
I.J. Information Technology and Computer Science, 2015, 05, 10-17
Published Online April 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.05.02

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

Temporal Logics Specifications for Debit and

Credit Transactions

Rafat M. Alshorman
Zarqa University/Computer science, Zarqa, Jordan

Email: rafat_sh@zu.edu.jo

Abstract— Recently, with the emergence of mobile technology

and mobile banking, debit and credit transactions have been the

most common transactions that are widely spreading, using such

technologies. In this research, we specify the concurrent debit

and credit transactions in temporal logics such as CTL

(Computational Tree Logic) and LTL (Linear-Time Temporal

Logic). These specifications describe the infinite histories that

may be produced by the iterations of such concurrent

transactions infinitely many times. We represent the infinite

histories as a model of temporal logics formulae. Then, model

checkers, such as NuSMV or SPIN, can carry out exhaustive

checks of the correctness of the concurrent debit and credit

transactions. Moreover, in this paper, we presume that the

serializability condition is too strict. Therefore, a relaxed

condition has been suggested to keep the database consistent.

Moreover, the relaxed condition is easier to encode into

temporal logics formulae.

Index Terms— Debit And Credit Transactions, Temporal

Logics Specifications, Model Checking, Serializability of

Transactions.

I. INTRODUCTION

In recent times, temporal logic stands out as one of the

tools that is useful to specify and reason about concurrent

and reactive systems because it provides a natural way to

describe the temporal behavior of these kinds of systems

[1]. It is possible to represent the systems and their

properties by using temporal logics formulae. Also, we

can express the implementations and specifications of the

system as two formulae written using temporal logics,

and then, verify whether the implementations imply the

specifications. Modern operating systems and most of

DBMS's extensively make use of concurrent algorithms

[2], [3]. Hence, the correctness of these algorithms is very

important to achieve system reliability. Now, the wide

use of mobile and banking technologies has led to a huge

number of concurrent users, may be, processing their

database transactions simultaneously. In this case, infinite

histories will be produced. The importance of

representing such infinite histories has been considered

[4], [5] and [6]. Usually, database techniques deal with a

finite number of transactions concurrently executing [7]

and [8].

Our research issue, in this paper, is to specify an

infinite history of the debit and credit transactions in term

of serializability, as a correctness criterion, using

temporal logics formulae. The availability of model

checkers gives importance to the temporal logics

specifications. In this context, model checkers can carry

out exhaustive checks for a correctness criterion of

concurrent debit and credit transactions automatically

with no need to the expertise in carrying out the

verification [9] and [10].

Some researchers, in general, have taken into their

accounts representing infinite histories in temporal logics

[11] and [12]. And, they presumed that the serailizabiity

is the correctness condition. In this research, we will

introduce a computationally efficient condition of

serializability that can be used to specify the correctness

of concurrent transactions in temporal logics such as CTL

and LTL. The serializability condition is relaxed in a way

that keeps database in a consistent state. This condition is

based on the nature of debit and credit transactions.

This paper is organized as follows. In Section II, we

shall discuss the debit and credit transactions, conflict

serializability condition and the relaxed condition of

serializability. The syntaxes and the semantics of LTL

and CTL are introduced in Section III . In Section IV, the

properties of transition structure for read and write

operations and their interpretations on LTL and CTL

paths are depicted. Furthermore, The encoding of debit

and credit transactions into LTL and CTL and the relaxed

serializability condition are also given in Section IV. The

conclusions are drawn in Section V.

II. DEBIT AND CREDIT TRANSACTIONS MODEL

A. Debit and Credit Transactions Model

In general, transaction is a collection of one or more

operations on one or more databases. Formally as in [9],

[4], [11] and [12], a transaction is a sequence of

read/write operations partially ordered such that:

A transaction iT is a partial order with ordering

relation i , such that if (), ()i i ir x w x T then either

() ()i i ir x w x or   ()i i iw x r x
1 2. { , , }mx x D x x x    .

