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Abstract—In this paper the probabilistic method is 

presented for solving the minimum vertex cover problem 

using systems of non-linear equations that are formed on 

the basis of a neighborhood relationship of a particular 

vertex of a given graph. The minimum vertex cover 

problem is one of the classic mathematical optimization 

problems that have been shown to be NP-hard. It has a lot 

of real-world applications in different fields of science 

and technology. This study finds solutions to this 

problem by means of the two basic procedures. In the 

first procedure three probabilistic pairs of variables 

according to the maximum vertex degree are formed and 

processed accordingly. The second procedure checks a 

given graph for the presence of the leaf vertices. Special 

software package to check the validity of these 

procedures was written. The experiment results show that 

our method has significantly better time complexity and 

much smaller frequency of the approximation errors in 

comparison with one of the most currently efficient 

algorithms. 

 

Index Terms—Vertex Covers, Undirected Graphs, Leaf 

Vertices, Approximation Algorithm. 

 

I.  INTRODUCTION 

One of the main goals of computational complexity 

theory is to classify computational problems depending 

on the time and resources required to get their solutions. 

A computational problem can be viewed as a 

mathematical object that is described by a collection of 

questions together with the solutions that satisfy the given 

properties. The biggest open question of computational 

theory concerns the relationship between two complexity 

classes: P and NP [1]. The complexity class P consists of 

all those problems that can be solved in polynomial time. 

On the other hand, NP-problems don’t have any efficient 

polynomial algorithms. Simultaneously, their solutions 

can still be verified in a reasonable amount of time.  

The minimum vertex cover problem (MVCP) for a 

random graph is called an NP-hard optimization problem 

[2]. An optimization problem is a problem of finding an 

optimum among all plausible solutions. In the case of 

MVCP, we are trying to find a vertex cover of smallest 

possible size. There were many attempts of developing 

the exact algorithms that allow the problem to be solved 

in polynomial time. However, both in theory and practice, 

it is not yet known a method that uses a reasonable 

amount of time and resources for computing the solution. 

There are only approximation algorithms that are optimal 

up to a constant factor [3]. In other words, they yield a 

vertex cover that has a number of vertices no more than k 

times bigger in comparison with the minimum cover 

possible (k is a constant factor of the particular 

approximation algorithm). 

This paper presents the probabilistic method for 

solving MVCP that has according to the experiment 

results an improved time complexity and an optimized 

approximation factor. The first well-known proofs using 

this method have been presented by Paul Erdős [4]. This 

method can be described as an efficient technique for 

proving the existence of mathematical object with certain 

properties. For this purpose an arbitrary probability space 

is constructed. Hence, if one chooses a random element 

form the space, the probability that it will have the 

desired properties is more than zero. 

Over the last few decades this problem has been 

studied with great attention. It is connected with the fact 

that MVCP is used in many important and contemporary 

fields of science and technology. In particular, it is widely 

used in a telecommunication system monitoring [5] by 

means of which the areas with slow performance and/or 

damaged parts of a network can be detected. The 

minimum vertex cover algorithms, which provide 

mechanisms and means of detection and analysis of the 

regions of similarity inside a DNA and relationships 

between the complete genome sequences [6], play an 

important role in the biological sequence alignment 

(protein, DNA, RNA etc.). Such algorithms are also 

crucial in resolving conflicts of the many problems of 

computational biology [7].   

The importance of this research can be easily seen by 

examining the coordination of the shared resources in the 
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heterogeneous high performance computing systems, 

where the choice of the effective and efficient method for 

solving MVCP plays crucial role in providing stability 

and obtaining the most cost-efficient level of system 

performance. It is much easier to expand and manage 

such systems when dealing with an algorithm that has 

optimized characteristics taking into account the high 

intensity task management environment.  

 

II.  RELATED WORKS 

In recent years, two main approaches for solving 

MVCP have been developed: exact evaluation and 

approximate evaluation. However, it is unlikely that there 

is an algorithm that solves it exactly in polynomial time 

unless P = NP. Most of the exact algorithms grow 

exponentially fast with the problem size for all types of 

graphs [8]. The distinction between polynomial-time and 

exponential-time algorithms shows the existence of the 

two global classes of problems: tractable and intractable. 

