
I.J. Information Technology and Computer Science, 2015, 04, 28-41
Published Online March 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.04.03

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

A Framework for Effective Object-Oriented

Software Change Impact Analysis

Bassey Isong
University of Venda, Department of Computer Science, Thohoyandou, 0950, South Africa

E-mail: bassey.isong@univen.ac.za

Obeten Ekabua
North-West University, Department of Computer Sciences, Mmabatho, 2735, South Africa

E-mail: obeten.ekabua@nwu.ac.za

Abstract— Object-oriented (OO) software have complex

dependencies and different change types which frequently affect

their maintenance in terms of ripple-effects identification or

may likely introduce some faults which are hard to detect. As

change is both important and risky, change impact analysis

(CIA) is a technique used to preserve the quality of the software

system. Several CIA techniques exist but they provide little or

no clear information on OO software system representation for

effective change impact prediction. Additionally, OO classes

are not faults or failures-free and their fault-proneness is not

considered during CIA. There is no known CIA approach that

incorporates both change impact and fault prediction.

Consequently, making changes to software components while

neglecting their dependencies and fault-proneness may have

some unexpected effects on their quality or may increase their

failure risks. Therefore, this paper proposes a novel framework

for OO software CIA that allows for impact and fault

predictions. Moreover, an intermediate OO program

representation that explicitly represents the software and allows

its structural complexity to be quantified using complex

networks is proposed. The objective is to enhance static CIA

and facilitate program comprehension. To assess its

effectiveness, a controlled experiment was conducted using

students’ project with respect to maintenance duration and

correctness. The results obtained were promising, indicating its

importance for impact analysis.

Index Terms— Impact Analysis, Software Change, Complex

Networks, Faults, Matrix

I. INTRODUCTION

In today’s software development world, object-

oriented (OO) technologies are increasing gaining

momentum. Currently, the technology has amass

popularity worldwide in several small, medium and large

software organizations and several OO software

applications are in used [1,2,3,4]. OO paradigm

approaches are believed to provide better maintainable

and reusable systems. They proffer the benefits of

producing a clean, well-understood design characterized

by easy to understanding, test, maintain and extend [5].

Given the critical context, it is of the essence that the

software systems are maintained effectively and

efficiently if they are to continue to remain useful.

Change is an indispensable property of software which

plays a central role in its evolution [6]. Software often

undergoes changes during development or life-time in

order to fix faults, add new features and enhance internal

code quality of the system [7,8]. Despite the benefits,

changes come with possible high risks. Regardless of the

change size, changes have the ability to introduce

unanticipated side-effects and errors elsewhere in the

system, degrade the quality of software or cause the

software to fail [8,9]. In real-life software maintenance,

the situation is worsened especially if the program

dependencies are ignored. The fact remains that making

changes to software components while neglecting their

dependencies and fault-proneness may have some

unexpected effects on its quality or may increase their

risks to fail [8,9].

With the exponential growth in the size and complexity

of today’s software applications, maintenance tasks have

been quite challenging. Changes are performed

successfully when there is a good comprehension of the

system’s component dependencies as well as their fault-

proneness probability which are vital to avoid unintended

effects in the system [7,9]. Software change impact

analysis (CIA) is a technique that is used to identify or

estimate the consequences of a proposed change impact

through the analysis of software product [8]. It is used to

curb the risks and costs associated with unidentified

effects of changes. In the perspective of OO software

maintenance, the paradigm’s acclaimed benefits do not

pledged software quality on its own, guard against

developer’s mistakes or prevent faults and failures.

Features that are specific to OO software such as

encapsulation, inheritance, polymorphism and dynamic

binding often time affect their maintenance. The

complexity offered by these features often makes it

cumbersome to pinpoint the impact of changes or it is

likely that they might introduce some types of faults

which are difficult to detect. Consequently, the ripple-

effects of changes or errors in one part of the system may

spread to other unchanged parts via the various complex

dependencies. All these could lead the maintainer

spending huge amount of time and efforts trying to locate

the source of the failing effect.

There are several CIA approaches that exist as well as

fault prediction models to predict the fault-proneness of

high risks classes, especially for large software systems.

 A Framework for Effective Object-Oriented Software Change Impact Analysis 29

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

However, these CIA approaches provide little or no

information on how to represent OO program for

effective maintenance. Furthermore, OO classes are not

faults or failures free [1,2,3,4,10,11,12,13,14]. Obviously,

the two activities are carried out separately and there are

no known approaches of CIA that incorporates both

change impact and fault prediction. Thus, the intuition is

that if a fault-prone class is changed without fixing the

existing faults, it may increase the efforts and costs of the

maintenance or could lead to software failure. In the

realm of project management, time, cost and scope

constitutes the three “stalagmites” where quality is the

goal [1][12]. As faults during development are inevitable,

the earlier they are found and fixed, the lesser it costs and

the higher the quality of the products delivered [1,2,3].

This paper therefore proposes a framework for an

effective OO software CIA that will assist software

maintainers to carry out maintenance effectively. The

objective is to improve static CIA technique in order to

reduce maintenance efforts and cost in terms of faults and

change impact prediction. In addition, the paper proposes

the use of complex networks to build an intermediate

representation (IR) of the entire OO program which will

explicitly reveals its implicit structures and dependencies.

The effective representation of OO program through the

IR is of the essence in facilitating program

comprehension and CIA while preserving the quality of

the software with less cost in terms of time and effort. To

assess the effectiveness of the IR for CIA, it was

evaluated using students’ project in terms of maintenance

duration and correctness and the results obtained were

promising, indicating that IR is efficient for CIA.

The rest of this paper is organized as follows: Section

II is CIA, III and IV is the proposed CIA framework and

IR respectively. Section V is the empirical evaluation, VI

is the discussion and VII are the validity threats while

VIII is the conclusion.

II. SOFTWARE CHANGE IMPACT ANALYSIS

Software changes are both important and risky when

they are made. CIA is a technique that is often used to

preserve the quality of the affected system. According to

Bohner and Arnold [8], CIA is defined as the:

“….determination of the potential effects to a subject

system resulting from a proposed software change”.

It is a process that is used to quantify which software

component will be affected by a change proposal or likely

to be changed when a component is changed. CIA

underpinning principle stemmed from the believe that,

irrespective of the change size, they have the ability to

introduce unanticipated side-effects, errors elsewhere in

the system, degrade the quality of software or cause the

software to fail [5,6]. In particular, changes that are

carried out frequently can destroy the architecture of the

software or even increases source code and architecture

inconsistency. In this case, CIA is used by engineers to

allow for more effective prioritization of change requests,

accuracy resource estimation, development schedules,

and to reduce the amount of corrective maintenance by

reducing the number of errors introduced as a by-product

of the maintenance effort [6,7,8]. The process that is used

to achieve CIA is captured in Fig. 1.

Fig. 1. Impact analysis process

The process is performed iteratively and is applied to

discover both direct and indirect impacts of changes. In

Fig. 1, the inputs are the change set that originates from

the change proposal while the outputs are the impact set

[7]. For instance, change set elements at the source code

level would have computed impact set such as classes,

methods/functions and fields depending on the level of

granularity employed. The activities that are performed

during the course of CIA are the SIS, EIS and the AIS

[6,7]. Existing CIA approaches are the static [14][15],

dynamic [14,15] or hybrid approaches [15]. Static CIA is

based on call or program dependencies graph which is

known to be safe but less precise with the generation of

large impact set [7]. On the other hand, dynamic CIA

computes impact set based on the information collected

during the execution, more precise but with less safe

when compared to static approach [7].