In this paper, we shall denote to the set of data items that

are accessed by all transactions by D .

Definition 1:

A debit or credit transaction iT , accesses a set of data

items 1 2{ , , , }i kD x x x D   , is a sequence of

(totally ordered) of read and write operations, where

 Temporal Logics Specifications for Debit and Credit Transactions 11

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

every read operation ()ir x precedes write operation

(), .i iw x x x D  , such that

1 1() () () ().i i i i k i kT r x w x r x w x 

As in [11],[9] and [13], a set of debit and credit

transactions is denoted by { : 1,2,..}iT T i  . A

history h is an interleaving sequence of read and write

operations belonging to different transactions in .T

Hence, a transaction iT T participating, in a history h ,

is a subsequence of operations where every read and

write operations occurring in a history h in the same

order as they do in iT . We shall denote to the operation

io (where io is a read or write operation in a transaction

iT) occurs in a history h before operation 'i
o by

'i h i
o o . In this paper, we assume that history h is

considered to be serializable or correct (preserve the

database in a consistence state) if it is equivalent to a

serial execution of all transactions in T [14]. We

formally define that two histories are equivalent as

follows:

Definition 2:

Histories 1h and 2h of   : 1,2,..iT T i  are

equivalent, written as 1 2~h h , iff for all

1 2 1 2, 1,i i i i  , and for all x D ,

1) If  
1 1 2

 ()
ii hr x w x , then  

1 2 2

 (),
ii hr x w x

2) If  
1 1 2

 ()
ii hw x w x , then  

1 2 2

 ()
ii hw x w x and

3) If  
1 1 2

 ()i h iw x r x , then  
1 2 2

)(.i h iw x r x

We say that the history h is serializable if h is

equivalent to a serial history Sh , as in the next definition.

Definition 3:

A history h of   : 1,2,..iT T i  is serializable

iff there is a serial history Sh of T of the form, for each

 1,2,..i  ,

only (all) steps of

() ()

i

S i i

T

h r x w y     

such that ~ Sh h .

B. Conflict graph and serilizability

Conflict graph is a directed graph that is built and used

to test whether a history h , of the concurrent transactions,

is serializable, and subsequently is a correct history. We

consider that the history h is serializable if there is no

cycle in the corresponding conflict graph. The importance

of this graph is that the test of serializability can be done

in a polynomial time [14]. We shall consider that two

operations are conflicting, if belonging to different

transactions, accessing the same data item and one of

them is a write operation. Next, we shall define how we

can build a conflict graph of concurrent transactions

participating in a history h .

Definition 4:

For each history h , there is a directed graph  CG h

called the conflict graph of h . This graph has the

transactions of h as its nodes, and contains an arc

1 2
(,)i iT T , where

1i
T and

2i
T are distinct transactions of

h , whenever there is a operation of
1i

T which conflicts

with a subsequent (in h) operation of
2i

T .

C. Serilizability of Debit and Credit Transactions

Usually, bank customers are interacting with bank

database by invoking debit and credit transactions. Debit

and credit transactions are representing the deposit and

withdrawal to and from current balance of a bank account

[15]. So, to understand the serializabiity of debit and

credit transactions that are concurrently executing in a

database, we shall give the following example:

Suppose that we have two data items x and y which

are representing two bank accounts in a bank database,

two transactions such that:

1)
1 1 1 1

1

: (); 100; (); ();

100; ()

T r x x x w x r y y y

w y

   

2)
2 2 2 2

2

: (); 200; (); ();

200; ()

T r y y y w y r x x x

w x

   

and assume that the concurrent execution of the

transactions as follows:

1 1 2 2 1 1 2 2() () () () () () () ().h r x w x r y w y r y w y r x w x

Now, suppose the initial value of x is 1000

(1000x ) and the initial value of y is 500

(500y ). After execution above the history h , the

final values of x and y are 1100and 400 , respectively.