In practice, the problem that is intractable in infinite 

input can still be solved by means of some approximation 

algorithm. The approximation algorithms are often used 

for solving the optimization problems such as MVCP. 

One of the most important properties of the 

approximation algorithm is an approximation factor [9]. 

An algorithm A is defined to be a p-approximation 

algorithm for some problem N if on each instance I of 

this problem it produces a solution s that satisfies the 

constraints (1). 
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Where OPT (I) is an optimal solution for the problem 

instance I. It is obvious that the closer p is to 1 the better 

is the approximation algorithm. 

One of the popular 2-approximation algorithms for 

solving MVCP was discovered by Fanica Gavril and 

Mihalis Yannakakis [10]. This algorithm considers the 

maximal matching M of a given graph G and constructs a 

vertex cover V by selecting all the endpoints of the edges 

.MeGe   

A lot of effort has been put into developing a 

polynomial time approximation algorithm that is bounded 

by a constant less than 2. It was even conjectured that no 

such an algorithm exists [11]. However, improving this 2-

approximation algorithm has been finally achieved. One 

of such recent algorithms has an approximation factor 

of )
log

1
(2

n
  [12]. The semi-definite programming 

relaxation of the vertex covers is used for the reduction of 

the approximation factor in cases of the weighted and 

unweighted graphs. 

On the other hand, in some cases developing an 

asymptotically optimal algorithm for solving MVCP has 

been done taking into account the parameterized 

complexity [13]. The main idea behind the parameterized 

complexity is that it is possible to change the structure of 

the input parameters to get the practical tractability. 

Hence, on the one hand there is a big set of the input 

values and on the other hand there is a wide variety of 

parameters that can affect the overall computational 

complexity of the algorithm being analyzed. This 

approach makes it possible to form the more flexible 

classification of the NP-hard problems in comparison 

with the classical methodology when complexity is 

measured in terms of the input size only. 

There exist many natural problems that require 

exponential or worse running time, providing 

that . NP  P   However, using a parameterized algorithm 

allows us to solve such problems efficiently for any input 

set of values, provided some parameter k is fixed. In 

other words, if there exists some function f (k) that affects 

the algorithm complexity and there is a k-parameter that 

has a relatively small value, there is an algorithm that 

solves the problems in O(1)nO(f(k)   time, where n is a 

number of the input values. 

Problems that have a fixed k-parameter are called 

parameterized problems and they belong to the 

complexity class FPT (fixed-parameter tractable). The 

vertex cover problem is said to be in this class too. Quite 

a long time the optimized parameterized algorithms are 

developed and investigated. At the present time one of 

the quickest known algorithms solves this problem in 

)1.2738O(kn k  [14], where n is a number of vertices of 

a random graph and k is the size of the vertex cover.  

Among the weakest sides of the approaches to solving 

MVCP is the lack of attention to the problem of 

parallelization of operations by means of which the 

efficiency of execution in a distributed environment could 

be increased. Many of the known algorithms have too 

high value of the fixed parameter, which reduces 

performance of the system. 

This article treats and summarizes an approach to 

solving MVCP for the random graphs that is optimal for 

using in the distributed environments under high load 

conditions. The main purpose is to create an algorithm 

with improved complexity bounds in comparison with the 

existing methods. 

 

III.  THE PROPOSED APPROACH 

Let G (V, E) be an arbitrary undirected graph. The 

term “arbitrary undirected graph” is used here for the 

sake of the problem formalization. It implies an ordered 

pair (V, E) where V is a set of vertices and E is a set of 

edges or links. An unordered pair E   v)(u,  , where u and 

v are connected vertices, represents an edge in the 

undirected graph. Edges in such a graph have no 

orientation. 

The vertex covers of an arbitrary undirected graph are 

the subsets of vertices VV   such that each 

edge .G   v)(u,  meets the following requirements: 

., VvVu   

The minimum vertex cover problem is to find a vertex 
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cover of smallest possible size. The exact algorithms for 

finding the minimum vertex cover have the time 

complexity that is generally increased with the number of 

vertices in a graph. In this paper we focus on the effective 

approximation algorithm with the guaranteed predictions 

that uses heuristic technique, has improved local 

searching ability and gives near to optimal solution. The 

term "prediction" is used to refer to a set of equations by 

means of which it is possible to choose the most optimal 

direction in the algorithm pipeline.  

