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Abstract—The data generated and processed by modern 

computing systems burgeon rapidly. MapReduce is an 

important programming model for large scale data intensive 

applications. Hadoop is a popular open source implementation 

of MapReduce and Google File System (GFS). The scalability 

and fault-tolerance feature of Hadoop makes it as a standard for 

BigData processing. Hadoop uses Hadoop Distributed File 

System (HDFS) for storing data. Data reliability and fault-

tolerance is achieved through replication in HDFS. In this paper, 

a new technique called Delay Scheduling Based Replication 

Algorithm (DSBRA) is proposed to identify and replicate 

(dereplicate) the popular (unpopular) files/blocks in HDFS 

based on the information collected from the scheduler. 

Experimental results show that, the proposed method achieves 

13% and 7% improvements in response time and locality over 

existing algorithms respectively. 

 

Index Terms— Dynamic Replication, HDFS, Delay Scheduling, 

Hadoop Mapreduce 

 

I.  INTRODUCTION 

As data grows rapidly, the complexity of processing 

becomes a challenge. Applications are need to process 

very large amount of data of different type in short time 

to achieve better user experience. To provide abstracted 

data services to the application programs, several 

solutions are proposed ranging from traditional databases 

to current BigData managements systems. The 

performance of the application is mainly based on these 

backend data management systems. To enable distributed 

processing with high availability, fault-tolerance and load 

balancing, replication mechanism is the evergreen 

solution. On the other hand, maintaining consistency 

among the replicas in distributed environments is a time 

consuming process which intern affects the availability 

and performance. 

Most of the data generated and processed by the 

current BigData applications follow the ‘write once and 

read many’ patterns which eliminates the complexity of 

maintaining consistency among replicas. Recent 

emerging distributed file systems such as Google File 

System (GFS) [1], Hadoop Distributed File Systems 

(HDFS) [2] use replication mechanisms to enable fault 

tolerant, high performance parallel processing. Blindly 

replicating all files/blocks at many place increases the 

availability and fault-tolerance. But will increase memory 

requirement proportionally. Finding hotspot and 

replicating them may yield better performance with less 

demand on memory. Determining optimal number of 

replica is a challenging and an active research problem 

for a long time as it addresses application load, data size 

and quality of service, etc.  Current distributed computing 

environments such as grid computing, cloud computing 

are designed to process peta bytes of data in a massively 

parallel style. As processing speed increases rapidly with 

advent of multi core processors, the underlying file 

systems determine the performance of computing 

environments. To support stream like data access, 

modern file systems (Bigtable [3], Cassandra [4]) use 

very simple data model supporting limited number of 

operations. Some of the popular distributed file systems 

and 

Hadoop [5] is an emerging open source platform for 

parallel data processing for large scale data intensive 

applications supported by HDFS. In this paper, a new 

technique called Delay Scheduling Based Replication 

Algorithm (DSBRA) is proposed to identify and replicate 

the popular files/blocks (hotspots) in HDFS using the 

information collected from Delay Scheduling technique.  

The performance of proposed algorithm is evaluated by 

exhaustive experiments. It is observed that, it excels in 

terms of response time, locality and fairness. 

The paper is organized as follows: Section 2 gives 

background on Hadoop and HDFS. Section 3 is dedicated 

to related works. Section 4 elaborates the proposed 

replication algorithm. Sections 5 describe the simulation 

environment and discuss the simulation results. Section 6 

concludes the paper and highlights the future research 

directions. 

 

II.  HADOOP AND HDFS BACKGROUND 

Hadoop is a popular parallel processing framework for 

cloud environments. It is an open source implementation 

of MapReduce [6] and GFS [1].  Due to simplicity and 

scalability it becomes a de-facto standard for data-

intensive applications. Hadoop provides an abstracted 

distributed fault tolerant environment for BigData 

processing. The jobs submitted to the system are divided 
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into small tasks and executed parallelly on a cluster of 

commodity hardware machines. Hadoop adopts the 

master slave architecture. Users need to write only two 

functions: map and reduce for their applications. All 

other operations such as synchronization, parallelization 

and handling failures are handled by the framework. 

Hadoop contains two major components: (i) 

MapReduce is a runtime environment for parallel 

processing and (ii) HDFS is a distributed file system for 

storing input and output files. MapReduce has two major 

components: Jobtracker and Tasktraker. Jobtracker is the 

master component to keep track of all the jobs submitted 

into the system and scheduling. Tasktracker is a node 

level component which is responsible for monitoring and 

executing the tasks assigned to the corresponding node. 

