
I.J. Information Technology and Computer Science, 2015, 10, 23-34
Published Online September 2015 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.10.04

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

Construction of Strength Two Mixed Covering

Arrays Using Greedy Mutation in Genetic

Algorithm

Sangeeta Sabharwal
Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi-110078, India

E-mail: ssab63@gmail.com

Priti Bansal and Nitish Mittal
Netaji Subhas Institute of Technology, Sector-3, Dwarka, New Delhi-110078, India

E-mail: bansalpriti79@gmail.com, nitishmittal94@gmail.com

Abstract—Metaheuristic methods are capable of solving

a wide range of combinatorial problems competently.

Genetic algorithm (GA) is a metaheuristic search based

optimization algorithm that can be used to generate

optimal Covering Arrays (CAs) and Mixed Covering

Arrays (MCAs) for pair-wise testing. Our focus in the

work presented in this paper is on the strategies of

performing mutation in GA to enhance the overall

performance of GA in terms of solution quality and

computational time (number of generations). This is

achieved by applying a greedy approach to perform

mutation at a position that minimizes the loss of existing

distinct pairs in the parent CA/MCA and ensures that the

generated offspring is of good quality. Experiments are

conducted on several benchmark problems to evaluate the

performance of the proposed greedy based GA with

respect to the existing state-of-the-art algorithms. Our

evaluation shows that the proposed algorithm

outperforms its GA counterpart by generating better

quality MCA in lesser number of generations. Also the

proposed approach yields better/comparable results

compared to the existing state-of-the-art algorithms for

generating CAs and MCAs.

Index Terms—Pair-wise testing, mixed covering arrays,

genetic algorithm, mutation, greedy approach.

I. INTRODUCTION

In a highly configurable software product, it is

necessary to test the interaction among various

configuration parameters to avoid interaction errors. For

instance, in a system with n configuration parameters

each of which can take m possible values, an exhaustive

test set will have mn test cases to check all possible

combinations of configuration parameters. The number of

test cases increases exponentially with the increase in

number of configuration parameters. Thus, exhaustive

testing of highly configurable software may be

impractical due to the limitation of budget and time

required to generate and run large sized test sets. An

alternative to exhaustive testing is combinatorial

interaction testing (CIT) as introduced in [1] which

samples the set of configurations in such a way so as to

test all possible t-way (t denotes the strength of testing)

combinations of configuration parameters. The size of

test set grows at most logarithmically in CIT with the

increase in number of configuration parameters compared

to the exponential growth in case of exhaustive testing [1].

Pair-wise testing is a CIT technique that tests all

possible pair-wise (2-way) combinations of configuration

parameter values. Pair-wise testing drastically reduces the

size of test set as compared to exhaustive testing, without

losing significantly on the fault detection capability [2].

Empirical studies show that test set covering all possible

2-way combination of configuration parameter values is

effective for software systems [1, 3, 4]. In further work,

Burr and Young [5] provided more empirical results to

show that pair-wise test coverage is effective. In [6],

Dalal et al. presented empirical results to argue that

testing of all pair-wise interactions in a software system

finds a large percentage of the existing faults. Kuhn et al.

[7] examined fault reports for many software systems and

concluded that more than 70% of the faults are triggered

by two-way interaction of configuration parameters.

Covering Arrays (CAs) and Mixed Covering Arrays

(MCAs) are combinatorial objects that correspond to test

set in software testing. To perform effective pair-wise

testing, there is a need to construct an optimal 2-way

CA/MCA. The problem of finding a minimal t-covering

array is NP-complete [2, 8]. Therefore, the main focus of

researchers in the field of CIT is to find an effective

technique to construct an optimal CA/MCA.

Metaheuristic search based optimization techniques have

being used by researchers to generate an (near) optimal

CA/MCA. Metaheuristic techniques need longer run time

than their greedy counterparts; however, greedy

techniques usually need larger samples to exercise the

same set of interactions [9].

In this paper we use GA to generate optimal CA/MCA

for pair-wise testing. The purpose of this paper is to

explore the effect of different mutation strategies on the

overall performance of GA to construct (near) optimal

24 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

CAs and MCAs for pair-wise testing. The work presented

here is an extension of our previous work [10] wherein

the performance of GA to generate CAs/MCAs for pair-

wise testing was improved by using a greedy approach to

perform value occurrences mutation, a smart mutation

technique introduced by Flores and Cheon [11]. Smart

mutations select the genes for mutation based on some

selection criteria and replace them with some predefined

values as compared to random mutation in which genes

for mutation are selected randomly and are replaced by

randomly selected values. In this paper an algorithm to

improve the performance of smart mutation and a

technique to perform mutation using greedy approach is

proposed.

The remainder of this paper is organized as follows.

Section 2 gives the necessary background on

combinatorial objects. Section 3 gives an overview of GA.

Section 4 presents various methods available to construct

CAs and MCAs. Section 5 describes the proposed greedy

approach to improve the performance of smart mutation

in GA and presents a new greedy algorithm to perform

mutation. Section 6 describes the implementation of the

proposed greedy approach using an open source tool

PWiseGen [12] and presents experimental results to show

the effectiveness of the proposed greedy approach.

Section 7 concludes the paper and future plans are

outlined.

II. COMBINATORIAL OBJECTS

This section gives an overview on combinatorial

objects. CA and MCA are combinatorial objects with

applications in several areas such as drug screening, data

compression, GUI testing [13], web-application testing

applications [14, 15], regression testing [16] and highly

configurable system testing [17]. In CIT, a CA/MCA is

constructed in such a way so as to cover each t-way

combination of parameter values at least once. The

effective application of CAs and MCAs in various fields

has motivated researchers to find effective ways to

construct optimal CA/MCA.

A. Orthogonal Arrays

An orthogonal array OAλ(N; t, k, v) is an N × k array

on v symbols such that every N × t sub-array contains all

ordered subsets of size t from v symbols exactly λ times

and they have the property λ = N/vt [18]. The use of OA

in the field of software testing is limited due to the

restrictions imposed on OA that all parameters have same

number of values and that each pair of values be covered

the same number of times [19]. In general, the OA is

difficult to generate and its test suite is often quite large.

But OA has its advantages, such as making it relatively

easy to identify the particular combination that caused a

failure [20]. To complement OA construction and to

overcome its restrictions CA and MCAs have been

introduced.

B. Covering Arrays

A covering array [21] denoted by CAλ (N;t,k,v), is an

N × k two dimensional array S on v symbols such that

every N × t sub-array contains all ordered subsets from v

symbols of size t at least λ times. If λ = 1, it means that

every t-tuple needs to be covered only once and we can

use the notation CA (N; t, k, v). N is the number of rows

of S, k is the degree that represents the number of

parameters and v is the order which represent the number

of values each parameter can take and t is the strength

that corresponds to the degree of interaction between

parameters. An optimal CA contains minimum number of

rows to satisfy the properties of the entire covering array.