The proposed approach consists of two different parts: 

the main procedure A that has 11 basic steps and an 

additional procedure B that checks a given graph for the 

presence of the leaf vertices (the vertices with degree one, 

i.e. they are the endpoints of exactly one edge).  

A.  Procedure A. Basic Setps for Solving MVCP 

Step1. Given a graph G (V, E), an initial non-linear 

equation is formed as below: 

 

0)( jiz xxf .                              (2) 

 

Where { ji xx } are such pairs of vertices that form a 

full cover of a graph. 

Step2. Equation (2) is processed by the procedure B. If 

this procedure yields the second possible solution (all 

possible solutions are stated in the procedure B 

description), then the minimum vertex cover will be 

found and it will be represented by the full set of values 
П
zR that will be returned by both procedures. Therefore, 

procedure A will be finished. However, if procedure B 

yields the first or the third possible result, we must go to 

the next step. 

Step3. Depending on the results that had been obtained 

on the previous step, in (2) or its derivative ,0)(| jiz xxf  

which contain the partial set of the vertex cover, the term 

mlp xxS * with the maximum frequency ml hh   

(maximum degree of the graph vertices) is formed along 

with such three pairs of variables: 

0,0  ml xx ; 0,1  ml xx ; 1,0  ml xx .  Then move 

on to the next step. 

Step4. The variable z is then assigned the value of 1. 

The first pair of variables 0,0  ml xx  is substituted 

into the current equation that is now defined 

as 0)(1 ji xxf . The variables lx  and mx  are added into 

the partial result Ч
zR  and the new equation is processed 

by the procedure B. If we get the second possible solution 

from the procedure B, then the minimum vertex cover 

will be found - it will be represented by the full set of 

values П
zR . Save the result and move on to the next step. 

Step5. Depending on the result obtained from the 

procedure B on the previous step, an equation 

0)(1 ji xxf  or 0)(|1 ji xxf  along with its partial vertex 

cover and all full sets of values П
zR  are added to the set 

M.  

Step6. The variable z is assigned the value of 2. The 

second pair of variables 0,1  ml xx  is substituted into 

the current equation that has the form of 0)(2 ji xxf . 

All terms of the equation that contain just one 

variable }{ tx are set to null. After that the equation will be 

defined as 0)(|
2 ji xxf . All variables }{ jx  adjacent to 

}{ tx  and the variable mx  are added into the partial 

solution Ч
zR . The new equation is processed by the 

procedure B. If we get the second possible solution from 

the procedure B, then the minimum vertex cover will be 

found and it will be represented by the full set of 

values П
zR . As before, save the result and move on to the 

next step. 

Step7. Depending on the result obtained from the 

procedure B on the previous step, an equation 

0)(|
2 ji xxf  or 0)(||

2 ji xxf  along with its partial vertex 

cover and all sets П
zR from the previous steps are added 

to the set M.  

Step8. The variable z is assigned the value of 3. The 

third pair of variables 1,0  ml xx  is substituted into 

the current equation that is got a new form 

of 0)(3 ji xxf . All terms of the equation that contain 

just one variable }{ tx are set to null. The equation will be 

defined now as 0)(|3 ji xxf . All variables }{ jx  adjacent 

to }{ tx  and the variable lx  are added into the partial 

solution Ч
zR . The equation is then processed by the 

procedure B. If we get the second possible solution from 

the procedure B, then the minimum vertex cover will be 

found - it will be represented by the full set of values П
zR . 

Save it and move on to the next step. 

Step9. Depending on the result obtained from the 

procedure B on the previous step, an 

equation 0)(|3 ji xxf or 0)(||
3 ji xxf along with its 

partial vertex cover and all sets П
zR are added to the set 

M.  

Step10. Check if all the equations in the M have got the 

form of identity 0=0, if true – choose among all sets 

}{ П
zR  the minimum one, it will be the minimum vertex 

cover of the given graph. Otherwise, go to the next step. 

Step11. On the final step among the obtained 

equations 0)(1 ji xxf , 0)(2 ji xxf and 0)(3 ji xxf , 

which haven’t got the form of identity 0=0, choose the 

equation 0)(* jii xxf  with the most number of the terms. 

