
I.J. Information Technology and Computer Science, 2015, 04, 73-78
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.04.08

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

Delay Scheduling Based Replication Scheme for

Hadoop Distributed File System

S. Suresh
Department of Computer Applications, National Institute of Technology, Tiruchirappalli - 620015, India

Email: sureshtvmalai85@gmail.com

N.P. Gopalan
Department of Computer Applications, National Institute of Technology, Tiruchirappalli - 620015, India

Email: npgopalan@nitt.edu

Abstract—The data generated and processed by modern

computing systems burgeon rapidly. MapReduce is an

important programming model for large scale data intensive

applications. Hadoop is a popular open source implementation

of MapReduce and Google File System (GFS). The scalability

and fault-tolerance feature of Hadoop makes it as a standard for

BigData processing. Hadoop uses Hadoop Distributed File

System (HDFS) for storing data. Data reliability and fault-

tolerance is achieved through replication in HDFS. In this paper,

a new technique called Delay Scheduling Based Replication

Algorithm (DSBRA) is proposed to identify and replicate

(dereplicate) the popular (unpopular) files/blocks in HDFS

based on the information collected from the scheduler.

Experimental results show that, the proposed method achieves

13% and 7% improvements in response time and locality over

existing algorithms respectively.

Index Terms— Dynamic Replication, HDFS, Delay Scheduling,

Hadoop Mapreduce

I. INTRODUCTION

As data grows rapidly, the complexity of processing

becomes a challenge. Applications are need to process

very large amount of data of different type in short time

to achieve better user experience. To provide abstracted

data services to the application programs, several

solutions are proposed ranging from traditional databases

to current BigData managements systems. The

performance of the application is mainly based on these

backend data management systems. To enable distributed

processing with high availability, fault-tolerance and load

balancing, replication mechanism is the evergreen

solution. On the other hand, maintaining consistency

among the replicas in distributed environments is a time

consuming process which intern affects the availability

and performance.

Most of the data generated and processed by the

current BigData applications follow the ‘write once and

read many’ patterns which eliminates the complexity of

maintaining consistency among replicas. Recent

emerging distributed file systems such as Google File

System (GFS) [1], Hadoop Distributed File Systems

(HDFS) [2] use replication mechanisms to enable fault

tolerant, high performance parallel processing. Blindly

replicating all files/blocks at many place increases the

availability and fault-tolerance. But will increase memory

requirement proportionally. Finding hotspot and

replicating them may yield better performance with less

demand on memory. Determining optimal number of

replica is a challenging and an active research problem

for a long time as it addresses application load, data size

and quality of service, etc. Current distributed computing

environments such as grid computing, cloud computing

are designed to process peta bytes of data in a massively

parallel style. As processing speed increases rapidly with

advent of multi core processors, the underlying file

systems determine the performance of computing

environments. To support stream like data access,

modern file systems (Bigtable [3], Cassandra [4]) use

very simple data model supporting limited number of

operations. Some of the popular distributed file systems

and

Hadoop [5] is an emerging open source platform for

parallel data processing for large scale data intensive

applications supported by HDFS. In this paper, a new

technique called Delay Scheduling Based Replication

Algorithm (DSBRA) is proposed to identify and replicate

the popular files/blocks (hotspots) in HDFS using the

information collected from Delay Scheduling technique.

The performance of proposed algorithm is evaluated by

exhaustive experiments. It is observed that, it excels in

terms of response time, locality and fairness.

The paper is organized as follows: Section 2 gives

background on Hadoop and HDFS. Section 3 is dedicated

to related works. Section 4 elaborates the proposed

replication algorithm. Sections 5 describe the simulation

environment and discuss the simulation results. Section 6

concludes the paper and highlights the future research

directions.

II. HADOOP AND HDFS BACKGROUND

Hadoop is a popular parallel processing framework for

cloud environments. It is an open source implementation

of MapReduce [6] and GFS [1]. Due to simplicity and

scalability it becomes a de-facto standard for data-

intensive applications. Hadoop provides an abstracted

distributed fault tolerant environment for BigData

processing. The jobs submitted to the system are divided

74 Delay Scheduling Based Replication Scheme for Hadoop Distributed File System

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

into small tasks and executed parallelly on a cluster of

commodity hardware machines. Hadoop adopts the

master slave architecture. Users need to write only two

functions: map and reduce for their applications. All

other operations such as synchronization, parallelization

and handling failures are handled by the framework.