With the CIA process discussed above, it is quite clear

that the process is specifically used to predict the impact

of changes while components’ fault-proneness is not

taken into account before the actual changes are made.

Since OO software components are not fault or failure

free, the position of this paper is that, if changes not

meant to fix existing components’ faults are made, they

could create some undesirable effects or increase the

likelihood of the software to fail. This is therefore, the

basis for this paper.

Analyse Change

Request and

Documentation

Trace

Potential

Impacts

Starting Impact

Set

(SIS)

Estimated Impact Set

(EIS)

Actual Impact Set

(AIS)

Perform

Change

IMPACT ANALYSIS

30 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

III. THE CIA FRAMEWORK

During software development, changes are made to

realize various change proposals of software systems.

Based on the change proposal, the task of the maintainer

is to analyze and evaluate the system in order to

effectively predict the impacts of the change. However, it

has been revealed that about 70% of the total

development cost of a system is expended on

maintenance [5,6]. Moreover, OO software components

have complex dependencies that often time adversely

impact maintenance and their components, classes in

particular, are not exempted from being faulty. Hence, it

is vital that during CIA and before actual changes are

implemented, change impact prediction be performed

along affected components’ fault-proneness prediction.

This is necessary to ensure that the risks and cost of the

change implementation are reduced to the minimum or

eliminated. Predicting faults early would allow mitigating

actions to be focused on the high risks components or

take alternative actions before changes are made.

A. Description

The proposed framework incorporates two activities:

impact and fault prediction for OO software and is

dependent on the software system size. This framework is

unique and it involve activities of components analysis

and complex dependencies extraction, change impact

analysis, early faults or failure prediction and change

implementation (See Fig. 2). The goal is to proffer

guidance to the software maintainer when maintaining

OO software.

Fig. 2. Proposed CIA framework

The details are discussed as follows:

1) Dependencies Analysis and Exttraction: This is the

first stage which is aimed at facilitating OO program

comprehension and effective CIA. On the proposed

framework, the original OO source code has to be

analyzed by constructing an intermediate source code

representation (IR). The IR should be simple and

clearly reveals all the possible components (classes,

methods and fields), and their dependencies

(inheritance, membership, invocation and usage) [14].

It should also permit the quantification of the overall

program complexity. The essences is to provide a good

understanding of how components relate to one another

and to facilitate CIA activities in the next stage. The

representation is based on the complex software

networks. The goals in this stage is to assist

maintainers to:

 Visualize the structure and dependencies of the

system,

 Compute the degree of components’ coupling,

 Determine the impact of a change alongside

dependencies and impact diffusing of change types,

and

 Quantify the risk propagation of each component

with respect to fault in small sized systems.

These activities will help the maintainer to take

appropriate decisions and actions during the course of

CIA in the later stage.

2) Change Impact Prediction: After the construction of

the IR, the next and crucial task is to perform the actual

CIA. The objective is to help the maintainer quantify

or determine which OO software components in the

original software systems will truly be affected by the

change proposal or which will bring inconsistencies to

the software if changes are made. With the IR, this

stage ensures that the impacts of changes are localized

as possible. Based on the nature of OO software, we

have proposed a technique called impact diffusion

which will be used to precisely predict the impact of

changes. Thus, the impact diffusion is based on three

influential factors:

 The type change performed on the object

components,

 The type of dependencies that links one component

to another, and

 The behavior and impact range of each change and

the type of dependencies.

The rationale in this case is that, in OO program unlike

non-OO program, the effect of changes are dependent on

the change type performed and the nature of the

dependencies between the components affected by the

changes. These determinant factors are to be taken into

account in order to precisely predict the effect of a

change and to allow decisions to be taken as early as

possible on whether to implement or reject a change. The

goal in this case is to improve the accuracy and precision

of the predicted impact set which is the output of the

stage.

3) Early Fault/Failure Prediction: With the impact set at

hand, the goal of this stage is to determine the affected

components or the predicted impact set for fault-

proneness or which of them may lead to failure when

changes are made. This prediction is based on

INTERMEDIATE REPRESENTATION

DEPENDENCY ANALYSIS /EXTRACTION CIA

Change Types

Dependencies Ripple-effects

Impact Set

Early Fault/Failure Prediction

Change Decisions

Large-scale system

Small/Medium-

size system

Change Request Original Source Code Product/Process Metrics

Fault Data

CHANGE RECOMMENDATION

CHANGE ANALYSIS

Alternative Action
Change

Implementation

Reject Accept

 A Framework for Effective Object-Oriented Software Change Impact Analysis 31

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

probability and the process is based on the size of the

system. Since OO software systems are of different

sizes: small, medium and large, we recommend an

approach that will be applied when maintaining the

systems.

a) Small/medium sized systems: For small or medium

sized systems, the quality of the components

identified as impact set can be assessed by

computing the probability of fault propagation using

their dependencies in the complex software networks.

In this case, the risks components pose to other

components they connect to are computed and the

value obtained is used to take decisions during

change implementation. With the computed values,

the higher the probability the higher would the risk

of the fault propagation be. In the same vein, a

smaller risk value would signify a fault in such

component poses no serious impact on the other

components and modification can be performed

hitch-free. The knowledge of the risks value will

assist the software maintainer to take extra care

during the course of implementing the actual change.

b) Large-scale systems: In the perspective of large OO

software systems, using the complex software

networks might not be appropriate. In this case, the

quality of the systems can be assessed via pure

prediction using software metrics such as code

metrics, past change and fault histories as well as

suitable fault prediction model. Several empirical

studies in the literature have confirmed the

relationship between product and process metrics

and fault-proneness [10,11,12]. To carry out the

prediction, all the measures extracted from either the

previous or current version of the software stored in

the database will be used to predict whether a

component affected by a change will be faulty or not.

The motivation is that software quality is known to

play a crucial role in the success and failure of any

software organization. However, in large software

systems, providing high quality in development has

been deemed complex and a laborious activity [12].

In this case, it is important that the available

resources are focused on the most critical parts of

the system to ensure customers’ satisfaction. That is

to say, the early identification of faulty components

before changes are made is of importance for the

reduction of maintenance efforts, costs and risks

while preserving software quality. This will in turn

facilitate software testing and inspection activities.

4) Change Decisions and Implementation: After

identifying the impact set and assessed their overall

quality, the next step is to take decisions on whether to

implement the change or not. In other words, this is the

acceptance or rejection stage. Deciding on whether to

implement a change or not is important because, for

example, if a change proposal is known to trigger

significant ripple-effects over the entire system or

undesirable effects and majority of the affected classes

are fault-prone, one decision could be to reject the

change or to consider an additional change plan or

redesign the system through strategies like refactoring,

or accept the change proposal. A change is only

implemented if the impact and the risks are known to

be small or after validation and verification activities

have been performed on the affected faulty parts.