The equation (2) that was used on the previous steps is 

substituted by the equation 0)(* jii xxf . Then move on 

to the step 2 and repeat all the steps until the minimum 

vertex cover is found. 
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B.  Additional Procedure B.  

Let's describe the additional procedure B that is often 

executed inside the main operations loop. It is required 

for proper handling of the leaf or pendant vertices of a 

graph. When such a vertex is found it is removed from 

the graph and all its adjacent vertices are put into the 

cover. Putting the vertex into the cover implies removing 

the vertex and all its adjacent edges from the graph and 

moving to the next step of the algorithm. 

The procedure B consists of the following two steps: 

Step1. Check if (2) has the terms )( jijq xxfxx   with 

the variables }{ qx  which occur only once. Providing it is 

true, all the variables }{ jx  which are neighbors of the 

variables }{ qx are set to null and added to the partial 

solution Ч
iR , while (2) is transformed into 0)(| jiz xxf  

with smaller number of variables. Then move on to the 

next step. Otherwise, the procedure B is finished. 

Step2. Check if the equation 0)(| jiz xxf  has got the 

form of identity 0=0. If it is true, then the partial solution 
Ч
zR is transformed into the full solution П

zR , i.e. the 

vertex cover of the graph is defined by the variables from 

the П
zR . Therefore, the procedure is finished. Otherwise, 

(2) is transformed into 0)(| jiz xxf  and then we must go 

to the first step again. 

The additional procedure B can yield such three 

possible results:  

 

1) The equation (2) is not changed. 

2) The equation (2) has got the form of identity 0=0 

and we have the full solution П
zR . 

3) The equation (2) is transformed into the 

equation 0)(| jiz xxf  with smaller number of the 

variables, and we have some partial solution Ч
zR . 

C.  Example with a Random Graph Model  

Table 1. Connections of vertices of a random graph 

Vertex ID Vertex Connections 

Vertex 1 3 6 7 8 12 

Vertex 2 5 6 9 11 12 

Vertex 3 1 4 5 7 8 9 10 11 

Vertex 4 3 6 8 9 10 

Vertex 5 2 3 7 8 11 12 

Vertex 6 1 2 4 7 8 9 

Vertex 7 1 3 5 6 8 

Vertex 8 1 3 4 5 6 7 9 

Vertex 9 2 3 4 6 8 10 12 

Vertex 10 3 4 9 11 

Vertex 11 2 3 5 10 

Vertex 12 1 2 5 9 

Let’s look at an example to see how we apply our 

heuristic algorithm for solving MVCP. Table 1 contains 

all connections of random graph vertices. A random 

graph is a graph obtained by adding edges to a set of 

isolated vertices randomly. We are using the random 

graph model that is typically referred to as the Erdős –

Rényi model [15]. In this model the new edges are chosen 

using the uniform distribution law. 

Table 2 contains the list of all the vertex covers and 

independent sets of the chosen random graph. An 

independent set of a graph is such a set of vertices no two 

of which are adjacent. All the values are obtained from 

the application specifically developed for this example. 

Table 2. Vertex covers and independent sets of the chosen graph 

Vertex Cover 
Vertex 

Count 
Independent Set 

Vertex 

Count 

1 2 3 5 6 8 9 10 8 4 7 11 12 4 

1 2 3 4 5 6 7 9 10 9 8 11 12 3 

1 2 3 4 5 6 7 9 11 9 8 10 12 3 

1 2 3 4 5 6 8 9 11 9 7 10 12 3 

1 2 3 4 5 6 8 10 12 9 7 9 11 3 

1 2 3 4 5 7 8 9 10 9 6 11 12 3 

1 2 3 4 5 7 8 9 11 9 6 10 12 3 

1 2 3 4 7 8 9 11 12 9 5 6 10 3 

1 2 4 5 7 8 9 10 11 9 3 6 12 3 

1 3 4 5 6 7 9 11 12 9 2 8 10 3 

1 3 4 5 6 8 9 11 12 9 2 7 10 3 

1 3 5 6 8 9 10 11 

12 
9 2 4 7 3 

2 3 4 5 6 7 8 10 12 9 1 9 11 3 

2 3 4 6 7 8 9 11 12 9 1 5 10 3 

2 3 4 6 7 8 10 11 

12 
9 1 5 9 3 

2 3 5 6 7 8 9 10 12 9 1 4 11 3 

2 3 6 7 8 9 10 11 
12 

9 1 4 5 3 

3 4 5 6 7 8 9 11 12 9 1 2 10 3 

3 5 6 7 8 9 10 11 

12 
9 1 2 4 3 

1 4 5 6 7 8 9 10 11 

12 
10 2 3 2 

 

The equation of the given graph is defined as below: 

 

.01110129109

9887968676125

11585751049484

64113103938373

53431221129262

5212181716131













xxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

.       (3) 

 

Table 3 contains the frequencies { x
ih } of occurrence 

of the variables { ix } in (3). 



