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Abstract—Metaheuristic methods are capable of solving 

a wide range of combinatorial problems competently.  

Genetic algorithm (GA) is a metaheuristic search based 

optimization algorithm that can be used to generate 

optimal Covering Arrays (CAs) and Mixed Covering 

Arrays (MCAs) for pair-wise testing. Our focus in the 

work presented in this paper is on the strategies of 

performing mutation in GA to enhance the overall 

performance of GA in terms of solution quality and 

computational time (number of generations). This is 

achieved by applying a greedy approach to perform 

mutation at a position that minimizes the loss of existing 

distinct pairs in the parent CA/MCA and ensures that the 

generated offspring is of good quality. Experiments are 

conducted on several benchmark problems to evaluate the 

performance of the proposed greedy based GA with 

respect to the existing state-of-the-art algorithms. Our 

evaluation shows that the proposed algorithm 

outperforms its GA counterpart by generating better 

quality MCA in lesser number of generations. Also the 

proposed approach yields better/comparable results 

compared to the existing state-of-the-art algorithms for 

generating CAs and MCAs. 

 

Index Terms—Pair-wise testing, mixed covering arrays, 

genetic algorithm, mutation, greedy approach. 

 

I.  INTRODUCTION 

In a highly configurable software product, it is 

necessary to test the interaction among various 

configuration parameters to avoid interaction errors. For 

instance, in a system with n configuration parameters 

each of which can take m possible values, an exhaustive 

test set will have mn test cases to check all possible 

combinations of configuration parameters. The number of 

test cases increases exponentially with the increase in 

number of configuration parameters. Thus, exhaustive 

testing of highly configurable software may be 

impractical due to the limitation of budget and time 

required to generate and run large sized test sets. An 

alternative to exhaustive testing is combinatorial 

interaction testing (CIT) as introduced in [1] which 

samples the set of configurations in such a way so as to 

test all possible t-way ( t denotes the strength of testing) 

combinations of configuration parameters. The size of 

test set grows at most logarithmically in CIT with the 

increase in number of configuration parameters compared 

to the exponential growth in case of exhaustive testing [1]. 

Pair-wise testing is a CIT technique that tests all 

possible pair-wise (2-way) combinations of configuration 

parameter values. Pair-wise testing drastically reduces the 

size of test set as compared to exhaustive testing, without 

losing significantly on the fault detection capability [2]. 

Empirical studies show that test set covering all possible 

2-way combination of configuration parameter values is 

effective for software systems [1, 3, 4]. In further work, 

Burr and Young [5] provided more empirical results to 

show that pair-wise test coverage is effective. In [6], 

Dalal et al. presented empirical results to argue that 

testing of all pair-wise interactions in a software system 

finds a large percentage of the existing faults. Kuhn et al. 

[7] examined fault reports for many software systems and 

concluded that more than 70% of the faults are triggered 

by two-way interaction of configuration parameters.  

Covering Arrays (CAs) and Mixed Covering Arrays 

(MCAs) are combinatorial objects that correspond to test 

set in software testing. To perform effective pair-wise 

testing, there is a need to construct an optimal 2-way 

CA/MCA. The problem of finding a minimal t-covering 

array is NP-complete [2, 8]. Therefore, the main focus of 

researchers in the field of CIT is to find an effective 

technique to construct an optimal CA/MCA. 

Metaheuristic search based optimization techniques have 

being used by researchers to generate an (near) optimal 

CA/MCA. Metaheuristic techniques need longer run time 

than their greedy counterparts; however, greedy 

techniques usually need larger samples to exercise the 

same set of interactions [9].  

In this paper we use GA to generate optimal CA/MCA 

for pair-wise testing. The purpose of this paper is to 

explore the effect of different mutation strategies on the 

overall performance of GA to construct (near) optimal 
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CAs and MCAs for pair-wise testing. The work presented 

here is an extension of our previous work [10] wherein 

the performance of GA to generate CAs/MCAs for pair-

wise testing was improved by using a greedy approach to 

perform value occurrences mutation, a smart mutation 

technique introduced by Flores and Cheon [11]. Smart 

mutations select the genes for mutation based on some 

selection criteria and replace them with some predefined 

values as compared to random mutation in which genes 

for mutation are selected randomly and are replaced by 

randomly selected values. In this paper an algorithm to 

improve the performance of smart mutation and a 

technique to perform mutation using greedy approach is 

proposed. 

The remainder of this paper is organized as follows. 