Otherwise, it is rejected if it is known to have

deteriorating effects on the whole system. The essence

is also to reduce the cost of risky changes.

IV. THE PROPOSED INTERMEDIATE REPRESENTATION

This section discusses the proposed IR of OO program

that will assist software maintainers in facilitating

program understanding and CIA. The approach is based

on the initial work of [14] and [16]. However, in this

paper we modeled OO software system’s structure using

complex software networks.

A. Complex Software Networks

Complex networks in recent decades have gained

increasing momentum and software system is not an

exception as a result of their topological structure

[16][17]. Software systems can be modeled as complex

networks where software components are represented as

nodes and their interactions as edges. The representation

is possible due to the design structure of OO software

which is better explained by its structural properties in

terms of components and the relationships. The

components are the fields, methods, classes and packages

while their interactions are the different dependencies that

exist between these components.

The importance of the IR stemmed from the fact that

today software systems especially OO program has

exponentially grown in size and complexity with

structures becoming more and more complicated. In this

case, changes or faults in one component often require

changes/faults to several other parts in a way not

anticipated. Consequently, the complex structure posed

by the complex relationships makes it difficult to quantify

the overall quality of the final software product. As it has

been known that the better the structure of the software,

the lesser would the cost of the development be,

analyzing OO software system’s structure using complex

network will help the maintainer to achieve the following

goals:

1) To visualize software components and their complex

dependencies. This will help the maintainer to have an

understanding of which components will be impacted

by a change when a change request is considered on a

component. Consequently, change will be limited to

few components as possible.

2) To quantitatively analyze the quality of the entire OO

program structure. This involves measuring the degree

of the components in terms of coupling and their fault

propagation from one component to another.

Analyzing the software structure quantitatively would

help the maintainer to assess software quality and the

risk of faults propagation from one component to

another. The essence is to enable a maintainer take

some mitigating actions where necessary in order to

32 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

reduce the cost of software failure when making

changes.

B. OO Component Dependencies Networks

The proposed IR is called the OOComDN and is used

to represent OO software components and their

relationships. In the OOComDN, the components are the

nodes and the interaction or relationships between every

pair of the components is a weighted directed edge with

an edge type indicating the probability that a change or

fault in one component may propagate to the other

component. In this paper, OOComDN is twofold: change

and fault diffusion networks.

1) Change diffusion networks: In the change diffusion

network (CDN), OO software system is represented

using a weighted directed graph, G where components

are the vertices and the dependencies among the

components are the edges, taking both the semantics

and syntactic structure into consideration. It is used to

represent the software components and their

relationships for effective maintenance, perhaps, CIA.

It explicitly represents the structure and the

dependencies in the OO program source code which

will be used to quantifying the components that are

truly affected by a change. In other words, the

representation is basically used to discover the

evolution mechanism of the OO software system.

a) Dependencies types: In this study, we identified four

types of dependencies, DType that exist in OO

program: inheritance (H), usage (U), invocation (V),

and membership (M) [9,14]. They constitute one of

the determining factors of change ripple-effects.

Their details are discussed as follows: Given an OO

program with two classes C1 and C2, methods m1

and m2 and fields, f, the dependencies that may exist

are as follows:

 Inheritance (H): H exists if: C2 inherits from C1,

C1 inherits from C2 or C2 indirectly inherits from

C1.

 Usage (U): U exist if: C1 uses C2, C1 aggregates

or contains C2, or C1 aggregates or contains C2 by

value or reference.

 Invocation (V): V is the type of dependencies

between methods, m of a class. If m1 and m2 are

methods in a class, therefore, V exists if: m1 calls

m2 or m1 overrides m2 and so on.

 Membership (M): M is one that exists between the

class and its member. That is, dependencies

between the class and its members (methods and

fields).

These dependencies are the non-numeric weight

assigned to the edges of the OOComDN-1 and constitutes

the links by which a change or fault transmits from one

component to other once a change is consider on a

specific component. Based on the CDN and the DType the

following definition of OOComDN is considered.

Definition 1: [OOComDN -1]

Given an OO program, P let G = <(N,DE), DType >

represent OOComDN given by:

OOComDN-1 = < (N, DE), DType >

Where N = NPk + NC + NM + NF are the nodes and DE =

N×N×DType represents the set of various edges with

dependencies types, DType. DType is called the weight of

the graph and NP, NC, NM
 and NF represent the set of

packages, classes, member methods and fields

respectively. Each component is represented by only one

node and the weighted-directed edge between two nodes

indicates that a component is a member of the class or

uses, invokes or inherits the other components.

b) Typical illustrations: A typical illustration of the

OOComDN is shown in Fig. 4 using the program, P

written in Java of Fig. 3. The various shapes used to

represent each component in the OOComDN-1 are also

shown in Fig. 4.

Fig. 3. Sample program

Fig. 4. OOComDN of the sample program in Figure 3

Fig. 4 shows the representation of the OO program

captured in Fig. 3. In the OOComDN-1 A, B, C and D are

the classes in P while H, V, M and U are the

dependencies types. In this way, if a component says D

d
A()

M2()

M1()

M M

M

M

U V

B()

q
a

M6()

M4()

M3()

M
M

M

M

U

U

V

M5()

C()

B k

M

M

M

U

H H

D()
M

M

M

U

V

U

V

V

A C

DB

U

M

U

V

H

COMPONENTS

DEPENDENCIES

FIELD

METHOD

CLASS

P1 P2

PACKAGE

package p1;

public class A {

public A(){};

private int d;

public void M1()

{ d=2; }

public int M2(int x)

{ M1();

x= d + 10;

return x; }}

public class B extends

A {

public B() {};

private int a;

public void M3()

{ a=5; }

public int M4(int b)

{ M3();

int c = a+b+10;

return c; }}

package p2;

import p1.*;

public class C {

 public C(){};

 private p1.B k;

public void M5()

{ k.M4(); }}

class D extends C {

public D() {};

private String q;

public void M6()

{ q="Boy!";

B j ; j.M4();

A p; p.M1();

}

}

 A Framework for Effective Object-Oriented Software Change Impact Analysis 33

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

uses or inherits or invokes a class say A, an edge would

originate from the node D to node A. Furthermore, the

multiplicities of these dependencies are very important

and are taken into account depending on the type of

change is performed on a given component. The weight

of each directed edge will determine the probability that a

change in one component say A, may or may not impact

other component, D.

C. Degree of OOComDN-1

After the construction of the OO program as

OOComDN-1, the next step is to compute its degree, Z.

Z of a node in OOComDN-1 is the number of

dependencies a component has on other components

connected to it or it is connected to. Two types of Z exist:

in-degree and the out-degree. Z is used to identify the

degree of coupling of each component in the program as

well as the structural complexity of the software at the

class level. The importance is to give an insight into how

components are related to one another and what need to

be done to accomplish a change on a given component.

This computation is only done at the class level and it is

done after pruning the OOComDN-1 leaving only classes

and their dependencies types as shown in Fig. 5. The

formal definitions for Z are stated as follows:

Fig. 5. Class level OOComDN-1

Definition 2: [Degree of OOComDN-1]

Given, OOComDN-1, < (N, DE), DType>, with an

adjacency matrix Aij, the degree of a vertex, Zi, we

defined the out-degree of an OO program component as

the number of edges or connections originating from that

component. It is given by |Zout(ni)| which is the sum of

the ith column of the Aji.