 The Probabilistic Method for Solving Minimum Vertex Cover Problem 5 

Using Systems of Non-linear Equations 

Copyright © 2015 MECS                                              I.J. Information Technology and Computer Science, 2015, 11, 1-8 

Table 3. The frequencies of occurrence of the random graph variables 

ix  1 2 3 4 5 6 7 8 9 10 11 12 

x
ih  5 5 8 5 6 6 5 7 7 4 4 4 

 

Let’s choose the term with the maximum frequency of 

the appropriate variable in (3). In this example 83xx  is the 

best matching term with the frequency of 8+7=15. Taking 

into account this term, (3) is transformed into the system 

of three equations each of which contains the following 

values of the variables: (x3 =0, x8 =0); (x3 =0, x8 =1); (x3 

=1, x8 =0). By using these pairs of variables we can 

determine the guaranteed predictions by means of which 

it is possible to make the right choice of the next 

algorithm step. 

The first equation with variables x3 =0 and x8 =0 is 

defined as below: 

 

.01110

1291099676125115

751049464122112

9262521217161









xx

xxxxxxxxxxxx

xxxxxxxxxxxx

xxxxxxxxxxxx

      (4) 

 

The variables x3 and x8 are included into the partial 

cover. 

The second equation is formed taking into account that 

x3 =0, x8 =1. As x8 =1, it follows that x1 =0, x4 =0, x5 =0, 

x6 =0, x7 =0, x9 =0 and (3) is turned into such form: 

 

.01110122112  xxxxxx                        (5) 

 

The partial cover now contains x3 and the variables x1, 

x4, x5, x6, x7 and x9. 

In the same way we form the third equation with x3 =1 

and x8 =0. Provided that x3 =1, we set the following 

variables to null: x1 =0, x4 =0, x5 =0, x6 =0, x7 =0, x9 =0, 

x10 =0. Hence, the third equation is defined as below: 

 

.012262  xxxx                           (6) 

 

At this stage the partial cover contains x8 and the x1, x4, 

x5, x6, x7, x9, x10. Since all the terms of (5) and (6) are 

included in (4) they are excluded from the further 

analysis. Table 4 contains the frequencies { x
ih } of 

occurrence of the current graph variables { ix } in (4). 

Table 4. The frequencies of occurrence of the variables in (4) 

ix  1 2 4 5 6 7 9 10 11 12 

x
ih  3 5 3 4 5 3 4 3 3 4 

 

Again we choose the term with the maximum 

frequency of the appropriate variable, now it is located in 

(4). It’s x2x6 with the total frequency of 5+5=10. Taking 

into account this term, (4) is transformed into the system 

of three equations each of which contains the following 

pairs of the variables: (x2 =0, x6 =0); (x2 =0, x6 =1); (x2 =1, 

x6 =0). 

The first equation with the pair x2 =0, x6 =0 is defined 

as below: 

 

.01110129109125115

751049412171





xxxxxxxxxx

xxxxxxxxxx
        (7) 

 

The partial cover now contains x2, x6 and the variables 

x3, x8 from the previous steps. The second equation is 

formed taking into account that x2 =0 and x6 =1. As Х6 =1, 

it follows that x1 =0, x4 =0, x7 =0, x9 =0 and (4) is turned 

into this form: 

 

.0111012511575  xxxxxxxx                  (8) 

 

The variable x2 and the variables x1, x4, x7, x9 are 

included into the partial solution. 

In the same way we form the third equation with the 

pair x2 =1, x6 =0. Provided that Х2 =1, we set the 

following variables to null: x5 =0, x9 =0, x11 =0, x12 =0. 