All the files in HDFS are divided into fixed sized blocks 

and distributed across the cluster. There are two types of 

nodes in HDFS called namenode and datanode. 

Namenode is the master which is responsible for all file 

system operations such as creating files, deleting files, 

taking back up periodically, replicating missing blocks, 

etc. Datanodes are the slaves which are responsible for 

block level storage and operations such as creating, 

deleting and replicating blocks upon instruction from 

namenode. Also datanode sends block reports to 

namenode periodically. 

 

III.  RELATED WORK 

Much of the work concentrates on Meta data and log 

files for taking scheduling decisions. However, the 

inherent knowledge gained during scheduling is not 

considered much for improving data related services. 

This approach works well for data with diverse popularity 

and mixed workloads ranging from simple queries to 

large batch oriented jobs. Hadoop is originally designed 

and configured for batch oriented jobs. Due to the 

widespread adoption of Hadoop by various industries and 

academia for simplicity and scalability, several real-time 

user facing applications are executed on Hadoop platform. 

Maintaining fixed number of replicas for blocks leads to 

heavy load on popular blocks which affects the jobs 

response time. To provide better user experience, the 

availability of blocks is to be maintained at high level. 

Sometimes the terms ‘file’ and ‘block’ are used 

interchangeably. 

Feng Wang et al. [7] proposed a method to increase the 

availability of Hadoop through metadata replication. To 

avoid single point of failure, all required metadata of 

critical nodes are replicated into backup node(s). This 

work only concentrating on metadata replication to 

overcome from failure and does not consider the 

replication of applications data. In [8], two heuristics are 

proposed to solve the file allocation problem in parallel 

I/O systems. The load balance across all disks and 

variance of the service time at each disks are 

simultaneously minimized to achieve better response time. 

The product of file access rate and service time, called 

heat of the file, is used as an objective function. In case of 

HDFS, files are stored as a fixed size blocks and hence, 

the service time may probably same for all blocks.  The 

metrics such as service times are not suitable in HDFS 

and the work only considers the problem of file allocation 

not replication. 

Jiong Xie et al. [9] presented a data placement method 

to balance the processing load among the nodes in 

heterogeneous Hadoop clusters. However, replication is 

not considered in their work. Wenhao Li et al. [10] 

proposed an incremental replication strategy to meet 

reliability requirement and reduce the storage cost. This 

work aims to meet required reliability and works well for 

temporary data or data with low reliability requirement. 

The high availability requirements of popular data blocks 

and load balancing are not considered. Q. Wei et al. [11] 

proposed a model to capture the relationship between 

availability and replica number. This method dynamically 

maintains required number of replicas to meet a given 

availability requirement. Sai-Qin et al. proposed a multi-

objective replication strategy for cloud storage cluster [12] 

which is closest to our work. The objective function 

includes mean file unavailability, mean service time, load 

variance, energy consumption and mean latency. The 

artificial immune algorithm is used to finding replication 

factor and replica placement. The main problem here is 

setting proportionate values of objectives for getting an 

optimal solution. This work also does not consider the 

dynamic workload and load balancing. 

Several other works [13-17] are presented to optimize 

the replication in distributed file systems. Some of them 

aim to optimize the replica number and some of them 

concentrates on replica placement with respect to various 

goals such as load balancing, availability, reliability and 

energy efficiency. Providing fault-tolerance with 

techniques other than replication such as erasure codes 

[18], are not suitable for Hadoop Framework. Because, 

replication is not only useful for fault-tolerance service, 

but also increases the availability of the data which is 

essential for Hadoop like systems. The performance of 

Hadoop is also based on various other factors, such as 

block placement, other than replication. For the sake of 

simplicity, they are not considered and considering the 

factors other than replication is also beyond the scope of 

this work. 

 

IV.  PROPOSED DELAY SCHEDULING BASED 

REPLICATION ALGORITHM 

Scheduling processes at nodes where the data resides is 

the classical solution for achieving better performance as 

it reduces data transfer in distributed environments. 

Separating data management related activities from 

scheduling makes scheduling and data management 

easier for implementation. Also it is easy for exploring 

new ideas for scheduling and data management in 

research perspective. However, taking decisions without 

considering both together may yield sub optimal 

solutions in certain cases. Knowing applications’ 

requirement and providing data related services 

accordingly is the responsibility of the underlying file 
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system/database to achieve consistent system 

performance. Identifying popular data blocks (hotspots) 

and increasing the availability of those by replication is 

the classical solution for load balancing, fault-tolerance 

and better performance. 