The minimum number of rows is known as covering

array number and is denoted by CAN (t, k, v). A test set

can be represented by a CA of size N× k where each row

corresponds to a test case. Each column represents an

input parameter and the values in the column represent

the domain of the respective input parameter.

C. Mixed Covering Arrays

A mixed covering array [22] denoted by MCA (N; t, k,

(v1v2 …vk)), is an N × k two dimensional array, where v1,

v2,…, vk is a cardinality vector which indicates the values

for every column. An MCA has the following two

properties: 1) Each column i (1 ≤ i ≤ k) contains only

elements from a set Si with | Si | = vi and 2) The rows of

each N × t sub- array cover all t-tuples of values from the

t columns at least once. The minimum N for which there

exists an MCA is called mixed covering array number

and is denoted by MCAN (t, k, (v1 v2 …vk)). A shorthand

notation can be used to represent MCAs by combining

equal entries in (vi : 1 ≤ i ≤ k). An MCA (N; t, k, (v1

v2 …vk)) can be represented as MCA (N; t, k,

(w1
q1w2

q2 …. ws
qs)), where  

s
i iqk 1 and wj | 1 ≤ j ≤ s

{v1 v2 …vk}. Each element wj
qi in the set

(w1
q1w2

q2 ….ws
qs) means that qi parameters can take wj

values each. A MCA of size N × k can be used to

represents a test suite with N test cases for a system with

k input parameters each with varying domain size. We

use the notation ri for all 1 ≤ i ≤ N, to represent a row of

CA/MCA.

III. GENETIC ALGORITHM

GA is a metaheuristic stochastic method that is

inspired by the Darwinian evolution and is used to solve

search based optimization problems. GA has been

successfully applied for solving large number of

optimization problems due to its robustness and easy-to-

use nature [23]. In GA, a population of candidate solution

is initialized and evolves towards increasingly better

regions of the search space by means of evolutionary

operators like selection, crossover and mutation, until a

satisfactory solution to the problem is found or a stopping

criterion (maximum number of iterations) is met. Each

individual in the population has a fitness value which is

calculated using the fitness function. This fitness function

is a function of the objective that we want to optimize. As

compared to traditional search algorithms, GA is more

flexible and can be applied to a wide range of

applications as it uses only the evaluation of the objective

 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm 25

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

function regardless of its nature. Also GA starts searching

using a population of points instead of a single point (as

done in case of traditional approaches) thus covering the

search space thoroughly and avoids the chances of getting

stuck in the local minima [24]. The efficiency of GA

depends on many parameters such as initial population,

selection strategy and recombination operators (crossover,

mutation). The adaptation of GA parameters and

operators has become an important research area in the

field of GA. Over a decade much research has been done

in applying adaptive mutation operators to guide the

search of GA towards optimum solution.

Having described the notations, in the next section we

will briefly discuss the existing state-of-the-art algorithms

for constructing optimal CA/MCA for pair-wise testing.

IV. RELATED WORK

Existing state-of-the art algorithms for constructing

(near) optimal CAs and MCAs are broadly classified into

algebraic, greedy, metaheuristic and random methods.

Algebraic methods are generally used by mathematicians.

There are two approaches to construct CAs using

algebraic methods. The first approach to construct CA is

based on the construction of OA, where OA is derived

from some mathematical functions [19, 25]. The second

approach is based on the concept of recursive

construction where larger CA is constructed from smaller

CA [26, 27]. Despite the fact that algebraic methods are

fast, their use in the field of CIT is often limited due to

the restriction imposed on OA that each parameter must

have same number of values [28]. Finally, constraint

handling [29] can be more difficult in algebraic methods.

Greedy algorithms have been the most popular method

among software testing community to construct CAs. The

algorithms used to construct CAs using greedy approach

are classified as: one-test-at-a-time and one-parameter-at-

a-time. In one-test-at-a-time approach, CA is constructed

one row at a time and the algorithms using this approach

usually differ in the way rows are constructed. The well

known strategies under this approach are Automatic

Efficient Test Generator (AETG) [3], Test Case

Generation (TCG) [30], Classification-Tree Editor

eXtended Logics (CTE-XL) [31], Jenny [32], Pairwise

Independent Combinatorial Testing (PICT) [33],

Deterministic Density Algorithm (DDA) [34, 35],

Intersection Residual Pair Set Strategy (IRPS) [36]. In

case of one-parameter-at-a-time approach, CA is

generated for the first two parameters, and then it is

extended to generate CA for the first three parameters,

and continues to do so for each additional parameter [2,

37]. The strategies that have adapted this approach are

IPOG [28], IPOG-D [28, 38] and IPO-s [39].

Recently metaheuristic techniques such as Simulated

Annealing (SA) [22, 40, 41, 42, 43, 44], Hill

Climbing(HC) [22], Tabu Search (TS) [45, 46, 47], Ant

Colony Optimization (ACO) [48], Particle Swarm

Optimization (PSO) [49, 50, 51, 52, 53, 54, 55] and GA

[10, 11, 48, 56, 57, 58, 59, 60] have been explored by

researchers to generate CAs/MCAs. In [61], Stardom first

compared SA, TS and GA to construct CAs of strength-2

showing SA to be the most efficient of all three. Cohen et

al. [22] used SA and HC to construct CAs and MCAs of

strength-t (t ≤ 3) and the experimental results showed that

heuristic techniques outperformed greedy methods for

strength-2 CAs but they failed to give superior results for

higher strength CA especially for t = 3. A comparison

between SA and HC shows that while they produced

similar lower bound, but SA outperformed HC in the

number of trials required to generate the solution. Later

on, numerous methods [40, 41, 42] have been proposed

by Cohen et al. that use a combination of different

methods (for e.g. algebraic method and computational

search) to generate uniform covering array and variable

strength covering array. The existence of constraints in a

system makes CIT difficult as the generated CA may

contain some combination of parameter values which are

invalid. Hence, careful handling of such constraints is

desirable. In [62], Garvin et al. extended SA algorithm to

construct CAs for constrained interaction testing.

Satisfiability (SAT) solver have been used by Hnich et al.

[63], Yan and Zhang [64] and Banbara et al. [65] to

generate t-way CA. Calvagna and Gargantini [66] use

SAT modulo theory (SMT) solvers to handle constraint

during the construction of CIT samples. Calvagna and

Gargantini [67, 68] presented a logic based approach to

generate CA for pair-wise test coverage. Finally, in case

of random methods, test cases are selected randomly from

the complete set of test cases based on some input

distribution. They are mainly used for comparison with

other test suite generation algorithms to study the

effectiveness and the failure detection ability of the

proposed approach [69].

V. THE PROPOSED APPROACH

The process of generating optimal CA/MCA for pair-

wise testing using GA begins by creating an initial

population of CAs/MCAs of size N × k randomly that

represents possible solutions to the given problem.

