x w x  

Now, suppose the initial value of x is 1000  

( 1000x  ) and the initial value of y  is 500  

( 500y  ). After execution above the history h , the 

final values of x and y are 1100and 400 , respectively. 

But, the serializable execution of the two transactions 1T  

and 2T  is such that: 

1 1 1 1 2 2 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).sh r x w x r y w y r y w y r x w x  

Suppose that we have that the same initial values for 

x  and y  ( 1000, 500x y  ), then the final values of 

x  and y , after execution of the history sh  , are1100  

and 400 , respectively. This means that the final values 

of the concurrent transactions in the history h  is correct. 
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But, according to the Definition 2 and Definition 3, h  is 

not seilaizable because it is not equivalent to the serial 

history sh  ( sh h­ ) and does not leave the database in a 

consistent state. Moreover, if we build the conflict graph 

that is corresponding to the history h  as in Fig. 1, then 

we notice that the graph contains a cycle. This means that 

the history h  is not serializable and subsequently it is not 

a correct history. 

 

Fig. 1. Conflict graph of the history h . 

 

Now, the above demonstration shows that the history 

h  is not serializable but, at the same time, it is correct. 

The reason is that the addition and subtraction operations 

that are applied on debit and credit transactions are 

commutative and can be applied in any order [15]. This 

means that the condition of serializability in Definition 2 

and Definition 3 is too restrictive. So, the relaxed 

condition of serializability of debit and credit transactions 

is defined formally as follows: 

Definition 5: 

A history hr  of debit and credit transactions 

{ : 1,2,..}iT T i   is serializable iff, for any 

transaction iT T  and data item x D , the read and 

write ( ( )ir x  and ( )iw x ) are occurring in the history 

hr  without interleaving with any other operation(s) from 

different transactions jT T  of the same data item x . 

This will be of the form, for each  1,2,..i   

no ( ) or ( )

( ) ( )

j j

i i

r x w x

hr r x w x    

To demonstrate the above definition, consider the 

transactions that are in the above example such that 

1) 
1 1 1 1

1

: ( ); 100; ( ); ( );

100; ( )

T r x x x w x r y y y

w y

   
 

2) 
2 2 2 2

2

: ( ); 200; ( ); ( );

200; ( )

T r y y y w y r x x x

w x

   
 

and the following history 

1 2 2 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).dh r x r y w y w x r y w y r x w x  

Now, suppose that we have that the same initial values 

for x  and y ( 1000, 500x y  ) as in the above 

example, then the final values of x  and y , after 

execution of the history dh , are 1100  and 400 , 

respectively. This means that the final values of the 

concurrent transactions in the history dh  are correct. 

Moreover, the Definition 5 allows the operations from 

different transactions which are accessing different data 

items to be interleaved. This will relax the serializability 

condition in Definition 2 and Definition 3 to a new one 

which can be encoded into temporal logics in an easier 

way as we shall see later in this paper. 

D. Infinite History of Debit and Credit Transactions 

For the last decade, most people around the world have 

had smart mobile phones. Accordingly, a huge number of 

people access the Internet for shopping. Bank 

transactions involve deposit and withdraw to/form bank 

accounts. These are called debit and credit transactions. 

In 2015, the expectations say that over 900 million people 

are expected to transact $1 trillion in the global mobile 

market [16]. So, we can expect that the number of debit 

and credit transactions is huge and the transactions are 

non-stopping. This means that millions of people are 

constantly depositing and withdrawing to/from bank 

accounts. Also, the statistics show that the use of mobile 

transactions for debit and credit in the developing 

countries has excessively increased, see Fig. 2. Such 

situation will produce infinite histories of debit and credit 

transactions. 

Most database management systems consider that the 

histories are finite but such applications signify the need 

to deal with infinite histories [17]. One of the most 

techniques that can deal with modeling of infinite and 

finite behavior is temporal logics [18]. These histories 

will be encoded in temporal logics formulae as we will 

see in the next sections. 

 

Source: Bain/Research Now and Bain/ GMI NPS Surveys, 2013. 

Fig. 2 Mobile Payment in 2013. 