But, the serializable execution of the two transactions 1T

and 2T is such that:

1 1 1 1 2 2 2 2() () () () () () () ().sh r x w x r y w y r y w y r x w x

Suppose that we have that the same initial values for

x and y (1000, 500x y ), then the final values of

x and y , after execution of the history sh , are1100

and 400 , respectively. This means that the final values

of the concurrent transactions in the history h is correct.

12 Temporal Logics Specifications for Debit and Credit Transactions

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

But, according to the Definition 2 and Definition 3, h is

not seilaizable because it is not equivalent to the serial

history sh (sh h­) and does not leave the database in a

consistent state. Moreover, if we build the conflict graph

that is corresponding to the history h as in Fig. 1, then

we notice that the graph contains a cycle. This means that

the history h is not serializable and subsequently it is not

a correct history.

Fig. 1. Conflict graph of the history h .

Now, the above demonstration shows that the history

h is not serializable but, at the same time, it is correct.

The reason is that the addition and subtraction operations

that are applied on debit and credit transactions are

commutative and can be applied in any order [15]. This

means that the condition of serializability in Definition 2

and Definition 3 is too restrictive. So, the relaxed

condition of serializability of debit and credit transactions

is defined formally as follows:

Definition 5:

A history hr of debit and credit transactions

{ : 1,2,..}iT T i  is serializable iff, for any

transaction iT T and data item x D , the read and

write (()ir x and ()iw x) are occurring in the history

hr without interleaving with any other operation(s) from

different transactions jT T of the same data item x .

This will be of the form, for each 1,2,..i 

no () or ()

() ()

j j

i i

r x w x

hr r x w x   

To demonstrate the above definition, consider the

transactions that are in the above example such that

1)
1 1 1 1

1

: (); 100; (); ();

100; ()

T r x x x w x r y y y

w y

   

2)
2 2 2 2

2

: (); 200; (); ();

200; ()

T r y y y w y r x x x

w x

   

and the following history

1 2 2 1 1 1 2 2() () () () () () () ().dh r x r y w y w x r y w y r x w x

Now, suppose that we have that the same initial values

for x and y (1000, 500x y ) as in the above

example, then the final values of x and y , after

execution of the history dh , are 1100 and 400 ,

respectively. This means that the final values of the

concurrent transactions in the history dh are correct.

Moreover, the Definition 5 allows the operations from

different transactions which are accessing different data

items to be interleaved. This will relax the serializability

condition in Definition 2 and Definition 3 to a new one

which can be encoded into temporal logics in an easier

way as we shall see later in this paper.

D. Infinite History of Debit and Credit Transactions

For the last decade, most people around the world have

had smart mobile phones. Accordingly, a huge number of

people access the Internet for shopping. Bank

transactions involve deposit and withdraw to/form bank

accounts. These are called debit and credit transactions.

In 2015, the expectations say that over 900 million people

are expected to transact $1 trillion in the global mobile

market [16]. So, we can expect that the number of debit

and credit transactions is huge and the transactions are

non-stopping. This means that millions of people are

constantly depositing and withdrawing to/from bank

accounts. Also, the statistics show that the use of mobile

transactions for debit and credit in the developing

countries has excessively increased, see Fig. 2. Such

situation will produce infinite histories of debit and credit

transactions.

Most database management systems consider that the

histories are finite but such applications signify the need

to deal with infinite histories [17]. One of the most

techniques that can deal with modeling of infinite and

finite behavior is temporal logics [18]. These histories

will be encoded in temporal logics formulae as we will

see in the next sections.

Source: Bain/Research Now and Bain/ GMI NPS Surveys, 2013.

Fig. 2 Mobile Payment in 2013.

III. TEMPORAL LOGICS

In this section, we will introduce two famous types of

temporal logics: Linear-Time Temporal Logic (LTL) and

Computational Tree Logic (CTL).