Initially N is unknown hence there are two ways to start

the search process. One way is to set a loose lower and

upper bounds on the size of an optimal array and then use

a binary search process to find a smallest size CA/MCA

[61]. Second method is to start with the size of a known

CA/MCA and search for a solution. This method requires

less computational resources, but the size of the

CA/MCA must be known in advance. In this paper we

use the second method to generate optimal CAs/MCAs,

where N is chosen from the reported results (best bound

achieved) in the existing state-of-the-art. After

initialization, the fitness of each individual CA/MCA is

evaluated using a fitness function which is defined as the

number of distinct pair of parameter values covered by

the CA/MCA. Then selection, crossover and mutation

operators are applied iteratively to evolve the initial

solution towards better solution. Mutation has a

significant effect on the performance of GA as mutation

avoids getting stuck in the local minima and maintains

diversity in the population. In traditional GA, every

26 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

individual has an equal probability of getting mutated

irrespective of their fitness [24]. Thus the probability of

an individual with highest fitness to be disrupted by

mutation is equal as compared to the one with lowest

fitness. Hence a mutation strategy is needed to mutate an

individual to maximize improvement in fitness by

minimizing fitness loss due to mutation.

In this paper an effort is made:

(i) To present a greedy approach to improve the

performance of pair occurrences mutation and

similarity mutation [11].

(ii) To present a new greedy algorithm to perform

mutation in GA for construction of optimal

CA/MCA for pair-wise testing.

A. Improved_Pair Occurrences Mutation

In pair occurrences mutation [11], pairs of parameter

values that are not present in the CA/MCA selected for

mutation are inserted in place of pairs which occur more

than once in the CA/MCA, in an attempt to increase the

fitness of the CA/MCA. When an existing pair is replaced

with an uncovered pair, two cases may arise:

(i) One-value replacement – In this case only one value

of an existing pair needs to be replaced to

accommodate the uncovered pair.

(ii) Two-value replacement – In this case both values of

an existing pair needs to be replaced to accommodate

the uncovered pair.

During mutation, in addition to the gain of new pairs

that are formed by the insertion of an uncovered pair,

there may also be a loss of few existing pairs that are

formed by the combination of values of the pair which

are selected for replacement. For instance, if we consider

a MCA (9, 2, 5, 21324151) shown in Fig. 1, it can easily be

found that the pair ‘a1 a2’ is not covered by the given

MCA. When examining the MCA it is found that the pair

‘a1 c2’ has maximum number of occurrences and hence

the existing pair occurrences mutation replaces the first

instance (row r3 in our case) of ‘a1 c2’ by ‘a1 a2’. This is

the case of one-value replacement, where only the value

of parameter P2 is replaced. Initially row r3 covers c2 a1,

c2 a3, c2 c4 and c2 b5 pairs with respect to the parameter

P2’s value c2. After replacing c2 by a2, the pairs covered

by r3 with respect to a2 are a2 a1, a2 a3, a2 c4 and a2 b5.

Out of these four pairs, pair a2 a3 has also been covered

by row r9 of the MCA. Hence after replacement, the MCA

covers three new pairs: a2 a1, a2 c4 and a2 b5. However,

there is also a loss of two pairs: c2 a3 and c2 c4 since

these pairs were covered by only row r3 before pair

occurrences mutation was performed. The improvement

in the fitness of MCA after pair occurrences mutation

denoted by Fimproved (MCA) is calculated using (1). The

improvement in fitness in this case is one.



































54321

54321

54321

54321

54321

54321

54321

54321

54321

aeaab

bdbda

cdccb

bbcca

aabbb

cbcca

bcaca

acabb

babba

Fig. 1 Pair Occurrences Mutation

lostpairsoldofNumber

gainedpairsnewofNumberMCAFimproved



)(
 (1)

As an existing pair is replaced by a missing pair in

either one-value replacement or two-value replacement,

there are three possible cases that can occur during

replacement: best, worst and average case. In the best

case we assume that there will be a gain of maximum

possible number of new pairs (k-1) in one-value

replacement and (2k-3) in two-value replacement

whereas the loss will be minimum (ideally zero) in both

the cases. In the worst case we assume that in both the

cases, there will be a gain of only one pair which was not

covered by the MCA before mutation. However, a

maximum loss of (k-2) pairs in case of one-value

replacement and (2k-4) pairs in case of two-value

replacement will occur. So the improvement in fitness in

all the three cases for one-value replacement and two-

value replacement is given by (2) and (3) respectively:

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑀𝐶𝐴 =

 𝑘 − 1 | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
 −(𝑘 − 3) | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒

−(𝑘 − 3) < 𝑥 < 𝑘 − 1 | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

(2)

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑀𝐶𝐴 =

 2𝑘 − 3 | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
 −(2𝑘 − 5) | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒

−(2𝑘 − 5) < 𝑥 < 2𝑘 − 3 | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

(3)

Here , we propose a technique to maximize

Fimproved(MCA) by minimizing the loss of existing pairs

during pair occurrences mutation. This is achieved by

using greedy approach to select a row rmin in which loss

due to either one value or two values replacement is

minimum. In one-value replacement, to find rmin we

consider rows ri | 1 ≤ i ≤ N as candidate rows which

contain the pair having maximum occurrences. We list

the pairs covered by each candidate row with respect to

 P1 P2 P3 P4 P5

 a1 a2 a3 a4 a5

 b1 b2 b3 b4 b5

 c2 c3 c4 c5

 d2 d4

 e4

a2

replaces

Input Parameters

Values

 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm 27

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

the value that is to be replaced. Then the listed pairs of

each candidate rows are compared against each other and

if a row is found that covers no distinct pairs then it is

selected for replacement. If no such row is found, the

listed pairs of each candidate rows are compared with the

remaining rows of the MCA and the candidate row ri

covering least number of distinct pairs is selected for

replacing value during pair-occurrences mutation. In two-

value replacement the same procedure is repeated, except

the way the pairs are listed. Now we list all the pairs

covered by both values of the pair which occurs

maximum number of times and select the row which

covers least number of distinct pairs. When we apply

improved_pair occurrences mutation in the example

given in Fig. 1, it is found that row r6 covers no distinct

pairs as shown in Fig. 2, so we select row r6 instead of

row r3 to minimize the loss of existing pairs and thus

maximize the fitness of the MCA by four.





































54321

54321

54321

54321

54321

54321

54321

54321

54321

aeaab

bdbda

adccb

bbcca

aabbb

cbcca

bcaca

acabb

babba

Fig.2. Improved_Pair Occurrences Mutation: Comparison of rows of
MCA to find a row that covers minimum number of distinct pairs

B. Improved_Similarity Mutation

In case of similarity mutation proposed by Flores and

Cheons [11], if two test cases (rows) in the test set

(CA/MCA) are (almost) similar (greater than or equal to a

predefined threshold), the second test case is replaced

with a new test case with an aim of improving the fitness

of the test set. The parameter values for the new test case

can be selected either randomly or for each parameter the

value which occurs minimum number of times in the

CA/MCA is selected. If the two test cases are 100%

similar, then there will not be any loss of existing pairs

during replacement otherwise there are chances that some

pairs that were exclusively covered by the second test

case might get lost during replacement. As explained in

case of pair occurrences mutation, the improvement in

fitness in best, worst and average case during similarity

mutation is given by (4).