Section 2 gives the necessary background on 

combinatorial objects. Section 3 gives an overview of GA. 

Section 4 presents various methods available to construct 

CAs and MCAs. Section 5 describes the proposed greedy 

approach to improve the performance of smart mutation 

in GA and presents a new greedy algorithm to perform 

mutation. Section 6 describes the implementation of the 

proposed greedy approach using an open source tool 

PWiseGen [12] and presents experimental results to show 

the effectiveness of the proposed greedy approach. 

Section 7 concludes the paper and future plans are 

outlined. 

 

II.  COMBINATORIAL OBJECTS 

This section gives an overview on combinatorial 

objects. CA and MCA are combinatorial objects with 

applications in several areas such as drug screening, data 

compression, GUI testing [13], web-application testing 

applications [14, 15], regression testing [16] and highly 

configurable system testing [17]. In CIT, a CA/MCA is 

constructed in such a way so as to cover each t-way 

combination of parameter values at least once. The 

effective application of CAs and MCAs in various fields 

has motivated researchers to find effective ways to 

construct optimal CA/MCA. 

A.  Orthogonal Arrays 

An orthogonal array OAλ(N; t, k, v) is an N × k array 

on v symbols such that every N × t sub-array contains all 

ordered subsets of  size t from v symbols exactly λ times 

and they have the property λ = N/vt  [18]. The use of OA 

in the field of software testing is limited due to the 

restrictions imposed on OA that all parameters have same 

number of values and that each pair of values be covered 

the same number of times [19]. In general, the OA is 

difficult to generate and its test suite is often quite large. 

But OA has its advantages, such as making it relatively 

easy to identify the particular combination that caused a 

failure [20]. To complement OA construction and to 

overcome its restrictions CA and MCAs have been 

introduced. 

B.  Covering Arrays  

A covering array [21] denoted by CAλ (N;t,k,v), is an 

N × k two dimensional array S on v symbols such that 

every N × t sub-array contains all ordered subsets from v 

symbols of size t at least λ times. If λ = 1, it means that 

every t-tuple needs to be covered only once and we can 

use the notation CA (N; t, k, v).  N is the number of rows 

of S, k is the degree that represents the number of 

parameters and v is the order which represent the number 

of values each parameter can take and t is the strength 

that corresponds to the degree of interaction between 

parameters. An optimal CA contains minimum number of 

rows to satisfy the properties of the entire covering array. 

The minimum number of rows is known as covering 

array number and is denoted by CAN (t, k, v). A test set 

can be represented by a CA of size N× k where each row 

corresponds to a test case. Each column represents an 

input parameter and the values in the column represent 

the domain of the respective input parameter. 

C.  Mixed Covering Arrays  

A mixed covering array [22] denoted by MCA (N; t, k, 

(v1v2 …vk)), is an N × k two dimensional array, where v1, 

v2,…, vk  is a cardinality vector which indicates the values 

for every column. An MCA has the following two 

properties: 1) Each column i (1 ≤ i ≤ k) contains only 

elements from a set Si with | Si | = vi and 2) The rows of 

each N × t sub- array cover all t-tuples of values from the 

t columns at least once. The minimum N for which there 

exists an MCA is called mixed covering array number 

and is denoted by MCAN (t, k, (v1 v2 …vk)). A shorthand 

notation can be used to represent MCAs by combining 

equal entries in (vi : 1 ≤ i ≤ k). An MCA (N; t, k, (v1 

v2 …vk)) can be represented as MCA (N; t, k, 

(w1
q1w2

q2 …. ws
qs)), where  

s
i iqk 1   and wj | 1 ≤ j ≤ s   

{v1 v2 …vk}. Each element wj
qi in the set 

(w1
q1w2

q2 ….ws
qs) means that qi parameters can take wj 

values each. A MCA of size N × k can be used to 

represents a test suite with N test cases for a system with 

k input parameters each with varying domain size. We 

use the notation ri for all 1 ≤ i ≤ N, to represent a row of 

CA/MCA. 