A. LTL Syntax and Semantics

LTL is a logic that can be used to specify infinite

histories composed of n transactions repeating infinitely

many times. The compilation of all the iterations of the

n transactions gives an infinite number of transactions

{ : 1,2,..}iT T i  . The reason for using LTL as a

 Temporal Logics Specifications for Debit and Credit Transactions 13

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

specification language is that the LTL formulae can be

interpreted over infinite sequence of states which are

useful for the histories that are produced in this context

[19], [20]. Furthermore, LTL is accepted as a

specification language in modern model checkers such as

NuSMV.

B. Syntax of LTL

The alphabet of LTL consists of a set of propositions

symbols , 0,1,2,ip i   , read/write step propositional

symbols (), ()i j i jr x w x , where 1i  and 1 | |j D  ,

boolean operations , , , ,   • , and temporal

operators , , ,X F G U . Formulae in LTL are of the form:

1 2 1 2:: | () | () | | | | |i i j i jp r x w x          X

1 2| | .   F G U

The symbols  and • denote the truth values false

and true respectively and the abbreviations  and 

will denote usual implication and equivalency in logic,

respectively.

C. Semantics of LTL

An interpretation for LTL , ()iI s , at a given state

is S , where S is a set of states, assigns truth values

()iI s

jp ,
()

() iI s

i jr x and
()

() iI s

i jw x ({ , }  •) to

propositional symbol jp , ()i jr x and ()i jw x ,

respectively. The model M , of the system to be

specified, is represented by a structure of transition

system called kripke structure see [4]. The semantics of a

LTL formula  is interpreted by the truth relation

, iM s ‘ which means that  holds at state is in the

model structure M . If  is a path formula, ,M  ‘

means that  holds along path  in the Kripke structure

M . The relation ‘ is defined as follows:

, i jM s p‘ iff
()iI s

jp •

, ()i i jM s r x‘ iff
()

() iI s

i jr x •

, ()i i jM s w x‘ iff
()

() iI s

i jw x •

, iM s ‘ iff , iM s —

1 2, iM s  ‘ iff 1, iM s ‘ or 2, iM s ‘

1 2, iM s  ‘ iff 1, iM s ‘ and 2, iM s ‘

, iM s X‘ iff 1, iM s  ‘

, iM s F‘ iff there exists k i such that

, kM s ‘

, iM s G‘ iff for all k i such that , kM s ‘

1 2, iM s  U‘ iff there exists c i , 2, cM s ‘

and, for all 1, , .bi b c M s   ‘

D. CTL syntax and semantics

Actually, LTL and CTL formulae are different in their

interpretations. Therefore, some formulae in LTL cannot

be specified in the CTL formulae and vice versa. LTL

formula is considering each path isolated. Hence, if each

individual path holds the path formula, then LTL formula

is true. But, To interpret a CTL formula, we consider the

alternative possibilities for each state in a path.

E. CTL syntax

As in Subsection B, the alphabet of CTL consists of a

set of propositions symbol
0 1, ,p p  , read/write step

propositional symbols (), ()i j i jr x w x (1 1,1 | |)j D   ,

boolean operations , , , ,   • , quantifiers E , A ,

temporal operators X , F , G and U . Formulae in

CTL are generated by:

1 2 1 2:: | () | () | | | |i i j i jp r x w x          AX

1 2| | | | | []      EX AF EF AG EG A U

1 2[]. E U

In this logic, ()i jr x and ()i jw x are propositions but

not predicates. The symbols  , • ,  and  have

the same logical meaning as in Subsection B.

F. Semantics of CTL

In this subsection, we shall use the same interpretation

function ()iI s with the same meaning which has been

introduced in Subsection C. in addition, the set of paths

starting in a state is is denoted ()iPaths s with

() {}iPaths s  . Therefore, the relation ‘ is defined

inductively as follows:

, i jM s p‘ iff
()iI s

jp ? .

, ()i i jM s r x‘ iff
()

() iI s

i jr x • .

, ()i i jM s w x‘ iff
()

() iI s

i jw x • .

, iM s ‘ iff , iM s — .

1 2, iM s  ‘ iff 1, iM s ‘ or 2, iM s ‘ .

1 2, iM s  ‘ iff 1, iM s ‘ and 2, iM s ‘ .