𝑍 𝑜𝑢𝑡 = ∑ 𝐴𝑗𝑖𝑗
 (1)

On the other hand, the in-degree of an OO software

component, ni is the total number of edges or connections

onto that node and it is given by |Zin(ni)| which is the sum

of the ith row of the Aij.

𝑍 𝑖𝑛 = ∑ 𝐴𝑖𝑗 (2)

Ztot(ni) is the total number of directed edges into and

out of the node, ni ЄN. It is simply the sum of

𝑍 𝑖𝑛 𝑎𝑛𝑑 𝑍 𝑜𝑢𝑡.

𝑍 𝑡𝑜𝑡 = 𝑍 𝑖𝑛 + 𝑍 𝑜𝑢𝑡 (3)

As stated in definition 2 above, Zin(ni) would indicates

the number of classes that has dependency on class nj ЄN

and Zout(ni) the number of classes on which class ni ЄN

depends on. The Zin and Zout for the program shown in

Fig. 2 are captured in Table 1.

Table 1. In-degree and Out-degree in OOComDN-1 of Figure 4

Node, ni 𝒁 𝒊𝒏
 𝒁 𝒐𝒖𝒕

 𝒁 𝒕𝒐𝒕

A 2 - 2

B 2 1 3

C 1 1 2

D 3 - 3

As shown in Table 1, for instance, class A has one Zin

for the ordered paired (B,A) and (D,A) and no Zout. In

addition, Ztot is a measure of the overall complexity of the

program. This shows the nature of coupling in A which

will assist a maintainer in identifying the complexity of

the classes prior to performing CIA. As the complex

relationships among OO software components often lead

to structural complexity of the software system as well as

cognitive complexity, being similar to Chidamber-

Kemerer’s (CK) Coupling between Object Classes (CBO)

metric [10,12], Z in the software networks would show

the degree to which each class depends on other classes.

Thus, we used Z to measure the degree of coupling in a

small or medium sized system.

D. Dependencies Matrices

This section discusses the strategies for identifying

initial impact set of a change during CIA on the

OOComDN-1. It is based on adjacency matrix

representation. The objective is to provide a high-level

identification of the relationship between the classes or

members of the original program. That is, the designed

will assist in the identification of the SIS with respect to

the change proposal. The correct identification of SIS is

crucial to the correct computation of the EIS which is

geared towards improvement of the overall precision. The

strategy involves the transformation of the OOComDN-1

into three separate dependency matrices:

 Class dependency matrix (CDM),

 Intra-membership relation matrix (MRM), and

 Inter-membership relation matrix (IRM).

With these matrices, CDM is a high-level matrix that is

extracted from the high-level structure of the entire

system that is only composed of classes and their

dependencies (See Fig. 5), while MRM and IRM are

extracts of the CDM which involve class members’

dependencies. Dependency and relation are used in the

matrices to denote class-to-class relationship and

member-to-member relationship respectively. Each

matrix is explained as follows.

1) Class dependency matrix: CDM is an adjacency matrix

representing both dependencies and relations among

different classes of OO program. Based on the different

source code change type of OO programs, it is obvious

that changes are not only limited to class members but

also to other classes and packages. Thus, CDM is used

for the basis of class changes. The following definition

is given:

Definition 3: [Class dependency matrix (CDM)]

Given the OOComDN-1, two classes A, B Є N for

instance, we define CDM as follows:

A C

B D

H HU

U

U

34 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

CDM= [Mij]= {
− = 1 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛𝑡𝑟𝑎 − 𝐶𝐷, 𝐴 ∈ 𝑁
+ = 1 i𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑖𝑛𝑡𝑒𝑟 − 𝐶𝐷, 𝐴 → 𝐵 ˅ 𝐴, 𝐵 ∈ 𝑁

0 𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

where CD is the class dependency in the definition.

The definition is three-fold and it indicates the following:

i. Mij = “-” =1 value denotes that there is a local or

internal relationship within a class and its members,

“-” Є DE. The significance is that a change to a

class affects the class itself. We called “-” the intra-

dependency value.

ii. Mij = “+” =1 as long as i ≠j, indicates that there is

external dependency “+”Є DE for A →B. We

called “+” the inter-class dependency value,

indicating that a change to class B will affect A and

any other classes related to it. And lastly,

iii. Mij = 0 value denotes that there is no dependency

between class A and B. (see Table 2)

Table 2. Class dependency matrix for Figure 4.2

In Table 2, each matrix value shows implicitly the Dtype

(i.e. usage, invocation and inheritance) where the

directed edges direction is from the column class to the

row class.

2) Intra and inter-class membership relation matrices:

These two matrices are used to represent the

relationship between members of a class and members

of other classes connected to it respectively. To

understand these matrices, the following formal

definitions are stated:

Definition 4: [Intra- member Relation Matrix]

Given the OOComDN-1, a class, say A= {a1, a2,…,

am}ЄN and a dependency “-” Є N, we thus define the

intra- member relation matrix for dependency “-” of

class A as follows:

KA = [kij] ={
1 If 𝑎𝑖 has relation with 𝑎𝑗

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 1 ≤ 𝑖, 𝑗

The definition is twofold:

i. Kij =1 if ai has a relationship with aj, where ai,aj ЄA;

otherwise

ii. Kij = 0, indicating there is no relationship between ai

and aj.

Table 3. Intra-membership relation matrix

The intra-class membership relation matrix is used to

represent the relationship within a class and its members.

The matrix is captured in Table 3 and the intra-class

membership relation matrix for OOComDN-1 in Fig. 4 is

shown in Fig. 6.

Fig. 6. Intra-membership relation matrixes for Figure 4

The intra-class membership relationship matrix which

is used to represent the relationship between elements in

each class given by: Ai/Aj, Bi/Bj, Ci/Cj and Di/Dj for A, B,

C, and D respectively. For instance, in Ai/Aj, all the zero

values indicate that there is no relationship between

members within the classes, while 1 indicates the

presence of a relationship.

Definition 5: [Inter- membership Relation]