A. HDFS Replication 

By default HDFS replicates each block into 3 locations. 

Two copies are stored on different nodes of the same rack 

and one copy in different rack for reliability. Datanodes 

are responsible for sending block reports on regular 

intervals. In case of block failures, namenode instructs 

the datanode to create new replicas to maintain the 

required replication level. 

B. Delay Scheduling 

Delay scheduling [19] is a simple technique to improve 

the locality in shared cluster environments. Delay 

scheduler postpones the resource allocation to the job for 

a while (say D sec) to achieve higher data locality if local 

node is not available. By slightly relaxing the fairness, 

delay scheduler yields a significant improvement in 

response time. After waiting for certain amount of time, 

if there is no local node found free for the job, delay 

scheduler starts launching non local tasks to avoid 

starvation until next local node is found. Approximately, 

running tasks on non-local node takes twice as much as 

the time taken in the local node. So, waiting time of the 

job is compensated by assigning local node in the near 

future. By reducing the number of tasks running on non-

local node, delay scheduling also decreases the network 

traffic. In general, delay scheduling technique can be 

applied to various distributed systems beyond Hadoop 

scheduling. 

C. Delay Scheduling Based Replication Algorithm 

In this paper, the information gathered from delay 

scheduling technique in Hadoop is used to find the 

hotspots and replicates them. This algorithm is called 

Delay Scheduling Based Replication Algorithm 

(DSBRA). The number of jobs accessed a block and out 

of that the number of tasks delayed by delay scheduling 

and their consolidated delay time are recorded for each 

block/file in the HDFS. The scheduler maintains a list 

containing the number of jobs accessed, the number of 

job delayed and their consolidated delay time of the all 

the blocks. Whenever a task is assigned to a node for 

processing, the scheduler updates the all the 

aforementioned details of particular block(s)/file(s) and 

sends to HDFS at regular intervals. Upon receiving 

messages from the scheduler, HDFS stores the 

information as a Meta data and executes the proposed 

DSBRA to replicates the hotspot based on the 

information received from the scheduler. To consider the 

past history and present trend, two different values for all 

the afore mentioned values are maintained, one 

representing the exponential average delay time since the 

block creation and another representing the current trend 

since last replication. 

The block’s replication factor is calculated as follows: 

Replication Factor of block i, 

RFi = (α (Xi) + (1-α) (Yi) )/ 2   (1) 

where Xi represents the current load of the block i and 

Yi represents the past history. 

Xi = ( Mi / Ni + DTi / (D*Ni) ) / 2   (2) 

Yi = (( Yi * n ) + RFi )/(n+1)   (3) 

where n is the no. of times the replication process 

invoked since the block creation. Ni is the no. of tasks 

accessed the block i since last replication process. Mi is 

the number of delayed tasks by delay scheduling for 

block i since last replication process. DTi is the 

consolidated delay time of tasks by delay scheduling for 

block i since last replication process and α is history 

parameter in the range 0 to 1. The initial value of α and Ni 

is fixed as 0.5 and 1 respectively. 

Algorithm-1 

Algorithm: DSBRA 

Initialize NSum[] = 0, sum = 0, α = 0.5 

when time interval is elapsed: 

//Finding Global Average of Replication Factor 

for i in blocks do 

//Replication Factor Calculation 

calculate Xi = ( Mi / Ni + DTi / (D*Ni) ) / 2 

RFi   =  (α (Xi) + (1-α) (Yi) ) / 2 

sum = RFi + sum 

Add RFi with NSum values of the datanodes        

which contains block i 

Yi  =  (( Yi * n ) + RFi ) / (n+1) 

end for 
GAvg = sum / no. of Blocks 

for j in datanodes do 

      DNAvgi = NSumj / no. of blocks in node j 

if 0.2 ≥ GAvg then 

      //No replication. Only dereplication 

      for i in blocks do 

              if RFi ≤ 0.1 and RCi > DRCi then 

delete the replica of block i  located 

on node with largest DNAvg value 

else    //Replication and dereplication 

      for i in blocks do 

        if RFi ≤ 0.2 and RCi > DRCi then 

delete the replica of block i    located 

on node with largest DNAvg value 

        if RFi > (0.2 + GAvg) then 

      r = (RFi - GAvg ) / 0.2 

create r replica(s) of block i  and  

place one by one on the nodes 

according to DNAvg value in 

decending order 

         end if 

     end for 

end if 

If the calculated block’s replication factor value is 20% 

greater than global average block delay time of the file 

system then the block is identified as a hotspot. Similarly 

the blocks whose replication factor is low (less than 10% 

of the delay threshold) and its replica count is more than 

the default replication count are dereplicated 
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to save the memory space. The proposed DSBRA is 

given in Algorithm-1. 