, iM s AX‘ iff, for all

1(), ,i iPaths s M s  ‘

, iM s EX‘ iff there exists ()iPaths s  such

that 1, iM s  ‘ .

, iM s AF‘ iff, for all ()iPaths s  , there

exists b i such that , bM s ‘ .

, iM s EF‘ iff there exists ()iPaths s  and

b i such that , bM s ‘ .

14 Temporal Logics Specifications for Debit and Credit Transactions

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

, iM s AG‘ iff , for all ()aPaths s  , and, for

all, , , bb i M s  ‘ .

, iM s EG‘ iff there exists ()iPaths s  such

that, for all , , bb i M s  ‘ .

1 2, []iM s  A U‘ iff, for all ()iPaths s  , there

is some c i such that 2, cM s ‘ and, for all

1, , ba b c M s   ‘ .

1 2, []iM s  E U‘ iff there exists ()iPaths s 

such that, for some
2, , cc i M s  ‘ and, for all

1, , bi b c M s   ‘ .

IV. ENCODING DEBIT AND CREDIT TRANSACTIONS INTO

LTL AND CTL

In this section, we shall give transition structure that

has, at each state, a set of propositions which are either

true or false. Therefore, as in [4], the set of propositions

for each debit and credit transaction should satisfy the

following properties:

(1)C Write implies read

A transaction iT can only be written to jx if it has read

jx , i.e. if ()i jw x executes, then ()i jr x must have been

executed before.

(2) /C Read write step proposition remains

true until the transaction ends

If a read/write step has taken place, the corresponding

proposition remains true until the transaction ends, i.e.

() / ()i j i jr x w x is true, remains true until all operations

belonging to the same transactions become true.

(3)C At most one step occurs at each

successive state

No two or more distinct steps can be false in a state,

and then become true in a next state.

(4) ()

()

/

.

i j

i j

C Each read operation r x should

precede a write operation w x without

existence of any other read write

operation separate them

This property emphasizes that the transaction of the

form

1 1() () () ()i i i i k i kT r x w x r x w x 

as in Definition 1.

The semantics of the temporal formula (in CTL or LTL)

 is given by a truth relation , iM s ‘ , where M is a

structure that satisfies the additional conditions (C1)-(C4).

Therefore, given a state is , and a path ()iPaths s  ,

there corresponds a sequence of read and write step

propositions that become true in 1, ,i is s  . In this way,

 yields a history of infinitely many occurrences

(iterations) of the transactions 1, , nT T which are

composing { : 1,2,..}iT T i  .

We illustrate this correspondence between paths and

histories by the following example:

Assume that we have the set of data items { , }D x y

and the debit and credit transactions are

1 1 1 1 1() () () ()T r x w x r y w y and

2 2 2 2 2() () () ().T r y w y r x w x

The truth and the falsity for each read and write step

propositions are given for successive states, and the top

of each column, in Fig. 3, represents the unique

proposition that becomes true in that state. The

corresponding history h is:

1 2 2 1 1 1 2 2() () () () () () () ().h r x r y w y w x r y w y r x w x

1()r x 2 ()r y 2 ()w y 1()w x 1()r y

0s 1s 2s 3s 4s

• • • • •

1()r x 1()r x 1()r x 1()r x 1()r x

1()w x 1()w x 1()w x 1()w x 1()w x

1()r y 1()r y 1()r y 1()r y 1()r y

1()w y 1()w y 1()w y 1()w y 1()w y

2 ()r y 2 ()r y 2 ()r y 2 ()r y 2 ()r y

2 ()w y 2 ()w y 2 ()w y 2 ()w y 2 ()w y

2 ()r x 2 ()r x 2 ()r x 2 ()r x 2 ()r x

2 ()w x 2 ()w x 2 ()w x 2 ()w x 2 ()w x

1()w y 2 ()r x 2 ()w x

5s 6s 7s 

• • •

1()r x 1()r x 1()r x

1()w x 1()w x 1()w x

1()r y 1()r y 1()r y

1()w y 1()w y 1()w y 

 Temporal Logics Specifications for Debit and Credit Transactions 15

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

2 ()r y 2 ()r y 2 ()r y

2 ()w y 2 ()w y 2 ()w y

2 ()r x 2 ()r x 2 ()r x

2 ()w x 2 ()w x 2 ()w x

Fig. 3. The correspondence between path and history

A. CTL and LTL Specifications

Now, the transactions model properties (or conditions)