Given the OOComDN-1, two classes A={a1,a2,…,am},

B={b1,b2, …,bn}ЄN, A≠B, and a dependency “+” ЄDE for

A→B. We then define the inter-membership relation

matrix for dependency “+” as follows:

ni/nj
A B C D

A -/+/0
-/+/0 -/+/0 -/+/0

B -/+/0 -/+/0 -/+/0 -/+/0

C
-/+/0

-/+/0 -/+/0 -/+/0

D -/+/0 -/+/0 -/+/0 -/+/0

ai/aj a1 a2 a3 a4

a1 1/0 1/0 1/0 1/0

a2 1/0 1/0 1/0 1/0

a3 1/0 1/0 1/0 1/0

a4 1/0 1/0 1/0 1/0

Ci/Cj B k C() M5

B k 1 0 0

C() 0 1 0

M5() 0 0 1

Ai/Aj d A() M1() M2()

d 1 0 0 0

A() 0 1 0 0

M1() 1 0 1 0

M2() 1 0 1 1

Di/Dj q D() M6()

q 1 0 0

D() 0 1 0

M6() 1 0 1

Bi/Bj a B() M3() M4()

a 1 0 0 0

B() 0 1 0 0

M3() 1 0 1 0

M4() 1 0 1 1

 A Framework for Effective Object-Oriented Software Change Impact Analysis 35

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

PA→B = [pij] ={
1 If aihas relation with bj

0 otherwise
1 ≤ 𝑖 ≤

𝑚, 1 ≤ 𝑗 ≤ 𝑛

Table 4. Inter-membership relation matrix

Table 4 shows the inter-class membership relation

matrix for ai and bj. The above definition indicates that pij

= 1 if ai in class A has a relation with bj in class B, where

aiЄA, bjЄB; otherwise pij=0 indicating there is no

relationship that exists. The inter-class membership

relation matrix for OOComDN-1 in Figure 4 is captured

in Fig. 7. The relationships are given by Ai/Dj, Bi/Dj and

Ai/Cj in the matrix. Like MRM, all the zero values

indicate that there is no relationship between members of

the two corresponding classes while the value 1 indicates

the existence of a relationship.

Fig. 7. Inter-membership relation matrixes for Figure 4

E. Fault Diffusion Networks

Fault diffusion network (FDN) represented just as

CDN. The only difference is that the semantics of the

relationship is neglected and every relationship has the

same importance. FDN is used to characterize the risks a

component poses on others due to the direct or indirect

dependency existing between them. The rationale is that,

though it is believed that a fault in one component will

propagate to other components that depend on it, the case

is not always true with respect to OO software systems

[16]. The intuition is that, OO program class is composed

of several fields and methods and a class is considered

faulty if it has at least one fault emanating from either

itself or its members. In this case, members of another

class that depends on such faulty class do not all connect

to the faulty member directly or indirectly. Hence, the

propagation of fault from one component to another is

based on probability. In this case, we adopt the approach

proposed by [16]. The definition is stated as follows:

Definition 3: [OOComDN-2]

In FDN, the nodes represent the classes and a class is

represented by only one node in the entire OOComDN-2.

Interactions between classes are represented by directed

numerically weighted edges.

Thus, OOComDN-2 can be described as:

OOComDN-2 = <NC, DC, Pb>

Where NC is the set of classes, DC is the set of edges

linking one class to another and Pb is the probability that

a fault in a class will propagate to another. The

interaction is based on the principle that, if members in

class, say D use class members of A, B, an edge will

originate from the node of the member in class D to the

node in A, B and vice versa. For simplicity, in FDN, only

the existence of dependency is considered while the DType

is ignored. Additionally, the multiplicity of the

dependencies regardless of how many times a class

depend on another class and so on is ignored. Also, the

numerical weight on each DC in a class is the same which

represents the probability that a fault in class will impact

or spread to other classes they connects to. (see Figure 8).

Definition 4: [Fault Propagation Probability]

Let P be an OO program having class i and class j,

where class j depends on class i. We therefore, define the

probability of fault propagating from class i to class j as

Pb (i,j) [16]. It is stated as follows:

𝐏𝐛(𝐣, 𝐢) =
|𝐂𝐌(𝐢,𝐣)|

|𝐌𝐓𝐣|
 (4)

According to [16], CM(i,j) is the set of members in

class j which faults will propagate to the members in

class i, which they are directly or indirectly linked to,

thereby rendering the class faulty. On the other hand,

MTj is the total number of class members present in the

class, j. They are shown as follows:

CM(D,A) = {M1()} and MTA = {d, A(), M1(), M2()}

CM (D,B) = {M4()} and MTB = {a, B(), M3(), M4()}

Fig. 8. Class fault propagation probability

As shown above, Fig. 8 captured the fault propagation

probability in a class. The edges of all members in a

class are denoted by 1. It indicates the probability that a

member of the class will be faulty due to the dependency

ai/bj a1 a2 b3 an

b1 1/0 1/0 1/0 1/0

b2 1/0 1/0 1/0 1/0

b3 1/0 1/0 1/0 1/0

bm 1/0 1/0 1/0 1/0

Ai/Dj d A() M1() M2()

q 0 0 0 0

D() 0 0 0 0

M6() 0 0 1 0

Bi/Dj a B() M3() M4()

d 0 0 0 0

M1() 0 0 0 0

M2() 0 0 1 0

Ai/Cj d M1() M2()

B k 0 0 0

C() 0 0 0

M5() 0 0 0

d
A()

M2()

M1()

1 1

1

1

1 V

B()

q
a

M6()

M4()

M3()

1
1

1

1

1

1

V

H

D()
1

1

1

1

0.25

0.25

A

DB

1

P1 P2

36 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

it has with a faulty member. That is, every member of a

class has the same probability of being faulty if a member

they depend on is faulty. However, for inter-class

dependency, the case is not always true. Each class has its

own probability value which is based on the number of

members in that class that depends on the faulty class.

For instance, as shown in Fig. 5, it is clear that class D

depends on class A and B as follows:

(D.M6(),A) = {M1()} = D.M6() → A.M1()

(D.M6(),B) = {M4()} =D.M6() → B.M4()

Therefore,

𝐏𝐛(𝐃, 𝐀) =
|𝐌𝟏()|

|{𝒅,𝑴𝟏(),𝑴𝟐(),𝑨()}|
 =

𝟏

𝟒
 = 0.25, and

𝐏𝐛(𝐃, 𝐁) =
|𝐌𝟒()|

|{𝒂,𝑴𝟑(),𝑴𝟒(),𝑩()}|
 =

𝟏

𝟒
 = 0.25

The above computation is based on equation 4 where

Pb(D, A) = Pb (D, B) = 0.25, 25%. This shows that, since

M6() in class D depends on class A and B, the probability

that a fault in class A or B will impact class D is only

25%. For inheritance dependency type, the probability

will not be computed because members in the classes are

not connected directly. The computation is based on the

fact that, the higher the probability, the higher the risk of

the fault propagation would be. Accordingly, a smaller

risk value signifies that a fault in the measured

component poses no serious impact on the other

components and modification can be performed hitch-

free. This idea stemmed from the fact that, if a class in

which other classes depend on is faulty and was not

detected before a change not meant to fix it is made, there

is the probability that the faults may propagate to other

components connected to it.

To avoid such problem, it is important that during CIA,

the risks propagation probability of all the affected

classes identified as impact set should be computed

before actual changes are made. The approach will assist

the maintainer to quantitatively measure the structural

quality of the software through the assessment of the

potential risks. The essence is to allow the maintainer

know which components affected by a change proposal

will have a higher risk probability of transmitting faults to

its neighbors during changes. It will in turn allow

mitigating actions to be focused on those high risk

components in time to avoid the cost of software failure.

V. EMPIRICAL EVALUATION

In this section, we present the results of the empirical

evaluation performed to assess the effectiveness and

significance of the IR for facilitating CIA. In this study,

only OOComDN-1 was evaluated. Details are discussed

in subsequent sections.