 

III.  GENETIC ALGORITHM 

GA is a metaheuristic stochastic method that is 

inspired by the Darwinian evolution and is used to solve 

search based optimization problems. GA has been 

successfully applied for solving large number of 

optimization problems due to its robustness and easy-to-

use nature [23]. In GA, a population of candidate solution 

is initialized and evolves towards increasingly better 

regions of the search space by means of evolutionary 

operators like selection, crossover and mutation, until a 

satisfactory solution to the problem is found or a stopping 

criterion (maximum number of iterations) is met. Each 

individual in the population has a fitness value which is 

calculated using the fitness function. This fitness function 

is a function of the objective that we want to optimize. As 

compared to traditional search algorithms, GA is more 

flexible and can be applied to a wide range of 

applications as it uses only the evaluation of the objective 
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function regardless of its nature. Also GA starts searching 

using a population of points instead of a single point (as 

done in case of traditional approaches) thus covering  the 

search space thoroughly and avoids the chances of getting 

stuck in the local minima [24]. The efficiency of GA 

depends on many parameters such as initial population, 

selection strategy and recombination operators (crossover, 

mutation). The adaptation of GA parameters and 

operators has become an important research area in the 

field of GA. Over a decade much research has been done 

in applying adaptive mutation operators to guide the 

search of GA towards optimum solution. 

Having described the notations, in the next section we 

will briefly discuss the existing state-of-the-art algorithms 

for constructing optimal CA/MCA for pair-wise testing. 

 

IV.  RELATED WORK 

Existing state-of-the art algorithms for constructing 

(near) optimal CAs and MCAs are broadly classified into 

algebraic, greedy, metaheuristic and random methods. 

Algebraic methods are generally used by mathematicians. 

There are two approaches to construct CAs using 

algebraic methods. The first approach to construct CA is 

based on the construction of OA, where OA is derived 

from some mathematical functions [19, 25]. The second 

approach is based on the concept of recursive 

construction where larger CA is constructed from smaller 

CA [26, 27]. Despite the fact that algebraic methods are 

fast, their use in the field of CIT is often limited due to 

the restriction imposed on OA that each parameter must 

have same number of values [28]. Finally, constraint 

handling [29] can be more difficult in algebraic methods.  

Greedy algorithms have been the most popular method 

among software testing community to construct CAs. The 

algorithms used to construct CAs using greedy approach 

are classified as: one-test-at-a-time and one-parameter-at-

a-time. In one-test-at-a-time approach, CA is constructed 

one row at a time and the algorithms using this approach 

usually differ in the way rows are constructed. The well 

known strategies under this approach are Automatic 

Efficient Test Generator (AETG) [3], Test Case 

Generation (TCG) [30], Classification-Tree Editor 

eXtended Logics (CTE-XL) [31], Jenny [32], Pairwise 

Independent Combinatorial Testing (PICT) [33], 

Deterministic Density Algorithm (DDA) [34, 35], 

Intersection Residual Pair Set Strategy (IRPS) [36]. In 

case of one-parameter-at-a-time approach, CA is 

generated for the first two parameters, and then it is 

extended to generate CA for the first three parameters, 

and continues to do so for each additional parameter [2, 

37]. The strategies that have adapted this approach are 

IPOG [28], IPOG-D [28, 38] and IPO-s [39].  

Recently metaheuristic techniques such as Simulated 

Annealing (SA) [22, 40, 41, 42, 43, 44], Hill 

Climbing(HC) [22], Tabu Search (TS) [45, 46, 47], Ant 

Colony Optimization (ACO) [48], Particle Swarm 

Optimization (PSO) [49, 50, 51, 52, 53, 54, 55] and GA 

[10, 11, 48, 56, 57, 58, 59, 60] have been explored by 

researchers to generate CAs/MCAs. In [61], Stardom first 

compared SA, TS and GA to construct CAs of strength-2 

showing SA to be the most efficient of all three. Cohen et 

al. [22] used SA and HC to construct CAs and MCAs of 

strength-t (t ≤ 3) and the experimental results showed that 

heuristic techniques outperformed greedy methods for 

strength-2 CAs but they failed to give superior results for 

higher strength CA especially for t = 3. A comparison 

between SA and HC shows that while they produced 

similar lower bound, but SA outperformed HC in the 

number of trials required to generate the solution. Later 

on, numerous methods [40, 41, 42] have been proposed 

by Cohen et al. that use a combination of different 

methods (for e.g. algebraic method and computational 

search) to generate uniform covering array and variable 

strength covering array. The existence of constraints in a 

system makes CIT difficult as the generated CA may 

contain some combination of parameter values which are 

invalid. Hence, careful handling of such constraints is 

desirable. In [62], Garvin et al. extended SA algorithm to 

construct CAs for constrained interaction testing. 

Satisfiability (SAT) solver have been used by Hnich et al. 