When the global average delay time of all the blocks in 

HDFS is less than or equal to the 20% of the delay 

threshold of delay scheduling, then the proposed DSBRA 

only tries to dereplicates the excess replicas. If it is more 

than 20% of the delay threshold, the algorithm 

replicates/dereplicates the blocks based of replication 

factor value. The number of replicas is calculated based 

on replication factor value. DSBRA creates a replica for 

every 20% increase of the RFi value and store on least 

loaded nodes. 

Mostly, the new born data are accessed by many 

processes in social networking and news related 

applications. They are popular for short period of time 

and replicating such data items wastes the memory space 

without any benefit. So, deleting less popular data are 

also very important. The memory limit of the node is not 

considered in this algorithm. But its inclusion is a trivial 

addition. 

 

V.  PERFORMANCE EVALUATION 

The performance of the proposed algorithm is 

evaluated by an extensive set of experiments. The 

simulation experiments were run on a 20 node cluster. 

Each node has 2.4GHz quad core processor and 4GB of 

RAM. All nodes have 500GB sata hard disk drives of 

7200RPM and nodes are connected with 1 Gbps Ethernet. 

Hadoop-1.0.4 version and the IO-intensive text search job 

in Hive benchmark [20] is used in the experiments. The 

job sizes and inter-arrival time are taken from Facebook 

trace [19]. The schedule has 100 jobs with 14 seconds 

inter-arrival time which takes around half hour time for 

running. 

The grep dataset is generated as per Hive benchmark 

[20]. The size of the dataset is 100GB, which is 

distributed throughout the cluster. As the cluster size is 

small, the replication factor is decreased to 2 from default 

value of 3 to reduce the availability of the data to observe 

the benefit of the replication. According to the jobs size, 

the input block(s) are randomly chosen from the dataset. 

To emulate the situation of the hotspot, around 10% of 

the blocks in the dataset are chosen randomly time to 

time and included in the input of the jobs. The 

performance of the proposed algorithm is evaluated by 

measuring the jobs’ response time, data locality and 

waiting time caused by delay scheduling with and 

without DSBRA replication. 

The CDF of jobs’ runtimes with DSBRA and without 

are given in Fig.1. The maximum improvement in jobs 

response time is 24% over the one without replication. 

This is because of the proposed DSBRA is more sensitive 

to workload of the system and replicates the data 

according to the system requirements immediately. Due 

to DSBRA, locality and availability is increased and most 

of the tasks inputs are read from local disks. Overall, the 

DSBRA improves the response time around 13% which 

is significant in a shared cluster environment. 

By default, delay scheduler aims to achieve better 

locality. But most of the attempts of the delay scheduling 

end unsuccessfully in the case of high demand of some 

files. Because, most of the jobs needs to run their tasks on 

the nodes which containing hotspot and delay scheduler 

keeps them to waits for locality. The slots of the nodes 

which contain hotspot are busy always due to heavy 

competition and most jobs are launching non-local tasks 

after waiting predefined delay threshold. So, delay 

scheduling causes more delay and hence increases the 

overall response time. As a result of replication of 

hotspots by DSBRA, scheduler has more choice of the 

local node and achieves high locality. This also leads to 

less network traffic and increase the performance. 

 

Fig. 1. CDFs of jobs’ running time is with DSBRA and without DSBRA 

 

The improvement of achieved locality is given in Fig.2. 

The small size jobs are mostly affected in the case of 

heavy load on some blocks. Because the popular data in 

applications, such as social networks, are small size in 

nature and accessed by the very large number small jobs. 

In addition, achieving locality for small jobs in large 

clusters is difficult because their input is available in few 

nodes. Also, these jobs require fast response to provide 

better user experience.  The DSBRA achieves around 8% 

and 6% improvements over delay scheduling in the case 

of jobs size 1-2 maps and 30-20 respectively. The key 

success of the DSBRA algorithm comes from its ability 

to identify hotspots as earlier and replicates them 

immediately to avoid the performance degradation. 