 

III. TEMPORAL LOGICS 

In this section, we will introduce two famous types of 

temporal logics: Linear-Time Temporal Logic (LTL) and 

Computational Tree Logic (CTL). 

A. LTL Syntax and Semantics 

LTL is a logic that can be used to specify infinite 

histories composed of n  transactions repeating infinitely 

many times. The compilation of all the iterations of the 

n  transactions gives an infinite number of transactions 

{ : 1,2,..}iT T i  . The reason for using LTL as a 
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specification language is that the LTL formulae can be 

interpreted over infinite sequence of states which are 

useful for the histories that are produced in this context 

[19], [20]. Furthermore, LTL is accepted as a 

specification language in modern model checkers such as 

NuSMV. 

B. Syntax of LTL 

The alphabet of LTL consists of a set of propositions 

symbols , 0,1,2,ip i   , read/write step propositional 

symbols ( ), ( )i j i jr x w x , where 1i   and 1 | |j D   , 

boolean operations , , , ,   • , and temporal 

operators , , ,X F G U . Formulae in LTL are of the form: 

1 2 1 2:: | ( ) | ( ) | | | | |i i j i jp r x w x          X  

1 2| | .   F G U  

The symbols   and •  denote the truth values false 

and true respectively and the abbreviations  and   

will denote usual implication and equivalency in logic, 

respectively. 

C. Semantics of LTL 

An interpretation for LTL , ( )iI s , at a given state 

is S , where S is a set of states, assigns truth values 

( )iI s

jp , 
( )

( ) iI s

i jr x  and 
( )

( ) iI s

i jw x  ( { , }  • ) to 

propositional symbol jp , ( )i jr x  and ( )i jw x , 

respectively. The model M , of the system to be 

specified, is represented by a structure of transition 

system called kripke structure see [4]. The semantics of a 

LTL formula   is interpreted by the truth relation 

, iM s ‘  which means that   holds at state is in the 

model structure M . If   is a path formula, ,M  ‘  

means that   holds along path   in the Kripke structure 

M . The relation ‘  is defined as follows: 

, i jM s p‘  iff 
( )iI s

jp •  

, ( )i i jM s r x‘  iff 
( )

( ) iI s

i jr x •  

, ( )i i jM s w x‘  iff 
( )

( ) iI s

i jw x •  

, iM s ‘  iff , iM s —  

1 2, iM s  ‘  iff 1, iM s ‘  or 2, iM s ‘  

1 2, iM s  ‘  iff 1, iM s ‘  and 2, iM s ‘  

, iM s X‘  iff 1, iM s  ‘  

, iM s F‘  iff there exists k i  such that 

, kM s ‘  

, iM s G‘  iff for all k i  such that , kM s ‘  

1 2, iM s  U‘  iff there exists c i , 2, cM s ‘  

and, for all 1, , .bi b c M s   ‘  

D. CTL syntax and semantics 

Actually, LTL and CTL formulae are different in their 

interpretations. Therefore, some formulae in LTL cannot 

be specified in the CTL formulae and vice versa. LTL 

formula is considering each path isolated. Hence, if each 

individual path holds the path formula, then LTL formula 

is true. But, To interpret a CTL formula, we consider the 

alternative possibilities for each state in a path. 

E. CTL syntax 

As in Subsection B, the alphabet of CTL consists of a 

set of propositions symbol
0 1, ,p p  , read/write step 

propositional symbols ( ), ( )i j i jr x w x  (1 1,1 | |)j D   , 

boolean operations , , , ,   •  , quantifiers E , A , 

temporal operators X , F  , G  and U . Formulae in 

CTL  are generated by: 

1 2 1 2:: | ( ) | ( ) | | | |i i j i jp r x w x          AX  

1 2| | | | | [ ]      EX AF EF AG EG A U  

1 2[ ]. E U  

In this logic, ( )i jr x and ( )i jw x  are propositions but 

not predicates. The symbols  , • ,  and   have 

the same logical meaning as in Subsection B. 