[63], Yan and Zhang [64] and Banbara et al. [65] to 

generate t-way CA. Calvagna and Gargantini [66] use 

SAT modulo theory (SMT) solvers to handle constraint 

during  the construction of CIT samples. Calvagna and 

Gargantini [67, 68] presented a logic based approach to 

generate CA for pair-wise test coverage. Finally, in case 

of random methods, test cases are selected randomly from 

the complete set of test cases based on some input 

distribution. They are mainly used for comparison with 

other test suite generation algorithms to study the 

effectiveness and the failure detection ability of the 

proposed approach [69].  

 

V.  THE PROPOSED APPROACH 

The process of generating optimal CA/MCA for pair-

wise testing using GA begins by creating an initial 

population of CAs/MCAs of size N × k randomly that 

represents possible solutions to the given problem. 

Initially N is unknown hence there are two ways to start 

the search process. One way is to set a loose lower and 

upper bounds on the size of an optimal array and then use 

a binary search process to find a smallest size CA/MCA 

[61]. Second method is to start with the size of a known 

CA/MCA and search for a solution. This method requires 

less computational resources, but the size of the 

CA/MCA must be known in advance. In this paper we 

use the second method to generate optimal CAs/MCAs, 

where N is chosen from the reported results (best bound 

achieved) in the existing state-of-the-art. After 

initialization, the fitness of each individual CA/MCA is 

evaluated using a fitness function which is defined as the 

number of distinct pair of parameter values covered by 

the CA/MCA. Then selection, crossover and mutation 

operators are applied iteratively to evolve the initial 

solution towards better solution. Mutation has a 

significant effect on the performance of GA as mutation 

avoids getting stuck in the local minima and maintains 

diversity in the population. In traditional GA, every 
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individual has an equal probability of getting mutated 

irrespective of their fitness [24]. Thus the probability of 

an individual with highest fitness to be disrupted by 

mutation is equal as compared to the one with lowest 

fitness. Hence a mutation strategy is needed to mutate an 

individual to maximize improvement in fitness by 

minimizing fitness loss due to mutation.  

In this paper an effort is made: 

 

(i) To present a greedy approach to improve the 

performance of pair occurrences mutation and 

similarity mutation [11]. 

(ii) To present a new greedy algorithm to perform 

mutation in GA for construction of optimal 

CA/MCA for pair-wise testing. 

 

A.  Improved_Pair Occurrences Mutation 

In pair occurrences mutation [11], pairs of parameter 

values that are not present in the CA/MCA selected for 

mutation are inserted in place of pairs which occur more 

than once in the CA/MCA, in an attempt to increase the 

fitness of the CA/MCA. When an existing pair is replaced 

with an uncovered pair, two cases may arise: 

 

(i) One-value replacement – In this case only one value 

of an existing pair needs to be replaced to 

accommodate the uncovered pair. 

(ii) Two-value replacement – In this case both values of 

an existing pair needs to be replaced to accommodate 

the uncovered pair. 

 

During mutation, in addition to the gain of new pairs 

that are formed by the insertion of an uncovered pair, 

there may also be a loss of few existing pairs that are 

formed by the combination of values of the pair which 

are selected for replacement. For instance, if we consider 

a MCA (9, 2, 5, 21324151) shown in Fig. 1, it can easily be 

found that the pair ‘a1 a2’ is not covered by the given 

MCA. When examining the MCA it is found that the pair 

‘a1 c2’ has maximum number of occurrences and hence 

the existing pair occurrences mutation replaces the first 

instance (row r3 in our case) of ‘a1 c2’ by ‘a1 a2’. This is 

the case of one-value replacement, where only the value 

of parameter P2 is replaced. Initially row r3 covers c2 a1, 

c2 a3, c2 c4 and c2 b5 pairs with respect to the parameter 

P2’s value c2. After replacing c2 by a2, the pairs covered 

by r3 with respect to a2 are a2 a1, a2 a3, a2 c4 and a2 b5. 

Out of these four pairs, pair a2 a3 has also been covered 

by row r9 of the MCA. Hence after replacement, the MCA 

covers three new pairs: a2 a1, a2 c4 and a2 b5. However, 

there is also a loss of two pairs: c2 a3 and c2 c4 since 

these pairs were covered by only row r3 before pair 

occurrences mutation was performed. The improvement 

in the fitness of MCA after pair occurrences mutation 

denoted by Fimproved (MCA) is calculated using (1). The 

improvement in fitness in this case is one. 
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Fig. 1 Pair Occurrences Mutation 
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As an existing pair is replaced by a missing pair in 

either one-value replacement or two-value replacement, 

there are three possible cases that can occur during 

replacement: best, worst and average case. In the best 

case we assume that there will be a gain of maximum 

possible number of new pairs (k-1) in one-value 

replacement and (2k-3) in two-value replacement 

whereas the loss will be minimum (ideally zero) in both 

the cases. In the worst case we assume that in both the 

cases, there will be a gain of only one pair which was not 

covered by the MCA before mutation. However, a 

maximum loss of (k-2) pairs in case of one-value 

replacement and (2k-4) pairs in case of two-value 

replacement will occur. So the improvement in fitness in 

all the three cases for one-value replacement and two-

value replacement is given by (2) and (3) respectively: 