Hence, the third equation is defined as below: 

 

.0751045212171  xxxxxxxxxx       (9) 

 

The partial cover now contains x6 and the variables x5, 

x9, x11, x12. Since all the terms of (8) and (9) are included 

in (7) they are excluded from the further analysis. Table 5 

contains the frequencies of the variables presence in (7). 

Table 5. The frequencies of the variables presence in (7) 

ix  1 4 5 7 9 10 11 12 

x
ih  2 2 3 2 3 3 2 3 

 

The term with the maximum frequency of the 

appropriate variable is chosen in (7) as in the previous 

steps, now it is x9x10 with the total frequency of 3+3=6. 

Taking into account this term, (7) is transformed into the 

system of three equations each of which contains the 

following pairs of the variables: (x9 =0, x10 =0); (x9 =0, x10 

=1); (x9 =1, x10 =0).  

The first equation with the pair x9 =0, x10 =0 is defined 

as below: 

 

.01251157512171  xxxxxxxxxx          (10) 

 

The second equation is formed taking into account that 

x9 =0, x10 =1. As Х10=1, it follows that x4 =0, x9 =0, x11=0 

and (7) is turned into such form: 

 

.01257512171  xxxxxxxx               (11) 

 

The third equation is formed with the pair x9 =1, x10 =0. 

As x9 =1, it follows that x4 =0, x9 =0, x12 =0 and (7) is 

turned into this form: 
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.01157571  xxxxxx                    (12) 

 

Since all the terms of (11) and (12) are included in (10) 

they are excluded from the further analysis. 

The partial cover now contains the variables x3, x8, x2, 

x6, x9 and x10.  

Let’s find the frequencies of the variables presence in 

(10). Table 6 depicts all the required variables along with 

their frequencies. The variable x11 has degree one. Hence, 

it’s removed as a leaf vertex. 

Table 6. The frequencies of the variables presence in (10) 

ix  1 5 7 11 12 

x
ih  2 3 2 1 2 

 

After removing x11 from the cover x5 is set to null and 

included into the partial solution. The equation (10) is 

defined now as below: 

 

.012171  xxxx                          (13) 

 

Table 7 contains the frequencies of the variables 

presence in (13). 

Table 7. The frequencies of the variables presence in (13) 

ix  1 7 12 

x
ih  2 1 1 

 

x7 is a leaf vertex that must be removed from the cover. 

Its adjacent vertex x1 is put into the solution. The 

equation (13) has got the form of identity 0=0. Therefore, 

the minimum vertex cover of the given graph consists of 

the variables x1, x2, x3, x5, x6, x8, x9 and x10 (8 vertices). 
By looking at the table 2 we can see that the cover, 

which was found using our method, is really the 

minimum cover possible. 

 

IV.  RESULTS AND DISCUSSION 

The C++ program was written to verify validity of the 

proposed approach. It makes it possible to randomly 

generate the graph instances with a different number of 

vertices and a variable degree. The results of our method 

(the non-linear equations method) were compared with 

one of the most optimized methods (the frequency 

method) for the minimum vertex cover on the random 

graphs in heterogeneous distributed computing systems 

[16]. During the first group of tests the number of vertices 

of a given graph is gradually increased from 10 to 35 

taking into account that the graph’s density is fixed and 

has a value of 0.5. On the contrary, the second tests group 

depicts increasing of the graph density while the number 

of vertices is fixed and equals 25. 

Fig. 1 shows inaccurate results comparison between 

the non-linear method and the frequency method with 

fixed graph density. Fig. 2 shows the same comparison 

but with fixed number of vertices. 
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Fig.1. The inaccurate results comparison between the non-linear 
equations method and the frequency method with fixed density of 0.5 
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Fig.2. The inaccurate results comparison between the non-linear 
equations method and the frequency method with fixed number of 

vertices of 25 

The frequency method is one of the most popular 

methods today. It has a time complexity of O (mn2) 

(where m is a number of edges, n is a number of vertices 

of a given graph) and in most cases the very low 

frequency of the inaccurate results. That’s why we are 

paying close attention to comparison between our non-

linear equations method and the frequency method. 

To determine time complexity of the non-linear 

equations method we need also to analyze the number of 

operations that is required by the algorithm. The time 

complexity of the algorithm quantifies the amount of 

machine instructions it will execute as a function of the 

size of its input. Fig. 3 shows comparison of the number 

of operations with fixed graph density. Accordingly, Fig. 