Hadoop contains two major components: (i)

MapReduce is a runtime environment for parallel

processing and (ii) HDFS is a distributed file system for

storing input and output files. MapReduce has two major

components: Jobtracker and Tasktraker. Jobtracker is the

master component to keep track of all the jobs submitted

into the system and scheduling. Tasktracker is a node

level component which is responsible for monitoring and

executing the tasks assigned to the corresponding node.

All the files in HDFS are divided into fixed sized blocks

and distributed across the cluster. There are two types of

nodes in HDFS called namenode and datanode.

Namenode is the master which is responsible for all file

system operations such as creating files, deleting files,

taking back up periodically, replicating missing blocks,

etc. Datanodes are the slaves which are responsible for

block level storage and operations such as creating,

deleting and replicating blocks upon instruction from

namenode. Also datanode sends block reports to

namenode periodically.

III. RELATED WORK

Much of the work concentrates on Meta data and log

files for taking scheduling decisions. However, the

inherent knowledge gained during scheduling is not

considered much for improving data related services.

This approach works well for data with diverse popularity

and mixed workloads ranging from simple queries to

large batch oriented jobs. Hadoop is originally designed

and configured for batch oriented jobs. Due to the

widespread adoption of Hadoop by various industries and

academia for simplicity and scalability, several real-time

user facing applications are executed on Hadoop platform.

Maintaining fixed number of replicas for blocks leads to

heavy load on popular blocks which affects the jobs

response time. To provide better user experience, the

availability of blocks is to be maintained at high level.

Sometimes the terms ‘file’ and ‘block’ are used

interchangeably.

Feng Wang et al. [7] proposed a method to increase the

availability of Hadoop through metadata replication. To

avoid single point of failure, all required metadata of

critical nodes are replicated into backup node(s). This

work only concentrating on metadata replication to

overcome from failure and does not consider the

replication of applications data. In [8], two heuristics are

proposed to solve the file allocation problem in parallel

I/O systems. The load balance across all disks and

variance of the service time at each disks are

simultaneously minimized to achieve better response time.

The product of file access rate and service time, called

heat of the file, is used as an objective function. In case of

HDFS, files are stored as a fixed size blocks and hence,

the service time may probably same for all blocks. The

metrics such as service times are not suitable in HDFS

and the work only considers the problem of file allocation

not replication.

Jiong Xie et al. [9] presented a data placement method

to balance the processing load among the nodes in

heterogeneous Hadoop clusters. However, replication is

not considered in their work. Wenhao Li et al. [10]

proposed an incremental replication strategy to meet

reliability requirement and reduce the storage cost. This

work aims to meet required reliability and works well for

temporary data or data with low reliability requirement.

The high availability requirements of popular data blocks

and load balancing are not considered. Q. Wei et al. [11]

proposed a model to capture the relationship between

availability and replica number. This method dynamically

maintains required number of replicas to meet a given

availability requirement. Sai-Qin et al. proposed a multi-

objective replication strategy for cloud storage cluster [12]

which is closest to our work. The objective function

includes mean file unavailability, mean service time, load

variance, energy consumption and mean latency. The

artificial immune algorithm is used to finding replication

factor and replica placement. The main problem here is

setting proportionate values of objectives for getting an

optimal solution. This work also does not consider the

dynamic workload and load balancing.

Several other works [13-17] are presented to optimize

the replication in distributed file systems. Some of them

aim to optimize the replica number and some of them

concentrates on replica placement with respect to various

goals such as load balancing, availability, reliability and

energy efficiency. Providing fault-tolerance with

techniques other than replication such as erasure codes

[18], are not suitable for Hadoop Framework. Because,

replication is not only useful for fault-tolerance service,

but also increases the availability of the data which is

essential for Hadoop like systems. The performance of

Hadoop is also based on various other factors, such as

block placement, other than replication. For the sake of

simplicity, they are not considered and considering the

factors other than replication is also beyond the scope of

this work.

IV. PROPOSED DELAY SCHEDULING BASED

REPLICATION ALGORITHM

Scheduling processes at nodes where the data resides is

the classical solution for achieving better performance as

it reduces data transfer in distributed environments.

Separating data management related activities from

scheduling makes scheduling and data management

easier for implementation. Also it is easy for exploring

new ideas for scheduling and data management in

research perspective. However, taking decisions without

considering both together may yield sub optimal

solutions in certain cases. Knowing applications’

requirement and providing data related services

accordingly is the responsibility of the underlying file

 Delay Scheduling Based Replication Scheme for Hadoop Distributed File System 75

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

system/database to achieve consistent system

performance. Identifying popular data blocks (hotspots)

and increasing the availability of those by replication is

the classical solution for load balancing, fault-tolerance

and better performance.