 

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  𝑀𝐶𝐴 =   

    𝑘 − 1             | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
     −(𝑘 − 3)    | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒  

−(𝑘 − 3) < 𝑥 <  𝑘 − 1  | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒
  

(2) 

 

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  𝑀𝐶𝐴 =  

    2𝑘 − 3             | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
     −(2𝑘 − 5)    | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒  

−(2𝑘 − 5) < 𝑥 <  2𝑘 − 3  | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒
   

(3) 

 

Here ,  we  propose  a  technique  to  maximize 

Fimproved(MCA) by minimizing the loss of existing pairs 

during pair occurrences mutation. This is achieved by 

using greedy approach to select a row rmin in which loss 

due to either one value or two values replacement is 

minimum. In one-value replacement, to find rmin we 

consider rows ri | 1 ≤ i ≤ N as candidate rows which 

contain the pair having maximum occurrences. We list 

the pairs covered by each candidate row with respect to  
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the value that is to be replaced. Then the listed pairs of 

each candidate rows are compared against each other and 

if a row is found that covers no distinct pairs then it is 

selected for replacement. If no such row is found, the 

listed pairs of each candidate rows are compared with the 

remaining rows of the MCA and the candidate row ri 

covering least number of distinct pairs is selected for 

replacing value during pair-occurrences mutation. In two-

value replacement the same procedure is repeated, except 

the way the pairs are listed. Now we list all the pairs 

covered by both values of the pair which occurs 

maximum number of times and select the row which 

covers least number of distinct pairs. When we apply 

improved_pair occurrences mutation in the example 

given in Fig. 1, it is found that row r6 covers no distinct 

pairs as shown in Fig. 2, so we select row r6 instead of 

row r3 to minimize the loss of existing pairs and thus 

maximize the fitness of the MCA by four. 
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Fig.2. Improved_Pair Occurrences Mutation: Comparison of rows of 
MCA to find a row that covers minimum number of distinct pairs 

B.  Improved_Similarity Mutation 

In case of similarity mutation proposed by Flores and 

Cheons [11], if two test cases (rows)  in the test set 

(CA/MCA) are (almost) similar (greater than or equal to a 

predefined threshold), the second test case is replaced 

with a new test case with an aim of improving the fitness 

of the test set. The parameter values for the new test case 

can be selected either randomly or for each parameter the 

value which occurs minimum number of times in the 

CA/MCA is selected. If the two test cases are 100% 

similar, then there will not be any loss of existing pairs 

during replacement otherwise there are chances that some 

pairs that were exclusively covered by the second test 

case might get lost during replacement. As explained in 

case of pair occurrences mutation, the improvement in 

fitness in best, worst and average case during similarity 

mutation is given by (4). 

 

 

 

 

 

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  𝑀𝐶𝐴 

=  

  𝑘  𝑘 − 1 /2            | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒

     −(2𝑘𝑛 − 𝑛2 − 𝑛)/2)    | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒  

−(2𝑘𝑛 − 𝑛2 − 𝑛)/2 < 𝑥 < 𝑘 𝑘 − 1 /2 |𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

      

 
(4) 

 

Where, n is the numbers of positions in which the two 

rows differ. 

In this paper, we propose a technique to maximize 

Fimproved(MCA) by minimizing the loss of existing pairs 

during similarity mutation. A greedy approach is used to 

select from the two or more similar rows, a row which 

covers least number of distinct pairs within the given 

MCA. An example is shown in Fig. 3 to illustrate the 

effect of similarity mutation and improved_similarity 

mutation. Test Cases represented by row r2 and r4 of 

MCA (10, 2, 6, 42325121) in Fig. 3 are similar (for 

similarity threshold=65%). In similarity mutation, r4 will 

get replaced with a new test case that causes a loss of five 

existing pairs which were not covered by any other row 

of the given MCA. When we apply improved_similarity 

mutation, row r2 and r4 are compared with every row of 

the given MCA and it is found that row r2 covers less 

number of distinct pairs as compared to row r4, hence row 

r2 is replaced instead of row r4, resulting in loss of less 

number of distinct pairs as compared to those in 

similarity mutation. It is clear from Fig. 3 that the 

improvement in fitness achieved by improved_similarity 

mutation will be higher than that of similarity mutation.  
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Fig.3. Comparison of  Similarity, Improved_Similarity and Minimum 