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑀𝐶𝐴

=

 𝑘 𝑘 − 1 /2 | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒

 −(2𝑘𝑛 − 𝑛2 − 𝑛)/2) | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒

−(2𝑘𝑛 − 𝑛2 − 𝑛)/2 < 𝑥 < 𝑘 𝑘 − 1 /2 |𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

(4)

Where, n is the numbers of positions in which the two

rows differ.

In this paper, we propose a technique to maximize

Fimproved(MCA) by minimizing the loss of existing pairs

during similarity mutation. A greedy approach is used to

select from the two or more similar rows, a row which

covers least number of distinct pairs within the given

MCA. An example is shown in Fig. 3 to illustrate the

effect of similarity mutation and improved_similarity

mutation. Test Cases represented by row r2 and r4 of

MCA (10, 2, 6, 42325121) in Fig. 3 are similar (for

similarity threshold=65%). In similarity mutation, r4 will

get replaced with a new test case that causes a loss of five

existing pairs which were not covered by any other row

of the given MCA. When we apply improved_similarity

mutation, row r2 and r4 are compared with every row of

the given MCA and it is found that row r2 covers less

number of distinct pairs as compared to row r4, hence row

r2 is replaced instead of row r4, resulting in loss of less

number of distinct pairs as compared to those in

similarity mutation. It is clear from Fig. 3 that the

improvement in fitness achieved by improved_similarity

mutation will be higher than that of similarity mutation.







































654321

654321

654321

654321

654321

654321

654321

654321

654321

654321

caabbd

baebca

baacac

bbabcc

abcbbc

dbaacd

dacaba

aadacc

abcaba

bbaabb

Fig.3. Comparison of Similarity, Improved_Similarity and Minimum

Distinct Pairs Mutation

 r2 r4

b5 a1 a5 a1

b5 b2 a5 b2
b5 a3 a5 a3

b5 c4 a5 c4
b5 a6 a5 d6

a6 a1 d6 a1

a6 b2 d6 b2
a6 a3 d6 a3

a6 c4 d6 c4

 loss:2 loss: 5

P1 P2 P3 P4 P5 P6

a1 a2 a3 a4 a5 a6

b1 b2 b3 b4 b5 b6

c1 c2 c3 c4 c6
d1 d4 d6

 e4

Input Parameters

Comparison of pairs covered by r2 and r4

wrt their dissimilar elements (for similarity
/improved similarity mutation) with the

pairs covered by the remaining (N-2) rows

of MCA

Loss: 2 Loss:5

Pairs Covered by:
r3: c2 a1, c2 a3, c2 c4, c2 b5

r4: c2 a1, c2 c3, c2 b4, c2 c5

r6: c2 a1, c2 c3, c2 b4, c2 b5

 Covers no distinct pairs

Input Parameters

Values P1 P2 P3 P4 P5

a1 a2 a3 a4 a5

b1 b2 b3 b4 b5
 c2 c3 c4 c5

 d2 d4
 e4

a2 replaces c2
MCA (9, 2, 5, 21324151)

r2 gets replaced in

case of improved_

similarity mutation

r7 gets replaced in

case of MDPM

r4 gets replaced in

case of similarity
mutation

28 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

C. Minimum Distinct Pairs Mutation (MDPM)

Algorithm: Minimum Distinct Pairs Mutation

(MDPM)

begin

 select a MCA for mutation

 set flag = true

 while (flag = = true)

 set flag = false

 for each row ri of MCA

 list the pairs covered by row ri

 end for

 compare the pairs covered by each row

 if exist(ri covers minimum distinct pairs && (number

of distinct pairs covered < MDPM threshold))

 set flag = true

 replace ri in MCA with a new row

 end if

 end while

end

Fig.4. Algorithm to perform MDPM

In this section we propose a greedy technique to

perform mutation known as minimum distinct pairs

mutation (MDPM). As described above, in case of

similarity mutation we replace a similar test case, but it

may happen that there are no test cases (rows) which

satisfy the similarity threshold criteria. In that case

similarity mutation cannot be performed. However, there

may be a test case which is not similar to any other test

case in the given MCA, but still makes no contribution

towards the fitness of the MCA. In MDPM we replace the

test case which makes minimum contribution (ideally

zero) towards the fitness of MCA by covering least

number of distinct pairs as compared to the remaining test

cases in the MCA. A MDPM threshold needs to be

defined here, which allows MDPM to occur only if the

number of distinct pairs covered by the test case is below

the MDPM threshold value. The MDPM threshold

prevents good test cases to be unnecessarily distorted by

mutation. During MDPM, the parameter values for the

new test case can be selected either randomly or for each

parameter the value which occurs minimum number of

times in the CA/MCA is selected as in case of similarity

mutation. For instance, in the example shown in Fig. 3,

row r7 is not similar to any other row of the MCA (for

similarity threshold = 65%). However when we list all

pairs covered by r7 and compare them with pairs covered

by the remaining (N-1) rows of the MCA, it has been

observed that row r7 doesn’t cover any distinct pair with

respect to the remaining (N-1) rows. Hence, we replace r7

by a new test case. The objective of MDPM is to

maximize the improvement in fitness of MCA after

mutation by minimizing the losses. It can be seen from

Fig. 3 that row r4 gets replaced after similarity mutation

causing a loss of five pairs, row r2 gets replaced after

improved_similarity mutation reducing the loss to two

pairs whereas row r7 is replaced after MDPM dropping

the loss to zero pair. One point that is to be noted here is

that the performance of MDPM is comparable to

similarity/ improved_similarity mutation if two rows in

the MCA are 100% similar. An algorithm to perform

MDPM is given in Fig. 4.

The improvement in fitness during MDPM in best,

worst and average case is given by (5).

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑 𝑀𝐶𝐴 =

𝑘 𝑘 − 1 /2 | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
 0 | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒

 0 < 𝑥 < 𝑘 𝑘 − 1 /2 | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

(5)

The advantage of MDPM over similarity and

improved_similarity mutation is its performance in

average and worst case. It is observed from (5) that in

average and worst case, the quality of MCA generated

after MDPM doesn’t deteriorate as may happen in case of

similarity and improved_similarity mutation.

VI. COMPUTATIONAL RESULTS

To assess the practicality of the work presented in this

paper, we have implemented the proposed approaches

using an open source tool PWiseGen. PWiseGen is an

extensible, reusable and configurable tool written in Java

to generate pair-wise test set using GA [11]. We have

extended PWiseGen by adding to it the capability to

perform improved_pair occurrences mutation,

improved_similarity mutation and MDPM and name it

PWiseGen-GM (Greedy Mutation). First, we present the

results of experiments carried out to compare the

performance of existing smart mutations with the

proposed improved smart mutations. Next, we compare

the performances of improved smart mutations with

MDPM. Finally we compare the performance of

PWiseGen with MDPM with the existing state-of-the-art

algorithms.

Experiments are carried out on the dataset given in

Table 2. The dataset consists of benchmark problems

selected from the existing state-of-the-art [22, 43, 52, 54,

70] for generating both CAs and MCAs.