F. Semantics of CTL 

In this subsection, we shall use the same interpretation 

function ( )iI s  with the same meaning which has been 

introduced in Subsection C. in addition, the set of paths 

starting in a state is is denoted ( )iPaths s with 

( ) {}iPaths s  . Therefore, the relation ‘  is defined 

inductively as follows: 

, i jM s p‘  iff 
( )iI s

jp ? . 

, ( )i i jM s r x‘  iff 
( )

( ) iI s

i jr x • . 

, ( )i i jM s w x‘  iff 
( )

( ) iI s

i jw x •  . 

, iM s ‘  iff , iM s —  . 

1 2, iM s  ‘  iff 1, iM s ‘  or 2, iM s ‘  . 

1 2, iM s  ‘  iff 1, iM s ‘  and 2, iM s ‘  . 

, iM s AX‘  iff, for all 

1( ), ,i iPaths s M s  ‘  

, iM s EX‘  iff there exists ( )iPaths s   such 

that 1, iM s  ‘  . 

, iM s AF‘  iff, for all ( )iPaths s  , there 

exists b i  such that , bM s ‘ . 

, iM s EF‘  iff there exists ( )iPaths s   and 

b i  such that , bM s ‘  . 
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, iM s AG‘  iff , for all ( )aPaths s  , and, for 

all, , , bb i M s  ‘  . 

, iM s EG‘  iff there exists ( )iPaths s   such 

that, for all , , bb i M s  ‘  . 

1 2, [ ]iM s  A U‘  iff, for all ( )iPaths s  , there 

is some c i  such that 2, cM s ‘  and, for all 

1, , ba b c M s   ‘  . 

1 2, [ ]iM s  E U‘  iff there exists ( )iPaths s   

such that, for some 
2, , cc i M s  ‘  and, for all 

1, , bi b c M s   ‘  . 

 

IV. ENCODING DEBIT AND CREDIT TRANSACTIONS INTO 

LTL AND CTL 

In this section, we shall give transition structure that 

has, at each state, a set of propositions which are either 

true or false. Therefore, as in [4], the set of propositions 

for each debit and credit transaction should  satisfy the 

following properties: 

( 1)C Write implies read  

A transaction iT can only be written to jx if it has read 

jx , i.e. if ( )i jw x  executes, then ( )i jr x  must have been 

executed before. 

( 2) /C Read write step proposition remains

true until the transaction ends
 

If a read/write step has taken place, the corresponding 

proposition remains true until the transaction ends, i.e. 

( ) / ( )i j i jr x w x  is true, remains true until all operations 

belonging to the same transactions become true. 

( 3)C At most one step occurs at each

successive state
 

No two or more distinct steps can be false in a state, 

and then become true in a next state. 

( 4) ( )

( )

/

.

i j

i j

C Each read operation r x should

precede a write operation w x without

existence of any other read write

operation separate them

  

This property emphasizes that the transaction of the 

form 

1 1( ) ( ) ( ) ( )i i i i k i kT r x w x r x w x   

as in Definition 1. 

The semantics of the temporal formula (in CTL or LTL) 

  is given by a truth relation , iM s ‘ , where M is a 

structure that satisfies the additional conditions (C1)-(C4). 

Therefore, given a state is , and a path ( )iPaths s  , 

there corresponds a sequence of read and write step 

propositions that become true in 1, ,i is s  . In this way, 

  yields a history of infinitely many occurrences 

(iterations) of the transactions 1, , nT T  which are 

composing { : 1,2,..}iT T i  . 

We illustrate this correspondence between paths and 

histories by the following example: 

Assume that we have the set of data items { , }D x y  

and the debit and credit transactions are 

1 1 1 1 1( ) ( ) ( ) ( )T r x w x r y w y  and 

2 2 2 2 2( ) ( ) ( ) ( ).T r y w y r x w x  

The truth and the falsity for each read and write step 

propositions are given for successive states, and the top 

of each column, in Fig. 3, represents the unique 

proposition that becomes true in that state. The 

corresponding history h  is: 

1 2 2 1 1 1 2 2( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ).h r x r y w y w x r y w y r x w x  

 

     