Distinct Pairs Mutation 

 

 

  r2                  r4 

b5 a1             a5 a1 

b5 b2             a5 b2 
b5 a3             a5 a3 

b5 c4             a5 c4 
b5 a6             a5 d6 

a6 a1             d6 a1 

a6 b2             d6 b2 
a6 a3             d6 a3 

a6 c4             d6 c4 

 
 loss:2     loss: 5 

P1   P2   P3     P4   P5    P6  

a1    a2    a3     a4   a5    a6 

b1    b2    b3    b4   b5    b6 

c1    c2    c3     c4           c6 
d1                    d4           d6 

                        e4 
 

 

 

 

Input Parameters 

Comparison of pairs covered by r2 and r4 

wrt their dissimilar elements (for similarity 
/improved similarity mutation) with the 

pairs covered by the remaining (N-2) rows 

of MCA 

Loss: 2       Loss:5 

Pairs Covered by: 
r3: c2 a1, c2 a3, c2 c4, c2 b5 

r4: c2 a1, c2 c3, c2 b4, c2 c5 

r6: c2 a1, c2 c3, c2 b4, c2 b5 
 

 Covers no distinct pairs 

Input Parameters 

Values P1    P2    P3    P4      P5      

a1    a2     a3     a4      a5     

b1    b2     b3     b4     b5     
        c2     c3     c4      c5 

        d2              d4 
                 e4  

 

a2 replaces c2 
MCA (9, 2, 5, 21324151) 

r2 gets replaced in 

case of  improved_ 

similarity mutation 

r7 gets replaced in 

case of MDPM 

r4 gets replaced in 

case of similarity 
mutation 
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C.  Minimum Distinct Pairs Mutation (MDPM) 

Algorithm: Minimum Distinct Pairs Mutation 

(MDPM) 

 

begin 

   select a MCA for mutation  

   set  flag = true 

   while (flag = = true) 

       set flag = false 

       for each row ri of MCA 

          list the pairs covered by row ri 

       end for 

       compare the pairs covered by each row 

       if exist(ri covers minimum distinct pairs && (number 

of distinct pairs covered < MDPM threshold)) 

                  set flag = true 

                  replace ri in MCA with a new row  

       end if 

   end while 

end 

 

Fig.4. Algorithm to perform MDPM 

In this section we propose a greedy technique to 

perform mutation known as minimum distinct pairs 

mutation (MDPM). As described above, in case of 

similarity mutation we replace a similar test case, but it 

may happen that there are no test cases (rows) which 

satisfy the similarity threshold criteria. In that case 

similarity mutation cannot be performed. However, there 

may be a test case which is not similar to any other test 

case in the given MCA, but still makes no contribution 

towards the fitness of the MCA. In MDPM we replace the 

test case which makes minimum contribution (ideally 

zero) towards the fitness of MCA by covering least 

number of distinct pairs as compared to the remaining test 

cases in the MCA. A MDPM threshold needs to be 

defined here, which allows MDPM to occur only if the 

number of distinct pairs covered by the test case is below 

the MDPM threshold value. The MDPM threshold 

prevents good test cases to be unnecessarily distorted by 

mutation. During MDPM, the parameter values for the 

new test case can be selected either randomly or for each 

parameter the value which occurs minimum number of 

times in the CA/MCA is selected as in case of similarity 

mutation. For instance, in the example shown in Fig. 3, 

row r7 is not similar to any other row of the MCA (for 

similarity threshold = 65%). However when we list all 

pairs covered by r7 and compare them with pairs covered 

by the remaining (N-1) rows of the MCA, it has been 

observed that row r7 doesn’t cover any distinct pair with 

respect to the remaining (N-1) rows. Hence, we replace r7 

by a new test case. The objective of MDPM is to 

maximize the improvement in fitness of MCA after 

mutation by minimizing the losses. It can be seen from 

Fig. 3 that row r4 gets replaced after similarity mutation 

causing a loss of five pairs, row r2 gets replaced after 

improved_similarity mutation reducing the loss to two 

pairs whereas row r7 is replaced after MDPM dropping 

the loss to zero pair. One point that is to be noted here is 

that the performance of MDPM is comparable to 

similarity/ improved_similarity mutation if two rows in 

the MCA are 100% similar. An algorithm to perform 

MDPM is given in Fig. 4.  