For achieving the best performance of PWiseGen-GM

it is necessary to choose suitable values of GA parameters.

There exists evidence in literature that the choice of

probability of crossover pc and probability of mutation pm

plays a critical role in the performance of GA. A number

of guidelines for setting the values of pc and pm exist in

literature [23, 71, 72]. Typical values of pc are in the

range 0.5~1.0, while typical values of pm are in the range

0.001~0.05. In addition to the parameters mentioned

above, population size and number of generations

influences the performance of GA. A large population

size will use more computational resources without

obtaining better solutions, whereas a small population

size may leads to the under-covering of search space

thereby guiding the algorithm towards poor solutions.

Similarly a large number of generations may consume

more time, whereas a smaller number of generations will

make the algorithm terminate early, preventing it to

 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm 29

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

converge to a good solution. Hence in accordance with

the existing GA literature, we set the population size to

50, pc to 1 and pm to 0.05 during the experimentation. We

perform experiments with varying number of generations

on some selected benchmark problems from Table 2, but

no significant improvements on quality of the final

solution were observed after 20,000 generations in all the

cases. Hence we set the number of maximum generations

to 20,000.

Table 1. Dataset

Sno. Benchmark

Problems

k(number of

input parameters)

Total number

of pairs

1 33 3 27

2 34 4 54
3 35 5 90

4 36 6 135

5 37 7 189
6 38 8 252

7 313 13 702

8 510 10 1125
9 1020 20 19000

10 2100 100 19800

11 4100 100 79200
12 2233 5 67

13 4534 9 454

14 513822 11 492
15 273241102 12 837

16 7262423222 10 854
17 21345 18 992

18 82726252 8 1178

19 644527 16 1556
20 514431125 21 1944

21 6151463823 19 1992

22 624929 20 2052
23 655534 14 2074

24 716151453823 19 2175

25 694327 19 3000

26 674823 18 3004

27 415317229 61 14026

28 41339235 75 17987

A. Improved Smart Mutations versus Smart Mutations

In this section we present the result of experiments

carried out to compare the performance of a)

improved_pair occurrences mutation and pair occurrences

mutation and b) improved_similarity mutation and

similarity mutation. In both the cases, first we plotted the

fitness of the generated CA/MCA against the generation

number. Second, we made a comparison between the

fitness of best CA/MCA generated by the existing smart

mutation techniques and the proposed improved smart

mutation techniques. As GA produces non-deterministic

results, so to have a better statistical significance, each

benchmark problem is executed 30 times and the average

value is noted. The result of comparison of

improved_pair occurrences mutation and pair occurrences

mutation is shown in Fig. 5 and Fig. 6. Due to space

reason, we show the experimental results of a few

benchmark problems selected as representative, from the

dataset of Table 1.

Fig.5. Comparison of quality of CA/MCA generated versus number of
generations in pair occurrences mutation and improved_pair

occurrences mutation

Fig.6. Comparison of quality of generated CA/MCA using pair
occurrences mutation and improved_pair occurrences mutation

MCA (82726252)

CA (313)

CA (2100)

MCA (41339235)

30 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

It is clear from Fig. 5 that improved_pair occurrences

mutation generates CA/MCA in less number of

generations than pair occurrences mutation. Also, it is

evident from Fig. 6 that the quality of CA/MCA

generated using improved_pair occurrences mutation is

better than that of pair occurrences mutation. The result

of comparison of improved_similarity mutation and

similarity mutation is shown in Fig. 7 and Fig. 8.

It is evident from Fig. 7 and Fig. 8 that the CA/MCAs

generated using improved_similarity mutation generates

better quality CA/MCA by covering more number of

distinct pairs in less number of generations as compared

to similarity mutation.

Fig.7. Comparison of quality of CA/MCA generated versus number of
generations in similarity mutation and improved_similarity mutation

Fig.8. Comparison of quality of generated CA/MCA using similarity

mutation and improved_similarity mutation

B. Comparison of MDPM and Improved Smart

Mutations

In this section, we present the result of experiments

carried out to evaluate the performance of MDPM with

respect to the improved smart mutations techniques

proposed in Section 5 and in [10]. Each benchmark

problem given in the dataset of Table 2 is executed 30

times on PWiseGen-GM using various improved smart

mutations techniques and MDPM. The average of the

values obtained over 30 runs for each of the benchmark

problem is plotted as shown in Fig. 9. It is evident from

Fig. 9 that MDPM outperforms improved smart mutation

techniques by generating better quality CA/MCA. The

performance of improved_value occurrences mutation is

comparable to the performance of improved_pair

occurrences mutation except in few cases where

improved_pair occurrences mutation outperforms

improved_value occurrences mutation. For small size

problems, the performances of all the four mutation

strategies are identical (benchmark problems: 33 and 34).

0

0.2

0.4

0.6

0.8

1

1.2

Fitness

Banchmark Problems

Improved_Value
Occurrences Mutation

Improved_Pair
Occurrences Mutation

Improved_Similarity
Mutation

MDPM

Fig.9. Comparison of MDPM with improved smart mutation techniques

C. Comparison Results

In this Section we compare the performance

PWiseGen-GM with MDPM with the existing state-of-

the-art algorithms. The comparison is made on two

criteria’s: array size and array generation time. As array

generation time is dependent on the system configuration,

so to ensure a fair comparison, we restrict our comparison

CA (313)

MCA (513822)

MCA (694327)

MCA (415317229)

 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm 31

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

against publicly available tools namely Jenny [32],

Pairwise Independent Combinatorial Testing PICT [33],

ACTS (IPOG) [73], AllPairs [74]. These algorithms are

run on Windows using an INTEL Pentium Dual Core

1.73 GHZ processor with 3.00 GB of memory. The result

of comparison made on the dataset of Table 2 with

respect to CA/MCA array size and the array generation

time (in seconds) is shown in Table 3.

As it can be seen from Table 3, PWiseGen-GM with

MDPM outperforms the existing techniques for

generating CA/MCA for pair-wise testing in most of the

configurations. In cases where PWiseGen-GM (MDPM)

doesn’t generate best results, it still gives competitive

performances than the existing strategies. It is evident

from the results shown in Table 3 that PWiseGen-GM

(MDPM) requires more time to build CAs/MCAs than

Jenny [32], ACTS (IPOG) [73] and AllPairs [74] in

average; however, the extra time consumed by

PWiseGen-GM (MDPM) allowed the construction of

CAs/MCAs of smaller size as compared to those

generated using other strategies.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have examined the impact of

mutation strategy on the performance of GA used to

construct CAs/MCAs for pair-wise testing. First, we have

proposed few improvements to the existing smart

mutation techniques. Secondly, we have proposed a

greedy approach to perform mutation. Experiments

performed on a set of benchmark problems indicate the

effectiveness of the proposed approach in terms of quality

of generated CAs/MCAs and the number of generations

in which the solution is achieved, when compared to the

existing smart mutation techniques. Comparison with the

existing state-of-the-art algorithms shows that the

proposed approach outperforms the existing approaches

in most of the cases in terms of CA/MCA size.