1( )r x  2 ( )r y  2 ( )w y  1( )w x  1( )r y  

0s  1s  2s  3s  4s  

•  •  •  •  •  

1( )r x  1( )r x  1( )r x  1( )r x  1( )r x  

1( )w x  1( )w x  1( )w x  1( )w x  1( )w x  

1( )r y  1( )r y  1( )r y  1( )r y  1( )r y  

1( )w y  1( )w y  1( )w y  1( )w y  1( )w y  

2 ( )r y  2 ( )r y  2 ( )r y  2 ( )r y  2 ( )r y  

2 ( )w y  2 ( )w y  2 ( )w y  2 ( )w y  2 ( )w y  

2 ( )r x  2 ( )r x  2 ( )r x  2 ( )r x  2 ( )r x  

2 ( )w x  2 ( )w x  2 ( )w x  2 ( )w x  2 ( )w x  

     

    

1( )w y  2 ( )r x  2 ( )w x   

5s  6s  7s    

•  •  •   

1( )r x  1( )r x  1( )r x   

1( )w x  1( )w x  1( )w x   

1( )r y  1( )r y  1( )r y   

1( )w y  1( )w y  1( )w y    
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2 ( )r y  2 ( )r y  2 ( )r y   

2 ( )w y  2 ( )w y  2 ( )w y   

2 ( )r x  2 ( )r x  2 ( )r x   

2 ( )w x  2 ( )w x  2 ( )w x   

Fig. 3. The correspondence between path and history 

 

A. CTL and LTL Specifications 

Now, the transactions model properties (or conditions) 

(C1)-(C4) can be encoded as follows 

( 1)C Write implies read  

A transaction iT can only be written to jx if it has read 

jx , i.e. if ( )i jw x  executes, then ( )i jr x  must have been 

executed before. 

1. CTL specification is: 

1

1 1

( ( ) ( ))i j i j

i n j m

w x r x
   

 AG               (1) 

2. LTL specification is: 

1

1 1

( ( ) ( ))i j i j

i n j m

w x r x
   

  G                   (2) 

We shall add an extra proposition called iend  to 

indicate that the occurrence of iT  ends. This can be 

specified in CTL as follows 

0

1 1

( ( ( ) ( )))i i j i j

i n j m

end r x w x
   

   AG  (3) 

also, 0  can be substituted in LTL by 

0

1 1

( ( ( ) ( )))i i j i j

i n j m

end r x w x
   

    G     (4) 

( 2) /C Read write step proposition remains

true until the transaction ends
 

If a read/write step has taken place, the corresponding 

proposition remains true until the transaction ends, i.e. 

( ) / ( )i j i jr x w x  is true, remains true until all operations 

belonging to the same transactions become true. 

1. CTL specification is: 

2

1
1

(( ( ) ( ))

( ( ) ( )))

i j i i j

i n
j m

i j i i j

r x end r x

w x end w x


 
 

  

  

AG AX

AX

  (5) 

2. LTL specification is: 

2

1
1

(( ( ) ( ))

( ( ) ( )))

i j i i j

i n
j m

i j i i j

r x end r x

w x end w x


 
 

   

  

G X

X

         (6) 

( 3)C At most one step occurs at each

successive state
 

No two or more distinct steps can be false in a state, 

and then become true in a next state. 

1. CTL specification is: 

3

1 ,
1 ,

[ (( ( ) ( ))

( ( ) ( )))

i j i j

i i n
j j m

i i or j j

i j i j

r x r x

r x r x

  

 
 

  

 

   

  

 AG

EX

 

(( ( ) ( ))i j i jr x w x      

( ( ) ( )))i i i jr x w x  EX  

(( ( ) ( ))i j i jw x w x      

( ( ) ( )))].i j i jw x w x EX                                  (7) 

2. LTL specification is: 

In the CTL specification in (7) we use the operators 

AGEX . Likewise, there is no LTL specification that is 

equivalent to the CTL specification. So, we can say that, 

there are properties that can be expressed in CTL but 

cannot be expressed in LTL and vice versa. 