The improvement in fitness during MDPM in best, 

worst and average case is given by (5).  

 

𝐹𝑖𝑚𝑝𝑟𝑜𝑣𝑒𝑑  𝑀𝐶𝐴 =   

𝑘  𝑘 − 1 /2            | 𝑏𝑒𝑠𝑡 𝑐𝑎𝑠𝑒
     0                                | 𝑤𝑜𝑟𝑠𝑡 𝑐𝑎𝑠𝑒   

   0 < 𝑥 < 𝑘 𝑘 − 1 /2 | 𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑐𝑎𝑠𝑒

     

 
(5) 

 

The advantage of MDPM over similarity and 

improved_similarity mutation is its performance in 

average and worst case. It is observed from (5) that in 

average and worst case, the quality of MCA generated 

after MDPM doesn’t deteriorate as may happen in case of 

similarity and improved_similarity mutation. 

 

VI.  COMPUTATIONAL RESULTS 

To assess the practicality of the work presented in this 

paper, we have implemented the proposed approaches 

using an open source tool PWiseGen. PWiseGen is an 

extensible, reusable and configurable tool written in Java 

to generate pair-wise test set using GA [11]. We have 

extended PWiseGen by adding to it the capability to 

perform improved_pair occurrences mutation, 

improved_similarity mutation and MDPM and name it 

PWiseGen-GM (Greedy Mutation). First, we present the 

results of experiments carried out to compare the 

performance of existing smart mutations with the 

proposed improved smart mutations. Next, we compare 

the performances of improved smart mutations with 

MDPM. Finally we compare the performance of 

PWiseGen with MDPM with the existing state-of-the-art 

algorithms. 

Experiments are carried out on the dataset given in 

Table 2. The dataset consists of benchmark problems 

selected from the existing state-of-the-art [22, 43, 52, 54, 

70] for generating both CAs and MCAs. 

For achieving the best performance of PWiseGen-GM 

it is necessary to choose suitable values of GA parameters. 

There exists evidence in literature that the choice of 

probability of crossover pc and probability of mutation pm 

plays a critical role in the performance of GA. A number 

of guidelines for setting the values of pc and pm exist in 

literature [23, 71, 72]. Typical values of pc are in the 

range 0.5~1.0, while typical values of pm are in the range 

0.001~0.05. In addition to the parameters mentioned 

above, population size and number of generations 

influences the performance of GA. A large population 

size will use more computational resources without 

obtaining better solutions, whereas a small population 

size may leads to the under-covering of search space 

thereby guiding the algorithm towards poor solutions. 

Similarly a large number of generations may consume 

more time, whereas a smaller number of generations will 

make the algorithm terminate early, preventing it to 
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converge to a good solution. Hence in accordance with 

the existing GA literature, we set the population size to 

50, pc to 1 and pm to 0.05 during the experimentation. We 

perform experiments with varying number of generations 

on some selected benchmark problems from Table 2, but 

no significant improvements on quality of the final 

solution were observed after 20,000 generations in all the 

cases. Hence we set the number of maximum generations 

to 20,000. 

Table 1. Dataset 

Sno. Benchmark 

Problems 

k(number of 

input parameters) 

Total number 

of pairs 

1 33 3 27 

2 34 4 54 
3 35 5 90 

4 36 6 135 

5 37 7 189 
6 38 8 252 

7 313 13 702 

8 510 10 1125 
9 1020 20 19000 

10 2100 100 19800 

11 4100 100 79200  
12 2233 5 67 

13 4534 9 454 

14 513822 11 492 
15 273241102 12 837 

16 7262423222 10 854 
17 21345 18 992 

18 82726252 8 1178 

19 644527 16 1556 
20 514431125 21 1944 

21 6151463823 19 1992 

22 624929 20 2052 
23 655534 14 2074 

24 716151453823 19 2175 

25 694327 19 3000 

26 674823 18 3004 

27 415317229 61 14026 

28 41339235 75 17987 

A.  Improved Smart Mutations versus Smart Mutations 

In this section we present the result of experiments 

carried out to compare the performance of a) 

improved_pair occurrences mutation and pair occurrences 

mutation and b) improved_similarity mutation and 

similarity mutation. In both the cases, first we plotted the 

fitness of the generated CA/MCA against the generation 

number. Second, we made a comparison between the 

fitness of best CA/MCA generated by the existing smart 

mutation techniques and the proposed improved smart 

mutation techniques. As GA produces non-deterministic 

results, so to have a better statistical significance, each 

benchmark problem is executed 30 times and the average 

value is noted. The result of comparison of 

improved_pair occurrences mutation and pair occurrences 

mutation is shown in Fig. 5 and Fig. 6. Due to space 

reason, we show the experimental results of a few 

benchmark problems selected as representative, from the 

dataset of Table 1.  