A. Setting, Subjects and Tasks

In this study, we performed a controlled experiment

using small-size systems developed by students in one of

their semester’s projects. The subjects were only

undergraduate Computer Science students of our

department and the study was in fulfillment of the

Software Engineering curriculum with a focus on

software maintenance techniques. The subjects in their

final year of study were divided into nine groups (A, B, C,

D, E, F, G, H and I) of five students each and each

student had comparable levels of education and

experience in software development, java programming

in particular. For each team selected, measures were

taken to blend each team with the required skills needed.

In order to be effective in carrying out maintenance,

subjects had a week of theoretical knowledge of software

maintenance, the basic knowledge needed for CIA using

IR of OO program and others. The goal of the controlled

experiment was to demonstrate whether a good and

effective representation of OO program can increase the

understandability of the maintainer to perform

modification tasks correctly and efficiently. In this case,

to be able to maintain and change a system efficiently and

correctly, the maintainer has to have an in-depth

understanding of the systems’ structure (source code). By

efficiency, we mean the minimum time taken to carry out

the change while correctness is the intended functionality

and less side-effects of the change.

The characteristics of the system collected from the

subjects are Team A, D, F, H, and I system’s had 5 class

each while team B, C, E, and G 6 classes each. The

maintenance task was to perform modification task on

other team’s system. There were four maintenance tasks

the subjects performed during the course of the

experiment:

 MTask1 - one class change,

 MTask2 - one class change,

 MTask3 - two methods change, and

 MTask4 - one field change.

The changes were based on the different change types

applicable for OO program [14]. An overview of the

experiment design is captured in Fig. 9.

Fig. 9. Experimental design overview

Experiment

MTask 1 MTask 2 MTask 3 MTask N

MTask 1 MTask 2 MTask 3 MTask N

Modification_without_IR

Modification_with_ IR

 A Framework for Effective Object-Oriented Software Change Impact Analysis 37

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

B. Experimental Variables

During the course of the experiment, the variables that

were of importance at each phase of the maintenance task

are the change duration, program correctness, the number

of errors the change introduced and the task phase. The

change duration (CD) was computed by finding the

difference between the starting and finishing time of the

modification task. The program correctness (PC) was

computed by grading each team with a grade between 0-

100% based the outcome of the tasks and the correct

program execution while the number of errors (NoE) was

computed by counting the errors introduce by the

modification task after the changes were made via

recompiling the program. In this case, NoE were

computed based on the number of lines affected as

indicated on the development IDE used. These were all

performed by the supervisor and the team members.

Lastly, for the TaskPhase, two variables were important:

modification without IR or modification with IR

(MTask1- MTask4), (See Fig. 9).

Due to the programming skills of the subjects, we first

assessed the each team’s program for actual amount of

time and complexity of classes that would be impacted by

each change and the approximate time required to carry

out the tasks. This was necessary in order to quantify the

degree of difficulty of the change tasks. However, the

results we obtained from the experiment put forward that

this approach was adequately appropriate in this regard.

C. Study Hypotheses

In this study, hypotheses were tested in the experiment

to assess the significance of the IR to CIA during the

maintenance task. Thus, the null hypotheses of the

experiment were as follows:

Impact of TaskPhase on Change Duration (CD):

H01: The time taken to perform maintenance task is

equal for modification without IR and modification with

IR.

Impact of TaskPhase on Number of Error Introduced:

H02: The number of error introduced in a changed

program is equal for modification without IR and

modification with IR.

Impact of TaskPhase on Program_Correctness (PC):

H03: The correctness of the program after maintenance

task is the same for both modification without IR and

modification with IR.

For the effect on duration (CD), the test was to

evaluate if using IR constitutes a time wastage or not on

the part of the maintainer while the effect on correctness

(PC) would be to evaluate if using IR during maintenance

contributes to program understanding or not. In this case,

if correctness is equal for both, then it is not useful for

CIA. However, if the program correctness is more for

modification with IR than modification without IR, then it

is useful for CIA and facilitates program comprehension.

Furthermore, for NoE, the task would be to test if the

number of errors introduced after modification is equal in

both case or not. If it is lower with the TaskPhase,

modification with IR, then it is useful, otherwise not

useful for CIA.

D. Statistical Technique

In this study, we used the paired-sample T-test called

the dependent T-test statistical technique to test the

hypotheses stated in subsection C of section V. The

choice of the dependent T-test statistical technique stems

from the fact that it is used to analyze paired scores to

determine if a difference exists between them. It

compares measurements from the same participants by

using two different measurement approaches. That is, it

proffers a flexible approach for measuring the

effectiveness of two different techniques using the same

participants. Modification_without_IR and

Modification_with_IR are the measurement techniques

that were used in this study.

All the variables specified were normally distributed.

We used the Shapiro-Wilk Test since it is appropriate for

small sample sizes, say less than 50 (< 50). There were

no transformations performed on the variables since they

have no potential negative effect. The model specification

is captured in Table 5. In the event that the underlying

assumptions of the models are not violated, the related

null hypothesis will be rejected if the presence of a

significant model term corresponds to p≤0.05.

Table 5. Statistical technique specification

Variable Distribution Model Term Use of Model Term

Duration normal TaskPhase Test H01

Number of Errors normal TaskPhase Test H02

Program Correctness normal TaskPhase Test H03

E. Results Analysis

The main results obtained based on the task phases:

modification without IR and modification with IR for

MTask1 – Mtask4 are visualized in Fig.10 and Fig. 11

respectively. The change duration, % program

correctness and a count of error are shown on the Y-axis,

while the project group is shown on the X-axis. With

these results, there are clear indications that TaskPhase

affect the CD, PC and NoE in the two phases. For

instance, it shows that a small amount of time was

utilized to implement a change in the program when IR

was used in phase II than when IR was not used in phase

I. In the same vein, the correctness of the program was

better when IR was utilized during the modification task

and the same result is applicable to NoE introduced in

both phases. However, for practical importance, it is

essential to see if these differences are significant. To

achieve this, the above stated hypotheses were tested.

38 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

As specified earlier, the paired-sample T-test was

employed to test the hypotheses. The results obtained

from the hypotheses testing with respect to the CD, PC

and NoE for the modification tasks (MTask1-MTask4) in

both phases are captured in Table 6. The results indicate

that TaskPhase does have a significant effect on the

program correctness, change duration and number of

errors introduced. The level of significance used was p ≤

0.05.

Table 6. Dependent T-test results

Paired variable T DF P-value Sig.

CD - CDII -8.541 8 0.000

NoE - NoEII 10.509 8 0.000

PC - PCII 5.646 8 0.000

Fig. 10. Effect of TaskPhase on modification without IR

The summary of the results of the hypotheses tests is as

follows:

 For the impact of TaskPhase on CD, we rejected H01

since p-value ≈ 0.00 ≤ 0.05.

 For the impact of NoE introduced, we rejected H02

since p-value ≈ 0.00 ≤ 0.05, and lastly,

 For the impact of TaskPhase on PC, we rejected H03

since p-value ≈ 0.00 ≤ 0.05.

Fig. 11. Effects of TaskPhase on modification with IR

In conclusion, at the significance level of α = 0.05,

there exists enough evidence that there is a huge

difference in the mean CD, PC and NoE of both phases of

the of maintenance tasks (modification without IR and

modification with IR). These results therefore,

demonstrate that the IR of OO program is effective and

useful in the facilitation of CIA.