In future, we plan to find out how effectively the

proposed greedy algorithm can be applied to construct

higher strength CAs/MCAs. Furthermore, we also plan to

construct CAs/MCAs that can handle constraint between

various configuration parameters of the system under test.

Table 3. Comparison of PWiseGen-GM (MDPM) with the existing state-of-the-art algorithms.

The * shows that PWiseGen with MDPM performs best in these cases.

Id. Dataset Jenny PICT1 ACTS

(IPOG)

AllPairs PWiseGen-GM

 (MDPM)

1 33 9/0.015 10 9/0.003 9/0.015 9/0.0624

2 34 11/0.015 13 9/0.002 9/0.016 9/0.078

3 35 14/0.031 12 15/0.016 14/0.016 11*/0.078
4 36 15/0.046 14 15/0.015 14/0.015 12*/0.109

5 37 16/0.046 16 15/0.014 14/0.014 13*/1.201
6 38 17/0.046 16 15/0.016 14/0.016 14/2.13

7 313 18/0.062 20 19/0.014 17/0.016 16*/10.45

8 510 45/0.062 47 45/0.003 47/0.15 43*/40.29
9 1020 193/2.308 216 227/0.53 219/0.015 210/ 792.8

10 2100 16/0.249 16 16/0.078 15/0.11 13*/6.24

11 4100 53/2.527 56 57/0.093 59/0.109 55/901.8
12 2233 12/0.015 10 9/0.003 10/0.016 8*/5.678

13 4534 26/0.031 26 24/0.001 25/0.015 21*/1.95

14 513822 23/0.031 20 19/0.002 20/0.016 16*/6.302
15 273241102 106/0.327 100 100/0.016 100/0.016 100/1.232

16 7262423222 57/0.078 56 53/0.001 54/0.009 53/5.896

17 21345 26/0.124 23 24/0.015 27/0.014 20*/14.617
18 82726252 76/0.093 80 72/0.003 76/0.009 70*/8.502

19 644527 53/0.109 55 44/0.006 48/0.012 44/15.069

20 514431125 32/0.093 32 26/0.015 29/0.011 26/10.052
21 6151463823 40/0.03 38 36/0.016 37/0.01 34*/17.534

22 624929 44/0.109 41 39/0.016 40/0.016 38*/6.38

23 655534 56/0.124 59 56/0.015 55/0.008 54*/103.10
24 716151453823 50/0.140 46 43/0.016 42/0.018 44/14.08

25 694327 64/0.187 67 61/0.016 67/0.014 60*/32.07

26 674823 63/0.171 63 54/0.016 59/0.014 54/145.54

27 415317229 39/0.405 38 33/0.031 36/0.019 33/170.75

28 41339235 31/0.436 29 28/0.016 27/0.028 25*/316.04

1 The provision for capturing the array generation time was not available in the tool.

REFERENCES

[1] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C.

Patton, “The AETG system: an approach to testing based

on combinatorial design”, IEEE Transactions on Software

Engineering, 1997, 23(7):437–443.

[2] Y. Lei AND K. C. Tai, “ In-parameter-order: a test

generation strategy for pairwise testing”, In 3rd IEEE

International Symposium on High-Assurance Systems

Engineering, HASE 98, pp. 254–261, 1998, Washington,

DC.

[3] D. M. Cohen, S. R. Dalal, A. Kajla and G. C., “The

automatic efficient test generator”, In Proceedings of the

IEEE International Symposium on Software Reliability

Engineering, pp. 303–309, 1994.

[4] D. M. Cohen, S. R. Dalal, M. L. Fredman and G. C.

Patton, “The combinatorial design approach to automatic

test generation”, IEEE Software, pp. 83–87, 1996.

[5] K. Burr and W. Young, “Combinatorial test techniques:

32 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

table-based automation, test generation and code

coverage”, In Proceedings of the International Conference

on Software Testing Analysis & Review, San Diego, 1998.

[6] S. R. Dalal, A. J. N. Karunanithi, J. M. L. Leaton, G. C. P.

Patton and B. M. Horowitz, “Model-based testing in

practice”, In Proceedings of the International Conference

on Software Engineering, (ICSE ’99), pp. 285-94, New

York, 1999.

[7] R. Kuhn, D. Wallace and A. Gallo, “Software fault

interactions and implications for software testing”, IEEE

Transactions of Software Engineering, 30(6):418–421,

2004.

[8] G. Seroussi and N. Bshouty, “Vector sets for exhaustive

testing of logical circuits”, IEEE Trans. Information

Theory, 34:513-522, 1988.

[9] B. J. Garvin, M. B. Cohen and M. B. Dwyer, “Evaluating

improvements to a meta-heuristic search for constrained

interaction testing”, Empirical Software Engineering.

16:61–102, 2011.

[10] P. Bansal, N. Mittal, A. Sabharwal and S. Koul,

“Integrating greedy based approach with genetic

algorithm to generate mixed covering arrays for pair-wise

testing”, In Proceedings of the Seventh International

Conference on Contemporary Computing, IEEE

Computer Society, Noida, India, 2014.

[11] P. Flores and Y. Cheon, “PWiseGen: Generating test

cases for pairwise testing using genetic algorithms”, In

IEEE International Conference on Computer Science and

Automation Engineering (CSAE), vol. 2, pp. 747 –752,

2011.

[12] P. Flores, PWiseGen, 2010.

https://code.google.com/p/pwisegen/.

[13] X. Yuan, M.B. Cohen and A. Memon, “Covering array

sampling of input event sequences for automated GUI

testing”, In Proceedings of the 22nd International

Conference on Automated Software Engineering, pp. 405-

408, 2007.

[14] W. Wang, S. Sampath, Y. Lei and R. Kacker, “An

interaction–based test sequence generation approach for

testing web applications”, In Proceedings of 11th

International IEEE HASE symposium, pp. 209-218,

2008."

[15] C. D. Nguyen, A. Marchetto and P. Tonella, “Combining

model-based and combinatorial testing for effective test

case generation”, In Proceedings of International

Symposium on Software Testing and Analysis, ISSTA, pp.

100-110, 2012.

[16] X. Qu, M.B. Cohen and K. M. Woolf, “Combinatorial

Interaction Regression Testing: a Study of Test Case

Generation and Prioritization”, In Proceedings of the

IEEE International Conference on Software Maintenance,

pp. 255-264, 2007.

[17] M. B. Cohen, M. B. Dwyer and J. F. Shi, “Constructing

Interaction Test Suites for Highly-Configurable Systems

in the Presence of Constraints: A Greedy Approach”,

IEEE Transaction on Software Engineering, 34(5), pp.

633-650, 2008.

[18] A. Hedayat, N. Sloane and J. Stufken, “Orthogonal

Arrays”, Springer New York. 1999.

[19] R. Mandl, “Orthogonal latin squares: an application of

experiment design to compiler testing”, Communications

of the ACM, 28(10): pp. 1054-1058, 1985.