As a result of DSBRA, the amount of jobs’ waiting 

time caused by delay scheduler is also decreased 

significantly. Because of replicating hotspots, the 

scheduler has more choice of the local nodes and the 

probability of getting a local node in less time is 

increased as compare to the one without hotspot 

replication. This can be easily observed by perceiving the 

improvement achieved in jobs’ response time. Fig.3. 

shows the waiting time of delay scheduling for various 

job sizes with and without DSBRA. At the maximum, 

around 25% of waiting time is reduced by DSBRA for 

jobs with 1-20 map tasks. This is because of around 60% 

of total jobs are falls under aforementioned category and 

have their input data is available in less number of node.  

Over all, on the average, 17% of delay scheduler’s 

waiting time is reduced by DSBRA. The benefit of delay 
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scheduling actually comes from the cost of relaxing 

fairness. So by reducing delay time, DSBRA also 

achieves equal amount improvement in fairness of 

resource allocation among the jobs. The improvement in 

fairness is presented in Fig.3. Around 17% improvement 

is achieved in fairness on the average over the one 

without DSBRA. 

 
Fig. 2. Data locality of delay scheduling for various jobs sizes with and 

without DSBRA 

 

 
Fig. 3. Average waiting time caused by delay scheduling for various 

jobs sizes with and without DSBRA 

 

To know the storage requirement of the DSBRA, its 

disk memory usage is compared with the default 

replication scheme. The percentage of excess memory 

used by DSBRA over default replication scheme is 

presented in Fig.4. The interval time between two 

consecutive executions is fixed as one minute. After 

starting the simulation, the memory requirement of 

DSBRA for first few minutes is same as the default 

replication scheme or negligible difference. In the initial 

stage, the delay scheduling takes few minutes to start its 

impact on DSBRA after starting the simulation. This is 

because of the popularity of the blocks is measured based 

on the waiting time of tasks caused by delay scheduling 

for locality. Also, in the starting stage cluster takes time 

to reach its full capacity. Hence, there is no much 

competition for slot among tasks. 

After few minutes, the cluster reaches its full capacity 

and much of the tasks are starts competition for resources. 

So the delay scheduler makes the tasks to wait for local 

node. The tasks’ waiting for popular blocks are starts 

increasing suddenly and those blocks are replicated in the 

subsequent iteration of DSBRA execution. At maximum, 

DSBRA takes around 27% excess disk memory as 

compare to the default fixed replication method. On the 

average, around 22% of excess disk memory is used by 

DSBRA algorithm. This is 22% of excess storage usage 

is not an issue in production environment as nodes are 

usually loaded to have significant percentage of free 

storage for runtime requirement. 

 

Fig. 4. Percentage of extra memory usage of DSBRA over fixed 

replication scheme 

 

The number of popular blocks replicated and the 

number of unpopular blocks deleted is approximately as 

same on the average with respect time. This feature 

DSBRA ensures the stability of the cluster by 

maintaining the storage requirement as constant. Tuning 

few parameters with respect to the cluster load, delay 

threshold of the delay scheduler and data popularity 

yields better consistence performance of DSBRA. Even 

the case of heavy load and with diverse workload and 

data popularity, the proposed method achieves 13% and 

7% improvements in response time and locality over 

existing one respectively. 

 

VI. CONCLUSION 

Modern distributed computing systems hands 

enormous amount of data with varying workload 

fluctuations. To support stream like data availability, 

efficient replication and load balancing techniques are 

required. In this paper, a new novel DSBRA algorithm is 

proposed for HDFS file system which replicates and/or 

dereplicates the files/blocks based on the information 

gathered from scheduling process. 

DSBRA deals replication problem at block level. 

Mostly, the blocks of the same file have same level of 

workload and hence same popularity. But some blocks 

are stored in least loaded node and some are in heavily 

loaded nodes. Obliviously the data blocks on heavily 

loaded nodes have higher delay in access time. 

Replicating such blocks, even it is unpopular, improves 

the data locality and load balancing.   If DSBRA 

replicates the unpopular blocks stored on heavily loaded 

nodes (unpopular blocks stored along with more popular 

blocks in a node) also popular by seeing waiting time of 

jobs, that will be deleted in subsequent. Experimental 
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results show that, the proposed method achieves 13% and 

7% improvements in response time and locality over 

existing method respectively. 
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