4 depicts such comparison with fixed number of vertices. 
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Fig.3. The number of operations comparison between the non-linear 

equations method and the frequency method with fixed density of 0.5 
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Fig.4. The number of operations comparison between the non-linear 
equations method and the frequency method with fixed number of 

vertices of 25 

According to the results the non-linear equations 

method is much less dependent on a graph topology. 

While the value of the average degree gradually increases, 

the frequency of the inaccurate results (fig. 1 and fig. 2) 

of our method remains stable in comparison with the 

frequency method. Hence, the emulation experiment data 

prove that the non-linear equations method has an 

optimized approximation factor and, therefore, a relative 

error has a very low value even when using large-scale 

graphs. As shown in fig. 3 and fig. 4, the number of 

operations of the non-linear equations method is 

increased much slowly in comparison with the frequency 

method. 

The difference between the methods is much apparent 

when the graph’s parameters are increased up to large 

values. Obviously, the non-linear equations method is 

much more effective and faster than its counterpart.  

It worth noting that we ensure tests reliability by using 

a wide range of problem instances with different 

configurations. By means of our software package we 

generated different graph models such as the Erdős–

Rényi model [15] and scale-free networks [17]. The 

Erdős–Rényi model is typically denoted as G(n, p), where 

n is a number of vertices of a given graph and p is a 

probability of an edge inclusion that is independent of the 

other edges. In other words, in such model each edge 

exists with the same probability. At the same time each 

vertex has the binomial distribution of the degree (the 

number of neighbors). Sometimes the number of vertices 

n tends to infinity during the analysis. However, in 

practice we must consider exact graph configurations. In 

this model the average degree is defined as np. So with 

the small value of p it is obvious that not every edge is 

connected. 

The Erdős–Rényi model is well-suited for arbitrary 

degree distributions. For many realistic topologies (such 

as social networks, citation services etc.) it is worth 

taking into consideration the Barabási–Albert model that 

is used for generating scale-free networks. In this model 

degree distribution follows a power law that is defined 

as kkP ~)( , where k represents number of connections 

in a graph and λ is an optimization network parameter 

whose value lies in the range (2, 3) depending on 

particular graph instance. This model is often used for 

security reasons as the random removal of a large amount 

of vertices has a little impact on the overall 

connectedness of a graph. 

According to the obtained data from the program the 

proposed algorithm runs in a polynomial time and outputs 

a solution that is close to the exact one. In particular, its 

approximation ratio is defined in the range 

((




k

1
2 ), (

1

1
2




k

)) for the Barabási–

Albert model and it stays stably )
log

1
2(

np
 for the 

Erdős–Rényi model. 

In recent years the study of approximation technique 

has achieved great success. However, in many cases 

algorithms are optimized just for graphs with specific 

properties. In our work we propose method that can be 

used with different network topologies and with various 

nodes density. It can be even applied in the distributed 

environment taking into account high level of 

parallelization of instructions being involved in 

computation process. 

Regarding the frequency method, it gives the best 

results only with the sparse graph instances. This method 

can still be used to minimize time for scheduling in 

heterogeneous systems even with the high scheduling 

activity, provided that the system nodes have small or 

medium connectedness. This will ensure minimal task 

downtime in a system and uniform resource loading. 

One of the main characteristics of any theoretical 

methods is a practical application. The real-time 

environment often imposes such constraints that cannot 
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be satisfied. The described method can be used in many 

practical real-time applications taking into account its 

improved performance and optimization for the dense 

graphs. Implementing that method in distributed systems 

and multi-core infrastructure can still increase the 

performance.  

Future research will be directed to large-scale 

parallelization of the presented algorithm and 

investigation of solving similar problems. 

 

V.  CONCLUSION 

A large number of science and technology problems 

are proved to be NP-hard problems. The main idea 

behind solving NP-hard problem is to find approximation 

solution. This paper considers an effective approximation 

algorithm with guaranteed predictions, which, according 

to experiment results, has an improved approximation 

factor.  

We performed 50 different tests. According to our 

analysis, the non-linear equations method is much more 

efficient in comparison with one of the most currently 

fast and accurate algorithms. If the value of average 

degree gradually increases, other algorithms will have a 

great disadvantage in many aspects. 
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