A. HDFS Replication

By default HDFS replicates each block into 3 locations.

Two copies are stored on different nodes of the same rack

and one copy in different rack for reliability. Datanodes

are responsible for sending block reports on regular

intervals. In case of block failures, namenode instructs

the datanode to create new replicas to maintain the

required replication level.

B. Delay Scheduling

Delay scheduling [19] is a simple technique to improve

the locality in shared cluster environments. Delay

scheduler postpones the resource allocation to the job for

a while (say D sec) to achieve higher data locality if local

node is not available. By slightly relaxing the fairness,

delay scheduler yields a significant improvement in

response time. After waiting for certain amount of time,

if there is no local node found free for the job, delay

scheduler starts launching non local tasks to avoid

starvation until next local node is found. Approximately,

running tasks on non-local node takes twice as much as

the time taken in the local node. So, waiting time of the

job is compensated by assigning local node in the near

future. By reducing the number of tasks running on non-

local node, delay scheduling also decreases the network

traffic. In general, delay scheduling technique can be

applied to various distributed systems beyond Hadoop

scheduling.

C. Delay Scheduling Based Replication Algorithm

In this paper, the information gathered from delay

scheduling technique in Hadoop is used to find the

hotspots and replicates them. This algorithm is called

Delay Scheduling Based Replication Algorithm

(DSBRA). The number of jobs accessed a block and out

of that the number of tasks delayed by delay scheduling

and their consolidated delay time are recorded for each

block/file in the HDFS. The scheduler maintains a list

containing the number of jobs accessed, the number of

job delayed and their consolidated delay time of the all

the blocks. Whenever a task is assigned to a node for

processing, the scheduler updates the all the

aforementioned details of particular block(s)/file(s) and

sends to HDFS at regular intervals. Upon receiving

messages from the scheduler, HDFS stores the

information as a Meta data and executes the proposed

DSBRA to replicates the hotspot based on the

information received from the scheduler. To consider the

past history and present trend, two different values for all

the afore mentioned values are maintained, one

representing the exponential average delay time since the

block creation and another representing the current trend

since last replication.

The block’s replication factor is calculated as follows:

Replication Factor of block i,

RFi = (α (Xi) + (1-α) (Yi))/ 2 (1)

where Xi represents the current load of the block i and

Yi represents the past history.

Xi = (Mi / Ni + DTi / (D*Ni)) / 2 (2)

Yi = ((Yi * n) + RFi)/(n+1) (3)

where n is the no. of times the replication process

invoked since the block creation. Ni is the no. of tasks

accessed the block i since last replication process. Mi is

the number of delayed tasks by delay scheduling for

block i since last replication process. DTi is the

consolidated delay time of tasks by delay scheduling for

block i since last replication process and α is history

parameter in the range 0 to 1. The initial value of α and Ni

is fixed as 0.5 and 1 respectively.

Algorithm-1

Algorithm: DSBRA

Initialize NSum[] = 0, sum = 0, α = 0.5

when time interval is elapsed:

//Finding Global Average of Replication Factor

for i in blocks do

//Replication Factor Calculation

calculate Xi = (Mi / Ni + DTi / (D*Ni)) / 2

RFi = (α (Xi) + (1-α) (Yi)) / 2

sum = RFi + sum

Add RFi with NSum values of the datanodes

which contains block i

Yi = ((Yi * n) + RFi) / (n+1)

end for
GAvg = sum / no. of Blocks

for j in datanodes do

 DNAvgi = NSumj / no. of blocks in node j

if 0.2 ≥ GAvg then

 //No replication. Only dereplication

 for i in blocks do

 if RFi ≤ 0.1 and RCi > DRCi then

delete the replica of block i located

on node with largest DNAvg value

else //Replication and dereplication

 for i in blocks do

 if RFi ≤ 0.2 and RCi > DRCi then

delete the replica of block i located

on node with largest DNAvg value

 if RFi > (0.2 + GAvg) then

 r = (RFi - GAvg) / 0.2

create r replica(s) of block i and

place one by one on the nodes

according to DNAvg value in

decending order

 end if

 end for

end if

If the calculated block’s replication factor value is 20%

greater than global average block delay time of the file

system then the block is identified as a hotspot. Similarly

the blocks whose replication factor is low (less than 10%

of the delay threshold) and its replica count is more than

the default replication count are dereplicated

76 Delay Scheduling Based Replication Scheme for Hadoop Distributed File System

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

to save the memory space. The proposed DSBRA is

given in Algorithm-1.