VI. DISCUSSION

The results obtained from the experiment performed in

this work seem very interesting in terms of duration,

program correctness and the number errors introduce

after change were implemented in phase II. As shown in

Fig. 10 and 11 respectively, it is obvious that the time

taken by the subjects to perform the maintenance task in

phase II (36 min maximum) were significantly smaller

than the modification duration of phase I (56 min

maximum). Accordingly, the correctness of the

maintenance task (correct solutions) was significantly

higher for phase II (56% minimum) than for the phase I

(51% minimum). Moreover, the number of errors

introduced after the changes were made was significantly

lower for phase II (6 maximum) when the modification

with IR was used as opposed to modification without IR

(19 minimum).

The results further suggest the effectiveness of the IR

for CIA. With these results, it is quite clear that using the

IR of OO program during CIA will actually reduce the

time needed to make changes by effectively identifying

components affected by a change and their dependencies,

the correctness of the solution and the number of errors

that will be introduced after the change. Accordingly, the

interpretation of these results requires care. This is

because, though we took good measures to blend each

team with skillful and experienced subjects, the

experiment actually did not took care of such experiences

and skills in term of the team. In this case, the level of

skill and experience of each team differs and may affect

the maintenance task in terms of efficiency and

comprehension. Factor that could also affects the results

are the system’s structural properties such as coupling,

cohesion and inheritance. Though, inheritances were not

utilized in the subject’s programs, it is true that a good

design involves having low coupling and high cohesion

in a system in order for maintenance to be effective.

Unfortunately, the reverse: high coupling and low

cohesion is known to have negative effect on change

propagation across systems. Consequently, much time

could be spent by each team in order to understand and

carry out changes correctly. Moreover, while some errors

still remained in most of the team’s program after

changes were made could be as a result of either

undiscovered indirect impacts resulting from the system’s

structural properties or the programming experience of

the subjects.

VII. VALIDITY THREATS

Experiments are always associated with potential risks

that can affect the validity of results. In this section, we

discuss the important possible threats to the validity of

the controlled experiment and what has been done to

reduce them.

PC(%), 29

NoE, 19

CD(Min),
56

0

10

20

30

40

50

60

A B C D E F G H I

C
D

, P
C

 a
n

d
 N

o
E

Modification_without_IR

PC(%), 51

NoE, 6

CD(Min),
36

0

20

40

60

80

100

A B C D E F G H I

C
D

II
, P

C
II

 a
n

d
 N

o
EI

I

Modification_with_IR

 A Framework for Effective Object-Oriented Software Change Impact Analysis 39

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

A. Internal Validity

Internal validity threats are effects that can affect the

independent variable (TaskPhase) with respect to

causality, without the knowledge of the researcher’s in an

experiment [18]. They pose threats to the conclusion

about a possible causal relationship between treatment

and outcome. In this study, the experiment was

performed in two phases and in the same location and

setting. Thus, lack of randomization of the TaskPhase

assignment could result in skill differences between the

participating teams, which in turn would render the

results biased. However, this potential threat was

addressed by assigning each subject to a team based on

their previous performances to ensure that each team was

balanced. In addition, since the same participants were

involved in both phases, the dependent t-test proved most

suitable for testing the stated hypotheses.

B. Construct Validity

Construct validity deals with the degree to which

conclusions are justified from the perspective of the

observed participants, study settings, and dependent and

independent variables. These threats are as follows:

1) Measusing PC, CD and NoE: In the experiment, three

simple measures were used as dependent variables: PC,

CD and NoE. The variable PC, a measure of the

program correctness, was a mark given which shows

whether the subjects obtained a correct solution after

change tasks MTask1 – 4 were carried out. To show

the quality of the marks given, an independent expert

was consulted. The programs were thoroughly tested

and the program code was also inspected. This was to

ensure that the program measure was appropriate. The

CD measured the time spent to perform maintenance

tasks correctly for the modification tasks MTask1 – 4.

Though time was measured as a difference between the

finish time and start time, we believe it might be

affected by factors such as calling the attention of the

supervisor and so on, during the experiment. However,

we took every step to reduce this threat. Also, NoE is a

count of the number of faults found on the IDE after

implementing the changes for modification tasks

MTask1 – 4. During compilation, necessary steps were

taken to count the actual faults that originated. In

addition, though PC, CD and NoE are the important

pointers of program maintainability that reflect

maintenance cost, however, several other

maintainability dimensions were not covered such as

faults severity, the design quality of the program and

so on. To eliminate these threats, only quality

programs were selected for the experiment.

2) Task phases: The division of the experiment into

phases; modification_without_IR and

modification_with_IR could be another important

threat to the construct validity in the experiment. In

this case, the trend was to determine whether the

variable TaskPhase has satisfactory construct validity.

In the context of the experiment, to check the construct

validity we quantified beforehand the difficulty of

modification tasks in terms of amount of class each

program had and their complexity and the time needed

to implement the changes.

C. External Validity

The threats to external validity concern conditions that

limit generalization of the results obtained in the

experiment [18][19]. Such threats are mainly from the

participants, the settings and the nature of the system

maintained.

1) Application and tasks: The systems used for the

experiment were very small in size, maximum of two

packages, 6 classes which are not up to a thousand

lines of code (KLOC). Thus they were small-sized

applications compared with industrial OO program

systems. In addition, the modification tasks were

relatively simple, small in size and time. However,

program characterized in this manner poses limitation

to controlled experiments and is dependent on the

research question being asked as well as to the extent

to which the results are supported by theory [20][21].

In the experiment, we showed a clear impact of

TaskPhase, notwithstanding the small size of the

applications and modification tasks. Its generalization

to larger applications and tasks can be made with the

support of existing program comprehension research

theories. Additionally, it is possible that the task phases

and their effects on project team’s performance would

be different for larger systems and complex

maintenance tasks since larger systems will often

require larger cognitive complexity. Also, if the

experiment had lasted longer the results may have been

different.

2) Subject sample: All the participants used in the

experiment were only undergraduate students of

computer science and thus fell in the class of “novices”

or as “advanced beginners” as stipulated by [20].

Similar results might also be obtained by subjects

having a similar background. Due to the small sample

size of about 45 students in nine teams involved,

caution is needed when interpreting the results. Also

participants varied because of their individual

programming skills and experience. However, due to

the blending of the teams with skillful and experienced

subjects, it is believed the presence of differences had

no significant impact on the results obtained.

VIII. CONCLUSION

Change impact analysis plays an important role in the

reduction of the risks and costs associated with

unidentified effects of changes during software

maintenance. In this paper, we have proposed a novel

framework for carrying out CIA in OO software systems

during software maintenance. The framework combines

change impact prediction as well as faults or failure

predictions on different system sizes. In addition, we

proposed a method to represent OO program that allows

both CIA and a quantification of their structural

complexities. The approach will assist engineers in the

facilitation of both program comprehension and onward

40 A Framework for Effective Object-Oriented Software Change Impact Analysis

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

software maintenance. The intermediate program

representation constructed is quite simple, easy and do

not analyze deeply into the methods’ body. It explicitly

reveals the complex dependencies in the program. As a

benefit, it can be used to teach undergraduate student to

understand the structure of OO software and perform CIA

effectively during maintenance tasks. Furthermore,

quantifying the structural complexity of the system

especially for small or medium-size systems is important

and can serve as substitute to OO design metrics. To

assess the significance of the representation, an empirical

evaluation of the approach was conducted and the results

obtained were significant for CIA in terms of

maintenance effort reduction of effort and costs. We

therefore conclude that the framework and the

intermediate representation are effective and practicable

for impact analysis of OO software systems.