 

( 4) ( )

( )

/

.

i j

i j

C Each read operation r x should

precede a write operation w x without

existence of any other read write operation

separate them

 

1. CTL specification is: 

4

1 1

( ( ) ( ) ( )

( ))

i j i j i j

i n j j m

i j

r x r x w x

w x

 

    



   



 EF

 (8) 

2. LTL specification is: 

4

1 1

( ( ) ( ) ( )

( )).

i j i j i j

i n j j m

i j

r x r x w x

w x

 

    



    



 F

   (9) 

Now, to make sure that all read and write operations do 

not become true after the transaction iT  ends, we shall 

add the following specification: 

5

1 1

( ( ( ( ) ( ))

)).

i i j i j

i n j m

i

end r x w x

end


   

   



 AG AX
 (10) 

or 

5

1 1

( ( ( ( ) ( ))

)).

i i j i j

i n j m

i

end r x w x

end


   

    



 G X
   (11) 
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We denote by dct (as in (12)) the specification that 

the transition structure of the histories (of debit and credit 

transactions) should satisfy. i.e 

0 0 1 1 2 2

3 4 4 5 5

( ) ( ) ( )

( ) ( ).

dct      

    

       

     
        (12) 

Next, we shall encode the relaxed condition of 

serializability for Debit and Credit transaction (see 

Definition 5) 

1 1 1

( ( ) ( )

( ( ) ( ))).

rcs i k j k

i n j i n k m

i k j k

r x r x

w x w x


      

 

 

AG

     (13) 

B. CTL Specifications Vs LTL Specifications 

In specifying the property 3C , we have seen that this 

property can be specified in CTL but cannot be specified 

in LTL. This could lead to a question: is CTL has more 

expressiveness power than LTL? the answer is no. To 

demonstrate this, we shall give a property to the system 

which can be expressed in LTL but cannot be expressed 

in CTL. For example: assume that we add a new property 

to the model such that 

Every transaction started infinitely often is ended 

infinitely often 

1

1

( ) .i i

i n

r x end
 

GF GF                                   (14) 

This means that the transaction that becomes started 

infinitely often (and may become ended) must occur 

infinitely often. This kind of properties is called fairness 

property. Furthermore, if we need to ensure that every 

transaction is executed infinitely often such that: 

1

.i
i n

end
 
FG                                                        (15) 

This property can be only specified in LTL. 

 

V. CONCLUSION 

In this research paper, We have given an LTL and CTL 

specifications for debit and credit transactions. These 

specifications can be used to verify a scheduler uses to 

schedule an unlimited number of debit and credit 

transactions that incoming and outgoing from a bank 

database system. we have assumed that the serializability 

is the correctness criterion for concurrent debit and credit 

transactions executing in a transactional processing 

system. We have shown that the transactional system and 

its properties can be specified and encoded using 

temporal logics. Also, in this paper, we have introduced a 

transition structure to model the transactional system and 

its properties in terms of propositions. This propositions 

represent the read and write operations from different 

transactions that become true (executed) at this state. The 

verification part can be executed by model checkers, such 

as NuSMV, to test whether the database scheduler 

satisfies the relaxed serializability condition and its 

properties or not. In case of no, counterexamples to show 

the errors are automatically given by the model checker. 

We have found that temporal logics (LTL and CTL) 

are suitable to specify the relaxed serilaizablity condition. 

Actually, we encoded the (infinite or finite) histories of 

the debit and credit transactions in terms of read and 

write propositions in the transition structure that we 

defined. This means that we can prove that the histories, 

produced by the concurrent execution of debit and credit 

transactions in a scheduler, are serializable if 

.dct rcs                                                              (16) 

is satisfied. dct  represents the temporal logic formula 

that specifies the behavior of the history in transition 

structure, that we have given above, and rcs  represents 

the temporal logic formula that specifies the relaxed 

serializability condition. This approach gives a fully 

automatic verification method that can overcome the 

disadvantages of the traditional approaches such as the 

user should understand in detail why the system works 

correctly (deductive verification), human error 

(mathematical proofs) and may not cover all possible 

system behaviors as in the simulation [21]. 
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