When the global average delay time of all the blocks in

HDFS is less than or equal to the 20% of the delay

threshold of delay scheduling, then the proposed DSBRA

only tries to dereplicates the excess replicas. If it is more

than 20% of the delay threshold, the algorithm

replicates/dereplicates the blocks based of replication

factor value. The number of replicas is calculated based

on replication factor value. DSBRA creates a replica for

every 20% increase of the RFi value and store on least

loaded nodes.

Mostly, the new born data are accessed by many

processes in social networking and news related

applications. They are popular for short period of time

and replicating such data items wastes the memory space

without any benefit. So, deleting less popular data are

also very important. The memory limit of the node is not

considered in this algorithm. But its inclusion is a trivial

addition.

V. PERFORMANCE EVALUATION

The performance of the proposed algorithm is

evaluated by an extensive set of experiments. The

simulation experiments were run on a 20 node cluster.

Each node has 2.4GHz quad core processor and 4GB of

RAM. All nodes have 500GB sata hard disk drives of

7200RPM and nodes are connected with 1 Gbps Ethernet.

Hadoop-1.0.4 version and the IO-intensive text search job

in Hive benchmark [20] is used in the experiments. The

job sizes and inter-arrival time are taken from Facebook

trace [19]. The schedule has 100 jobs with 14 seconds

inter-arrival time which takes around half hour time for

running.

The grep dataset is generated as per Hive benchmark

[20]. The size of the dataset is 100GB, which is

distributed throughout the cluster. As the cluster size is

small, the replication factor is decreased to 2 from default

value of 3 to reduce the availability of the data to observe

the benefit of the replication. According to the jobs size,

the input block(s) are randomly chosen from the dataset.

To emulate the situation of the hotspot, around 10% of

the blocks in the dataset are chosen randomly time to

time and included in the input of the jobs. The

performance of the proposed algorithm is evaluated by

measuring the jobs’ response time, data locality and

waiting time caused by delay scheduling with and

without DSBRA replication.

The CDF of jobs’ runtimes with DSBRA and without

are given in Fig.1. The maximum improvement in jobs

response time is 24% over the one without replication.

This is because of the proposed DSBRA is more sensitive

to workload of the system and replicates the data

according to the system requirements immediately. Due

to DSBRA, locality and availability is increased and most

of the tasks inputs are read from local disks. Overall, the

DSBRA improves the response time around 13% which

is significant in a shared cluster environment.

By default, delay scheduler aims to achieve better

locality. But most of the attempts of the delay scheduling

end unsuccessfully in the case of high demand of some

files. Because, most of the jobs needs to run their tasks on

the nodes which containing hotspot and delay scheduler

keeps them to waits for locality. The slots of the nodes

which contain hotspot are busy always due to heavy

competition and most jobs are launching non-local tasks

after waiting predefined delay threshold. So, delay

scheduling causes more delay and hence increases the

overall response time. As a result of replication of

hotspots by DSBRA, scheduler has more choice of the

local node and achieves high locality. This also leads to

less network traffic and increase the performance.

Fig. 1. CDFs of jobs’ running time is with DSBRA and without DSBRA

The improvement of achieved locality is given in Fig.2.

The small size jobs are mostly affected in the case of

heavy load on some blocks. Because the popular data in

applications, such as social networks, are small size in

nature and accessed by the very large number small jobs.

In addition, achieving locality for small jobs in large

clusters is difficult because their input is available in few

nodes. Also, these jobs require fast response to provide

better user experience. The DSBRA achieves around 8%

and 6% improvements over delay scheduling in the case

of jobs size 1-2 maps and 30-20 respectively. The key

success of the DSBRA algorithm comes from its ability

to identify hotspots as earlier and replicates them

immediately to avoid the performance degradation.

As a result of DSBRA, the amount of jobs’ waiting

time caused by delay scheduler is also decreased

significantly. Because of replicating hotspots, the

scheduler has more choice of the local nodes and the

probability of getting a local node in less time is

increased as compare to the one without hotspot

replication. This can be easily observed by perceiving the

improvement achieved in jobs’ response time. Fig.3.

shows the waiting time of delay scheduling for various

job sizes with and without DSBRA. At the maximum,

around 25% of waiting time is reduced by DSBRA for

jobs with 1-20 map tasks. This is because of around 60%

of total jobs are falls under aforementioned category and

have their input data is available in less number of node.