[20] C. Nie and H.Leung, “A survey of combinatorial testing”,

ACM Computing Surveys (CSUR)”, v.43 n.2, pp.1-29,

2011.

[21] N. Sloane. “Covering arrays and intersecting codes”,

Journal of Combinatorial Designs, 1(1):51–63, 1993.

[22] M. B. Cohen, C.J. Colbourn, P.B. Gibbons and W. B.

Mugridge, “Constructing test suites for interaction

testing”, In Proceedings of the International Conference

on Software Engineering, (ICSE 2003), pp. 38-48,

Portland OR, 2003.

[23] D. E. Goldberg, “Genetic algorithms in search,

optimization, and machine learning”, Reading, MA:

Addison-Wesley, 1989.

[24] S. Marsili-Libelli and P. Alba, “Adaptive mutation in

genetic algorithms”, Soft Computing. 4, 76–80, 2000.

[25] K. A. Bush, “Orthogonal arrays of index unity”, In Annals

of Mathematical Statistics 23.3, pp. 426-434, 1952.

[26] A. Hartman, “Software and hardware testing using

combinatorial covering suites”, In Graph Theory,

Combinatorics and Algorithms, Operations

Research/Computer Science Interfaces Series, Springer

US, vol.34, pp. 237-266, 2005.

[27] A. W. Williams, “Determination of test configurations for

pair-wise interaction coverage”, In Proceedings of 13th

International Conference on the Testing of

Communicating Systems, Ottawa, Canada, pp. 59-74,

2000.

[28] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence,

“IPOG: a general strategy for t-way software testing”, In

Proceedings of the 14th Annual IEEE International

Conference and Work-shops on the Engineering of

Computer- Based Systems-ECBS, Tuscon, AZ,USA,

IEEE Computer Society, pp. 549-556, 2007.

[29] [M. Grindal, J. Offutt and J. Mellin, “Conflict

management when using combination strategies for

software testing”, In Proceedings of 18th Australian

Software Engineering Conference, Melbourne, Australia,

2007.

[30] Y. Tung and W. Aldiwan, “Automating test case

generation for the new generation mission software

system”, In Proceedings of the IEEE Aerospace

Conference, pp. 431-437, 2000.

[31] E. Lehmann and J. Wegener, “Test case design by means

of the CTE XL”, In 8th European International

Conference on Software Testing, Analysis & Review

(EuroSTAR 2000), Copenhagen, Denmark, pp. 1-10, 2000.

[32] B.Jenkins, Jenny download web page, Bob Jenkin’s

website, 2005 http://burtleburtle.net/bob/math/jenny.html.

[33] J. Czerwonka, “Pairwise testing in real world: practical

extension to test case generator”, In 24th pacific

Northwest Software Quality Conference, IEEE Computer

Society, Portland, OR, USA, pp. 419-430, 2006.

[34] R. C. Bryce and C. J. Colbourn, “The density algorithm

for pairwise interaction testing”. Software Testing”,

Verification and Reliability 17, 3, pp. 159-182, 2007.

[35] R. C. Bryce and C. J. Colbourn, “A density–based greedy

algorithm for higher strength covering arrays”, Software

Testing, Verification and Reliability 17, 3, pp. 1-17, 2008.

[36] M.I. Younis, K. Z. Zamli, M. F. J. Klaib, Z. H. C. Soh, S.

A. C. Abdullah and N. A.M. Isa, “Assessing IRPS as an

efficient pairwise test data generation strategy”, In

International Journal of Advanced Intelligence Paradigms

2.1, pp. 90-104, 2010.

[37] K. C. Tai and Y. Lei, “A test generation strategy for

pairwise testing”, IEEE Transaction Software Engineering

28, 1, pp. 109-111, 2002.

[38] Y. Lei, R. Kacker, D. R. Kuhn, V. Okun and J. Lawrence,

“IPOG/IPOG-D: efficient test generation for multi-way

combinatorial testing”, Software Testing, Verification and

Reliability 18, 3, pp. 125-148, 2008.

[39] A. Calvagna and A. Gargantini, “IPO-s: incremental

generation of combinatorial interaction test data based on

https://code.google.com/p/pwisegen/
http://burtleburtle.net/bob/math/jenny.html

 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm 33

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

symmetries of covering arrays”, In IEEE International

Conference on Software Testing, Verification, and

Validation Workshops, IEEE Computer Society, Denver,

CO, USA, pp. 10–18, 2009.

[40] M.B. Cohen and C.J. Colbourn, J. S. Collofello, P.B.

Gibbons and W. B. Mugridge, “Variable strength

interaction testing of components”, In Proceedings of the

International Computer Software and Applications

Conference, (COMPSAC 2003), Dallas TX, 2003.

[41] M. B. Cohen, C. J. Colbourn and A. C.H. Ling,

“Augmenting simulated annealing to build interaction test

suites”, In Proceedings of the 14th International

Symposium on Software Reliability Engineering, IEEE

Computer Society, pp. 394-405, 2003.

[42] M. B. Cohen, C. J. Colbourn and A. C.H. Ling,

“Constructing strength three covering arrays with

augmented annealing”, In Discrete Mathematics 308.13,

pp. 2709-2722, 2008.

[43] H. Avila-George, J. Torres-Jimenez, V. Hernández and L.

Gonzalez-Hernandez, “Simulated annealing for

constructing mixed covering arrays”, In Proceedings of

the 9th International Symposium on Distributed

Computing and Artificial Intelligence - DCAI, ser.

Advances in Intelligent and Soft Computing, vol. 151, pp.

657–664, Springer Berlin, Heidelberg, 2012.

[44] H.Avila-George, J. Torres-Jimenez, L.Gonzalez-

Hernandez and V. Hernández, “Metaheuristic approach

for constructing functional test-suites”, In Software, IET,

Volume: 7, Issue: 2, pp. 104-117, 2013.

[45] K. J. Nurmela, “Upper bounds for covering arrays by tabu

search”, In Discrete Applied Mathematics 138 (1-2 2004),

pp. 143-152, 2004.

[46] R. A. Walker II and C. J. Colbourn, “Tabu Search for

covering arrays using permutation vectors”, In Journal of

Statistical Planning and Inference 139.1(2009), pp. 69-80.

[47] L. Gonzalez-Hernandez, N. Rangel-Valdez and J. Torres-

Jimenez, “Construction of mixed covering arrays of

variable strength using a tabu search approach”, In: Wu,

W., Daescu, O. (eds.) COCOA 2010, Part I. LNCS, vol.

6508, pp. 51–64, Springer, Heidelberg, 2010.

[48] T. Shiba, T. Tsuchiya and T. Kikuno, “ Using artificial

life techniques to generate test cases for combinatorial

testing”, In Proceedings of the 28th Annual International

Computer Software and Applications Conference, pp. 72–

77. IEEE Computer Society, 2004..

[49] X. Chen, Q. Gu, J. Qi and D. Chen, “Applying particle

swarm optimization to pairwise testing”, In Proceedings

of the 34th Annual IEEE Computer Software and

Application Conference, Seoul, Korea, 2010.