(C1)-(C4) can be encoded as follows

(1)C Write implies read

A transaction iT can only be written to jx if it has read

jx , i.e. if ()i jw x executes, then ()i jr x must have been

executed before.

1. CTL specification is:

1

1 1

(() ())i j i j

i n j m

w x r x
   

 AG (1)

2. LTL specification is:

1

1 1

(() ())i j i j

i n j m

w x r x
   

  G (2)

We shall add an extra proposition called iend to

indicate that the occurrence of iT ends. This can be

specified in CTL as follows

0

1 1

((() ()))i i j i j

i n j m

end r x w x
   

   AG (3)

also, 0 can be substituted in LTL by

0

1 1

((() ()))i i j i j

i n j m

end r x w x
   

    G (4)

(2) /C Read write step proposition remains

true until the transaction ends

If a read/write step has taken place, the corresponding

proposition remains true until the transaction ends, i.e.

() / ()i j i jr x w x is true, remains true until all operations

belonging to the same transactions become true.

1. CTL specification is:

2

1
1

((() ())

(() ()))

i j i i j

i n
j m

i j i i j

r x end r x

w x end w x


 
 

  

  

AG AX

AX

 (5)

2. LTL specification is:

2

1
1

((() ())

(() ()))

i j i i j

i n
j m

i j i i j

r x end r x

w x end w x


 
 

   

  

G X

X

 (6)

(3)C At most one step occurs at each

successive state

No two or more distinct steps can be false in a state,

and then become true in a next state.

1. CTL specification is:

3

1 ,
1 ,

[((() ())

(() ()))

i j i j

i i n
j j m

i i or j j

i j i j

r x r x

r x r x

  

 
 

  

 

   

  

 AG

EX

((() ())i j i jr x w x    

(() ()))i i i jr x w x  EX

((() ())i j i jw x w x    

(() ()))].i j i jw x w x EX (7)

2. LTL specification is:

In the CTL specification in (7) we use the operators

AGEX . Likewise, there is no LTL specification that is

equivalent to the CTL specification. So, we can say that,

there are properties that can be expressed in CTL but

cannot be expressed in LTL and vice versa.

(4) ()

()

/

.

i j

i j

C Each read operation r x should

precede a write operation w x without

existence of any other read write operation

separate them

1. CTL specification is:

4

1 1

(() () ()

())

i j i j i j

i n j j m

i j

r x r x w x

w x

 

    



   



 EF

 (8)

2. LTL specification is:

4

1 1

(() () ()

()).

i j i j i j

i n j j m

i j

r x r x w x

w x

 

    



    



 F

 (9)

Now, to make sure that all read and write operations do

not become true after the transaction iT ends, we shall

add the following specification:

5

1 1

(((() ())

)).

i i j i j

i n j m

i

end r x w x

end


   

   



 AG AX
 (10)

or

5

1 1

(((() ())

)).

i i j i j

i n j m

i

end r x w x

end


   

    



 G X
 (11)

16 Temporal Logics Specifications for Debit and Credit Transactions

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

We denote by dct (as in (12)) the specification that

the transition structure of the histories (of debit and credit

transactions) should satisfy. i.e

0 0 1 1 2 2

3 4 4 5 5

() () ()

() ().

dct      

    

       

     
 (12)

Next, we shall encode the relaxed condition of

serializability for Debit and Credit transaction (see

Definition 5)

1 1 1

(() ()

(() ())).

rcs i k j k

i n j i n k m

i k j k

r x r x

w x w x


      