Over all, on the average, 17% of delay scheduler’s

waiting time is reduced by DSBRA. The benefit of delay

 Delay Scheduling Based Replication Scheme for Hadoop Distributed File System 77

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

scheduling actually comes from the cost of relaxing

fairness. So by reducing delay time, DSBRA also

achieves equal amount improvement in fairness of

resource allocation among the jobs. The improvement in

fairness is presented in Fig.3. Around 17% improvement

is achieved in fairness on the average over the one

without DSBRA.

Fig. 2. Data locality of delay scheduling for various jobs sizes with and

without DSBRA

Fig. 3. Average waiting time caused by delay scheduling for various

jobs sizes with and without DSBRA

To know the storage requirement of the DSBRA, its

disk memory usage is compared with the default

replication scheme. The percentage of excess memory

used by DSBRA over default replication scheme is

presented in Fig.4. The interval time between two

consecutive executions is fixed as one minute. After

starting the simulation, the memory requirement of

DSBRA for first few minutes is same as the default

replication scheme or negligible difference. In the initial

stage, the delay scheduling takes few minutes to start its

impact on DSBRA after starting the simulation. This is

because of the popularity of the blocks is measured based

on the waiting time of tasks caused by delay scheduling

for locality. Also, in the starting stage cluster takes time

to reach its full capacity. Hence, there is no much

competition for slot among tasks.

After few minutes, the cluster reaches its full capacity

and much of the tasks are starts competition for resources.

So the delay scheduler makes the tasks to wait for local

node. The tasks’ waiting for popular blocks are starts

increasing suddenly and those blocks are replicated in the

subsequent iteration of DSBRA execution. At maximum,

DSBRA takes around 27% excess disk memory as

compare to the default fixed replication method. On the

average, around 22% of excess disk memory is used by

DSBRA algorithm. This is 22% of excess storage usage

is not an issue in production environment as nodes are

usually loaded to have significant percentage of free

storage for runtime requirement.

Fig. 4. Percentage of extra memory usage of DSBRA over fixed

replication scheme

The number of popular blocks replicated and the

number of unpopular blocks deleted is approximately as

same on the average with respect time. This feature

DSBRA ensures the stability of the cluster by

maintaining the storage requirement as constant. Tuning

few parameters with respect to the cluster load, delay

threshold of the delay scheduler and data popularity

yields better consistence performance of DSBRA. Even

the case of heavy load and with diverse workload and

data popularity, the proposed method achieves 13% and

7% improvements in response time and locality over

existing one respectively.

VI. CONCLUSION

Modern distributed computing systems hands

enormous amount of data with varying workload

fluctuations. To support stream like data availability,

efficient replication and load balancing techniques are

required. In this paper, a new novel DSBRA algorithm is

proposed for HDFS file system which replicates and/or

dereplicates the files/blocks based on the information

gathered from scheduling process.

DSBRA deals replication problem at block level.

Mostly, the blocks of the same file have same level of

workload and hence same popularity. But some blocks

are stored in least loaded node and some are in heavily

loaded nodes. Obliviously the data blocks on heavily

loaded nodes have higher delay in access time.

Replicating such blocks, even it is unpopular, improves

the data locality and load balancing. If DSBRA

replicates the unpopular blocks stored on heavily loaded

nodes (unpopular blocks stored along with more popular

blocks in a node) also popular by seeing waiting time of

jobs, that will be deleted in subsequent. Experimental

78 Delay Scheduling Based Replication Scheme for Hadoop Distributed File System

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 73-78

results show that, the proposed method achieves 13% and

7% improvements in response time and locality over

existing method respectively.

REFERENCES

[1] Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung,

“The Google File System”, In 19th Symposium on

Operating Systems Principles, Lake George, New York, pp.

29–43, 2003.

[2] Konstantin Shvachko, Hairong Kuang, Sanjay Radia and

Robert Chansler, "The Hadoop Distributed File System",

IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), pp.1-10, 2010.

[3] A. Lakshman and P. Malik, “Cassandra: A decentralized

structured storage system”, SIGOPS Operating Syst. Rev.,

vol. 44, no. 2, 2010.