The limitation of the study is that, small sized systems

were used in the evaluation of the IR. In addition, the

participants involved were students and are not as skillful

as professionals. We believe this could impact the results

reported in this paper. However, necessary measures as

discussed in the study validity threats were taken to

ensure quality in the experiments and the results

presented are valid. Our future work will be the

implementation of the approach in order to automate the

CIA process.

REFERENCES

[1] Xu, J., Ho, D. and Capretz, L.F. An Empirical Validation

of Object-Oriented Design Metrics for Fault Prediction.

Journal of Computer Science No.4, Vol 7, pp. 571-577,

2008. ISSN 1549-3636

[2] Subramanyam, R. and Krishnan, M.S.: Empirical Analysis

of CK Metrics for Object- Oriented Design Complexity:

Implications for Software Defects. IEEE Trans. Software

Eng. No.29, pp. 297-310, 2003

[3] Janes, A. et al. Identification of defect-prone classes in

telecommunication software systems using design metrics.

International Journal of Information Sciences, 2006

[4] Al-Dallal, J. and Briand, L.C.: An object-oriented high-

level design-based class cohesion metric. Information &

Software Technology No. 52, pp.1346-1361, 2010

[5] Lee, M., Offutt, A.J. and. Alexander, R. T. “Algorithmic

analysis of the impacts of changes to object-oriented

software. Proceedings of the Technology of Object-

Oriented Languages and Systems (TOOLS 00).

Washington, DC, USA: IEEE Computer Society, pp. 61-70,

2000

[6] Jönsson, P. and Lindvall, M.: “Impact Analysis”

Engineering and Managing Software Requirements Issue:

6, Springer-Verlag, pp. 117-142, 2005

[7] Bohner, S. A.: “Extending software change impact analysis

into COTS components” Proceedings of the 27th Annual

NASA Goddard Software Engineering Workshop,

Greenbelt, USA, pp.175 -182. (2002)

[8] Arnold, R.S., and Bohner, S.A.: “Impact analysis –

towards a framework for comparison”, The Intl Conf. on

Software Maintenance, 1993

[9] Abdi, M. K., Lounis, H. and Sahraoui, H. “Analyzing

change impact in object-oriented systems” Proceedinds of

32nd Euromicro Conference on Software Engineering and

Advanced, 2006, pp.8

[10] Rathore, S.S. and Gupta, A. Validating the Effectiveness of

Object-Oriented Metrics over Multiple Releases for

Predicting FP. Proceedings of 19th Asia-Pacific Software

Engineering Conference, IEEE. pp.350-355, 2012

[11] Zhou, Y., Xu, B. and Leung, H. On the ability of

complexity metrics to predict fault-prone classes in object-

oriented systems. The Journal of Systems and Software No.

83, pp. 660–674, 2010

[12] Isong, B.E. and Ekabua, O.O. “A Systematic Review of the

Empirical Validation of Object-oriented Metrics towards

Fault-proneness Prediction”, International Journal of

Software Engineering and Knowledge Engineering

(IJSEKE) World Scientific Publishing Company December,

2013. Vol. 23, No.10, pp. 1513–1540

[13] Pan, W.F., Li B, Ma Y.T. et al: Measuring structural

quality of object-oriented software via bug propagation

analysis on weighted software networks. Journal of

Computer Science and Technology, 25(6): 1202–1213 Nov.

2010.

[14] Sun, X., Li, B., Tao, C., Wen, W. and Zhang, S. “Change

Impact Analysis Based on a Taxonomy of Change Types”

2010 IEEE Proceedings of 34th Annual Computer

Software and Applications Conference (COMPSAC 2010),

2010. pp.373-82

[15] Oliveira, M. et al: “The Hybrid Technique for Object-

Oriented Software Change Impact, Analysis” Proceedings

of the 14th European Conference on Software Maintenance

and Reengineering (CSMR 2010), IEEE Press, 2010,

pp.252-255

[16] Pan, W.F., Li B, Ma Y.T. et al: Measuring structural

quality of object-oriented software via bug propagation

analysis on weighted software networks. Journal of

Computer Science and Technology, 25(6): 1202–1213 Nov.

2010.

[17] Liu, J., Lu, J., He, K. and Li, B.: Characterizing the

structural quality of general Complex software networks.

International Journal of Bifurcation and Chaos, Vol. 18,

No. 2 (2008) 605–613

[18] Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C.,

Regnell, B., and Wesslén, A. Experimentation in Software

Engineering: An Introduction. Norwell, MA, USA: Kluwer

Academic Publishers, 2000

[19] Kitchenham, B.A., Pfleeger, S.L., Pickard, L.M., Jones,

P.W., Hoaglin, D.C., El Emam, K., Rosenberg, J.

“Preliminary guidelines for empirical research in software

engineering”. IEEE Transactions on Software Engineering,

vol. 28, no. 8, pp. 721–734, 2002

[20] Mayrhauser, A.V. and Vans, A.M. Program

comprehension during software maintenance and evolution.

Computer vol. 28, no. 8, pp.44–55, 1995

Authors’ Profiles

Isong, Bassey received B.Sc. degree in

Computer Science from the University of

Calabar, Nigeria in 2004 and M.Sc.

degrees in Computer Science and

Software Engineering from Blekinge

Institute of Technology, Sweden in 2008

and 2010 respectively. He also received a

Ph.D in Computer Science in the North-

West University, Mafikeng campus, South Africa in 2014. In

addition, since 2010, he has being a faculty member of the

University of Venda, South Africa and a lecturer of Computer

 A Framework for Effective Object-Oriented Software Change Impact Analysis 41

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 04, 28-41

Science and Information Systems. His research interests include

Software Engineering, Requirements Engineering, Software

Measurement and Maintenance, Information Security, Software

Testing, and Mobile Computing.

Obeten O. Ekabua is a Professor and

Departmental Chair of the Department

of Computer Science in the North West

University, Mafikeng Campus, South

Africa. He holds BSc (Hons), MSc and

PhD degrees in Computer Science in

1995, 2003, and 2009 respectively. He

started his lecturing career in 1998 at the

University of Calabar, Nigeria. He is the former chair of the

Department of Computer Science and Information Systems,

University of Venda, South Africa. He has published several

works in several International and National journals, and also in

several career conferences. He has also pioneered several new

research directions and made a number of landmarks

contributions in his field and profession. He has received

several awards to his credit. His research interest is in software

measurement and maintenance, Cloud and GRID computing,

Cognitive Radio Networks, Security Issues and Next Generation

Networks.

How to cite this paper: Bassey Isong, Obeten Ekabua,"A

Framework for Effective Object-Oriented Software Change

Impact Analysis", International Journal of Information

Technology and Computer Science(IJITCS), vol.7, no.4, pp.28-

41, 2015. DOI: 10.5815/ijitcs.2015.04.03