 

 

AG

 (13)

B. CTL Specifications Vs LTL Specifications

In specifying the property 3C , we have seen that this

property can be specified in CTL but cannot be specified

in LTL. This could lead to a question: is CTL has more

expressiveness power than LTL? the answer is no. To

demonstrate this, we shall give a property to the system

which can be expressed in LTL but cannot be expressed

in CTL. For example: assume that we add a new property

to the model such that

Every transaction started infinitely often is ended

infinitely often

1

1

() .i i

i n

r x end
 

GF GF (14)

This means that the transaction that becomes started

infinitely often (and may become ended) must occur

infinitely often. This kind of properties is called fairness

property. Furthermore, if we need to ensure that every

transaction is executed infinitely often such that:

1

.i
i n

end
 
FG (15)

This property can be only specified in LTL.

V. CONCLUSION

In this research paper, We have given an LTL and CTL

specifications for debit and credit transactions. These

specifications can be used to verify a scheduler uses to

schedule an unlimited number of debit and credit

transactions that incoming and outgoing from a bank

database system. we have assumed that the serializability

is the correctness criterion for concurrent debit and credit

transactions executing in a transactional processing

system. We have shown that the transactional system and

its properties can be specified and encoded using

temporal logics. Also, in this paper, we have introduced a

transition structure to model the transactional system and

its properties in terms of propositions. This propositions

represent the read and write operations from different

transactions that become true (executed) at this state. The

verification part can be executed by model checkers, such

as NuSMV, to test whether the database scheduler

satisfies the relaxed serializability condition and its

properties or not. In case of no, counterexamples to show

the errors are automatically given by the model checker.

We have found that temporal logics (LTL and CTL)

are suitable to specify the relaxed serilaizablity condition.

Actually, we encoded the (infinite or finite) histories of

the debit and credit transactions in terms of read and

write propositions in the transition structure that we

defined. This means that we can prove that the histories,

produced by the concurrent execution of debit and credit

transactions in a scheduler, are serializable if

.dct rcs  (16)

is satisfied. dct represents the temporal logic formula

that specifies the behavior of the history in transition

structure, that we have given above, and rcs represents

the temporal logic formula that specifies the relaxed

serializability condition. This approach gives a fully

automatic verification method that can overcome the

disadvantages of the traditional approaches such as the

user should understand in detail why the system works

correctly (deductive verification), human error

(mathematical proofs) and may not cover all possible

system behaviors as in the simulation [21].

ACKNOWLEDGMENT

This research is funded by the Deanship of Research

and Graduate Studies in Zarqa University /Jordan.

Moreover, We would like to thank all members of faculty

of information Technology and science at Zarqa

university for their support to make these results possible.

REFERENCES

[1] L. Lamport, Secefying systems, the TLA+ language and

tools for hardware and software engineers, Microsoft

Research. Addison-Wesley, 2002.

[2] S. Gnesi, “Formal Specification and Verification of

Complex Systems”, Electronic Notes in Theoretical

Computer Science Netherlands, Vol. 80, pp. 294-298, 2003.

[3] Z. Manna and A. Pnueli, “Temporal verification of reactive

systems: Safety”, Springer-Verlag N.Y. Inc., 1995.

[4] R. Alshorman and W. Hussak, “A CTL Specification of

Serializability for Transactions Accessing Uniform Data”,

International Journal of Computer Science and Engineering,

Vol. 3, No. 1, pp. 26-32, 2009.

[5] Skype Heartbeats Archives,

http://heartbeat.skype.com/2007/08/.

[6] D. Rossi, M. Mellia and M. Meo, “Evidences Behind

Skype Outage”, In proceedings of the IEEE International

Conference on Communication (ICC'09), Dresde,

Germany, June 2009. Link: http://www.tlc-

networks.polito.it/mellia/papers/Skype_outage_icc09.pdf

[7] “NuSMV v2.4 Tutorial”, NuSMV website. Link:

http://nusmv.fbk.eu/NuSMV/tutorial/v24/tutorial.pdf

[8] Skype Web site, http://www.skype.com

[9] R. Alshorman and W. Hussak, “A Serializability Condition

for Multi-step Transactions Accessing Ordered Data”,

 Temporal Logics Specifications for Debit and Credit Transactions 17

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 05, 10-17

International Journal of Computer Science, Vol. 4, No. 1,

pp. 13-20, 2009.