[4] F. Chang, et al., “Bigtable: A distributed storage system for

structured data,” ACM Trans. Comput. Syst., vol. 26, no. 2,

2008.

[5] Apache Hadoop. http://hadoop.apache.org/. Accessed on

13 June, 2014.

[6] J. Dean and S. Ghemawat, “MapReduce: simplified data

processing on large clusters”, In Proceedings of the 6th

USENIX Symposium on Operating Systems Design and

Implementation (OSDI), pp. 137–150, 2004.

[7] Feng Wang et al., “Hadoop high availability through

metadata replication”, In Proceedings of the first

international workshop on Cloud data management

(CloudDB '09), ACM, New York, NY, USA, pp. 37-44,

2009.

[8] Lin-Wen Lee et al, “File Assignment in Parallel I/O

Systems with Minimal Variance of Service Time”, IEEE

Transactions on Computers, vol. 49, no. 2, Feb 2000.

[9] Jiong Xie et al., “Improving MapReduce performance

through data placement in heterogeneous Hadoop clusters”,

Symposium on Parallel and Distributed Processing, pp.1-9,

2010.

[10] W.H. Li et al., “A novel cost-effective dynamic data

replication strategy for reliability in cloud data centres”, in:

IEEE Ninth International Conference on Dependable,

Autonomic and Secure Computing, 2011.

[11] Q. Wei et al., “CDRM: a cost-effective dynamic

replication management scheme for cloud storage cluster”,

in: Proc. 2010 IEEE International Conference on Cluster

Computing, Heraklion, Crete, Greece, September 20–24,

pp. 188–196, 2010.

[12] Sai-Qin Long, Yue-Long Zhao and Wei Chen, “MORM: A

Multi-objective Optimized Replication Management

strategy for cloud storage cluster”, Journal of Systems

Architecture, vol. 60, no. 2, pp. 234–244, Feb 2014.

[13] K. Ranganathan, I.T. Foster, Identifying dynamic

replication strategies for a high-performance data grid, in:

Proc. Second Int’l Workshop Grid Computing (GRID),

2001.

[14] H. Lamehamedi, Z. Shentu, B. Szymanski, Simulation of

dynamic data replication strategies in data grids, in: Proc.

12th Heterogeneous Computing Workshop (HCW2003)

Nice, France, April 2003, IEEE Computer Science Press,

Los Alamitos, CA, 2003.

[15] R.S. Chang and H.P. Chang, “A dynamic data replication

strategy using access weights in data grids”, J. Super

comput. Vol. 45, No. 3, pp. 277–295, 2008.

[16] S.C. Choi and H.Y. Youn, “Dynamic hybrid replication

effectively combining tree and grid topology”, J.

Supercomput. vol. 59, pp. 1289–1311, 2012.

[17] T. Xie, Y. Sun, A file assignment strategy independent of

workload characteristic assumptions, ACM Trans. Storage,

vol. 5, no. 3, 2009.

[18] L. Hellerstein et al., "Coding techniques for handling

failures in large disk arrays", Algorithmica, vol. 12, vo. 3-4,

pp. 182-208, 1994.

[19] M. Zaharia, D. Borthakur, J. Sen Sarma, K. Elmeleegy, S.

Shenker, and I. Stoica, “Delay scheduling: a simple

technique for achieving locality and fairness in cluster

scheduling”, In Proceedings of the 5th European

Conference on Computer systems (EuroSys), 2010.

[20] Hive performance benchmarks.

http://issues.apache.org/jira/browse/HIVE-396. Accessed

on 17 June, 2014.

Authors’ Profiles

S.Suresh: Research Scholar at Department of

Computer Applications, National Institute of

Technology, Tiruchirappalli. He received

MCA and M.Phil from University of Madras,

Chennai. His areas of interest include

Algorithms, Cloud Computing, Parallel and

Distributed Computing, BigData Processing

and Analytics.

N.P.Gopalan: Professor of Computer

Applications Department, National Institute

of Technology, Tiruchirappalli, TamilNadu,

India. Done PhD from IISC Bangalore.

Interested in Data mining, Web Technology,

Distributed Computing and Theoretical

Computer Science.

How to cite this paper: S. Suresh, N.P. Gopalan,"Delay

Scheduling Based Replication Scheme for Hadoop Distributed

File System", International Journal of Information Technology

and Computer Science(IJITCS), vol.7, no.4, pp.73-78, 2015.

DOI: 10.5815/ijitcs.2015.04.08