[50] B. S. Ahmed and K. Z. Zamli, “PSTG: a t-way strategy

adopting particle swarm optimization”, In 4th Asia

International Conference on Mathematical/ Analytical

Modelling and Computer Simulation, IEEE Computer

Society, Kota Kinabalu, Borneo, Malaysia, pp. 1-5, 2010.

[51] B. S. Ahmed and K. Z. Zamli, “T –way test data

generation strategy based on particle swarm optimization”,

In 2nd International Conference on Computer Research

and Development, IEEE Computer Society, Kuala

Lumpur, Malaysia, pp. 93-97, 2010.

[52] B. S. Ahmed and K. Z. Zamli, “The development of a

particle swarm based optimization strategy for pairwise

testing”, In Journal of Artificial Intelligence, 4: pp. 156-

165, 2011.

[53] B. S. Ahmed and K. Z. Zamli, “A variable strength

interaction test suites generation strategy using Particle

Swarm Optimization”, Journal of Systems and Software,

December, 84(12): 2171-2185, 2011.

[54] B. S. Ahmed, K. Z. Zamli and C. P. Lim, “Application of

particle swarm optimization to uniform and variable

strength covering array construction”, Applied Soft

Computing, 12, 1330–1347, 2012..

[55] S. Jia-Ze and W. Shu-Yan, “Generation of pairwise test

sets using novel DPSO algorithm”, Green

Communications and Networks, LNEE, vol.113, pp. 479-

487, Springer, Heidelberg, 2012.

[56] S. A. Ghazi and M. A. Ahmed, “Pair-wise test coverage

using genetic algorithms”, In the 2003 Congress on

Evolutionary Computation, vol. 2, pp. 1420-1423, IEEE

Computer Society, Australia, 2003.

[57] J. D. McCaffrey, “Generation of pairwise test sets using a

genetic algorithm”, In Proceedings of 33rd Annual IEEE

International Computer Software and Applications

Conference, pp. 626–631, IEEE Press, Los Alamitos,

2009.

[58] J. D.McCaffrey, “An empirical study of pairwise test set

generation using a genetic algorithm”, In ITNG 2010: 6th

International Conference on Information Technology:

New Generations, pp. 992-997, IEEE Computer Society,

Las Vegas, 2010.

[59] L. Yalan, C. Nie, J. M. Kauffman, G. M. Kapfhammer

and H. Leung, “Empirically identifying the best genetic

algorithm for covering array generation”, In Proceedings

of the Third International Symposium on Search Based

Software Engineering, Fast Abstract Track, Szeged,

Hungary, 2011.

[60] P. Bansal, S. Sabharwal, S. Malik, V. Arora and V. Kumar,

“An approach to test set generation for pair-wise testing

using genetic algorithms”, In: G.Ruhe and Y.Zhang

(Eds.): SSBSE 2103, LNCS 8084, pp. 294-299, Springer-

Verlag, Berlin Heidelberg, 2013.

[61] J. Stardom, “Metaheuristic and the search for covering

and packing arrays”, Master’s Thesis, Simon Fraser

University, 2001.

[62] B. Garvin, M. Cohen and M. Dwyer, “An improved meta-

heuristic search for constrained interaction testing”, In

International Symposium on Search Based Software

Engineering (SSBSE), pages 13-22, 2009.

[63] B. Hnich, S. Prestwich, E. Selensky and B. M. Smith,

“Constraint models for the covering test problem”,

Constraints, v. 11 n.2-3, pp. 199–219, 2006.

[64] J. Yan and J. Zhang, “Backtracking algorithms and search

heuristics to generate test suites for combinatorial testing”,

In Proceedings of the 30th Annual International

Conference on Computer Software and Applications

(COMPSAC’06), pp. 385-394, 2006.

[65] M. Banbara, H. Matsunaka, N. Tamura K. Inoue,

“Generating combinatorial test cases by efficient SAT

encodings suitable for CDCL SAT solvers”, Springer

Berlin Heidelberg, 2010.

[66] A. Calvagna and A. Gargantini, “Combining satisfiability

solving and heuristics to constrained combinatorial

interaction testing”, In 3rd international conference on

tests and proofs, Springer, pp 27–42, 2009.

[67] A. Calvagna and A. Gargantini, “A logic-based approach

to combinatorial testing with constraints”, In B. Beckert

and R. Hähnle, editors, Tests and Proofs, Second

International Conference, TAP 2008, Prato, Italy, April 9-

11, 2008. Proceedings, volume 4966 of Lecture Notes in

Computer Science, pages 66_83. Springer, 2008.

[68] A. Calvagna and A. Gargantini, “A formal logic approach

to constrained combinatorial testing”, Journal of

Automated Reasoning pp.1-28, 2010.

[69] P. J. Schroeder and P. Bolaki and V. Gopu, “Comparing

the fault detection effectiveness of n-way and random test

34 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 10, 23-34

suites”, In Proceedings of the International Symposium on

Empirical Software Engineering (ISESE), IEEE Computer

Society, pp. 49-59, 2004.

[70] http://www.pairwise.org

[71] J. D. Schaffer et. al., “A study of control parameters

affecting online performance of genetic algorithms for

function optimization”, In Proceeding of the Third

International Conference on Genetic Algorithms. pp. 51-

60, 1989.

[72] T. Bäck, “Optimal mutation rates in genetic search”, In

Proceedings of the Fifth International Conference on

Genetic Algorithms. pp. 2-8, 1993.

[73] ACTS download page, National Institute of Standards and

Technology, Information Technology Laboratory.

[74] http://sourceforge.net/projects/allpairs/.

Authors’ Profiles

Sangeeta Sabharwal did her M.Tech in

Computer Science and Ph.D from University

of Delhi, India. Presently she is a Professor

and Head, Division of Information

Technology at NSIT, University of Delhi,

India. She has around 25 years of experience

in the field of software engineering. Her areas of interest are

model based testing, web application testing, search based

software engineering and meta modeling.

Priti Bansal received her B.E in Computer

Science from University of Mumbai, India in

2001 and her M.Tech in Information System

from University of Delhi, India in 2009. She is

pursuing her PhD and currently working as

Assistant Professor in the Division of

Information Technology, NSIT, New Delhi, India. Her research

interest includes model based testing, web application testing,

search based software engineering and neural networks.

Nitish Mittal is pursuing Bachelor of

Engineering in Division of Computer

Engineering from Netaji Subhas Institute of

Technology, New Delhi, India. His areas of

interest are software testing, soft computing

and data mining.

How to cite this paper: Sangeeta Sabharwal, Priti Bansal,

Nitish Mittal,"Construction of Strength Two Mixed Covering

Arrays Using Greedy Mutation in Genetic Algorithm",

International Journal of Information Technology and Computer

Science(IJITCS), vol.7, no.10, pp.23-34, 2015. DOI:

10.5815/ijitcs.2015.10.04

http://www.pairwise.org/
http://sourceforge.net/projects/allpairs/