[10] A. Cimatti, E. Clarke, F. Giunchiglia and M. Roveri,

“NuSMV: a new symbolic model verifier”, In proceedings

of the 11th International Conference on Computer Aided

Verification, Lecture Notes in Computer Science,

Springer-Verlag, Vol. 1633, pp. 495-499, 1999.

[11] W. Hussak and J.A. Keane, “Algebraic Specification of

Serializability for Partitioned Transactions”, International

Journal of Computer Systems Science and Engineering,

Vol.1, No.1, pp. 60-67, 2007.

[12] W. Hussak, "Serializable Histories in Quantified

Propositional Temporal Logic", International Journal of

Computer Mathematics, Vol. 81, No. 10, pp. 1203-1211,

2004.

[13] R. Alshorman and W. Hussak, “Multi-step transactions

specification and verification in a mobile database

community”, In proceedings of 3rd IEEE International

Conference on Information Technologies: from Theory to

Applications, IEEE, ICTTA 08, Damacus, Syria, IEEE

Computer Society Press, pp. 1407-12, 2008.

[14] C.H. Papadimitriou, “The theory of database concurrency

control”. Computer Science Press, Pockville, Maryland,

1986.

[15] R. Elmasri, S. Navathe, “Fundamental of Database

Systems”, Addison-Wesley, Fourth Edition, 2004.

[16] “Mobile Payments: Three Winning Strategies for Banks,”

Swift White Paper, 2012.

[17] V.C.S. Lee, K-W. Lam, S.H. Son and E.Y.M. Chan, “On

transaction processing with partial validation and

timestamp ordering in mobile broadcast environments”,

IEEE Transactions on Computers, Vol. 51, No. 10, pp.

1196-1211, 2002.

[18] Ph. Schnoebelen, the complexity of temporal logic model

checking, In AiML, 2002.

[19] R. Pucella, “The finite and the infinite in temporal logic”,

ACM SIGACT News, Vol. 36, No. 1, pp. 86-99, 2005.

[20] K. Sen, G. Rosu and G. Agha, “Generating Optimal Linear

Temporal Logic Monitors by Coinduction”, In proceedings

of 8th Asian Computing Science Conference (ASIAN’03),

Lecture Notes in Computer Science, Springer-Verlag, Vol.

2896, pp. 260-275, 2003.

[21] S. Koussoube, R. Noussi and B. O.Konfe ,” A Formal

Description of Problem Frames”, International Journal of

Information Technology and Computer Science, Vol. 6, No.

4, pp. PP.56-65, 2014. DOI: 10.5815/ijitcs.2014.04.07

Author’s Profiles

Rafat M. Alshorman is an assistant

professor in the department of computer

science at Zarqa University/Jordan

where he has been a faculty member

since 2009. Dr. Alshorman completed

his Ph.D. at Loughborough

University/UK and his undergraduate

studies at Yarmouk University/Jordan.

His research interests lie in the area of formal methods, ranging

from theory to implementation, with a focus on specifying and

verifying transactions in mobile environments. In recent years,

he has focused on theoretical computer science such as Graph

theory and Numerical analysis. He has collaborated actively

with researchers in several other disciplines of computer science.

Dr. Alshorman research interests are: 1. Formal methods. 2.

Temporal logics. 3. Concurrent Databases. 4. Serializability of

Transactions. 5. Numerical analysis.

How to cite this paper: Rafat M. Alshorman,"Temporal Logics

Specifications for Debit and Credit Transactions", International

Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.5, pp.10-17, 2015. DOI:

10.5815/ijitcs.2015.05.02