 

 

 

 

Fig.5. Comparison of quality of CA/MCA generated versus number of 
generations in pair occurrences mutation and improved_pair 

occurrences mutation 

 

 

 

 

Fig.6. Comparison of quality of generated CA/MCA using pair 
occurrences mutation and improved_pair occurrences mutation 

MCA (82726252) 

CA (313) 

CA (2100) 

MCA (41339235) 



30 Construction of Strength Two Mixed Covering Arrays Using Greedy Mutation in Genetic Algorithm  

Copyright © 2015 MECS                                          I.J. Information Technology and Computer Science, 2015, 10, 23-34 

It is clear from Fig. 5 that improved_pair occurrences 

mutation generates CA/MCA in less number of 

generations than pair occurrences mutation. Also, it is 

evident from Fig. 6 that the quality of CA/MCA 

generated using improved_pair occurrences mutation is 

better than that of pair occurrences mutation. The result 

of comparison of improved_similarity mutation and 

similarity mutation is shown in Fig. 7 and Fig. 8. 

It is evident from Fig. 7 and Fig. 8 that the CA/MCAs 

generated using improved_similarity mutation generates 

better quality CA/MCA by covering more number of 

distinct pairs in less number of generations as compared 

to similarity mutation. 

 

 

 

 

 

Fig.7. Comparison of quality of CA/MCA generated versus number of 
generations in similarity mutation and improved_similarity mutation 

 

 

 

 

Fig.8. Comparison of quality of generated CA/MCA using similarity 

mutation and improved_similarity mutation 

B.  Comparison of MDPM and Improved Smart 

Mutations 

In this section, we present the result of experiments 

carried out to evaluate the performance of MDPM with 

respect to the improved smart mutations techniques 

proposed in Section 5 and in [10]. Each benchmark 

problem given in the dataset of Table 2 is executed 30 

times on PWiseGen-GM using various improved smart 

mutations techniques and MDPM. The average of the 

values obtained over 30 runs for each of the benchmark 

problem is plotted as shown in Fig. 9. It is evident from 

Fig. 9 that MDPM outperforms improved smart mutation 

techniques by generating better quality CA/MCA. The 

performance of improved_value occurrences mutation is 

comparable to the performance of improved_pair 

occurrences mutation except in few cases where 

improved_pair occurrences mutation outperforms 

improved_value occurrences mutation. For small size 

problems, the performances of all the four mutation 

strategies are identical (benchmark problems: 33 and 34). 
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Fig.9. Comparison of MDPM with improved smart mutation techniques 

C.  Comparison Results 

In this Section we compare the performance 

PWiseGen-GM with MDPM with the existing state-of-

the-art algorithms. The comparison is made on two 

criteria’s: array size and array generation time. As array 

generation time is dependent on the system configuration, 

so to ensure a fair comparison, we restrict our comparison 

CA (313) 

MCA (513822) 

MCA (694327) 

MCA (415317229) 
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against publicly available tools namely Jenny [32], 

Pairwise Independent Combinatorial Testing PICT [33], 

ACTS (IPOG) [73], AllPairs [74]. These algorithms are 

run on Windows using an INTEL Pentium Dual Core 

1.73 GHZ processor with 3.00 GB of memory. The result 

of comparison made on the dataset of Table 2 with 

respect to CA/MCA array size and the array generation 

time (in seconds) is shown in Table 3. 

As it can be seen from Table 3, PWiseGen-GM with 

MDPM outperforms the existing techniques for 

generating CA/MCA for pair-wise testing in most of the 

configurations.  In cases where PWiseGen-GM (MDPM) 

doesn’t generate best results, it still gives competitive 

performances than the existing strategies. It is evident 

from the results shown in Table 3 that PWiseGen-GM 

(MDPM) requires more time to build CAs/MCAs than 

Jenny [32], ACTS (IPOG) [73] and AllPairs [74] in 

average; however, the extra time consumed by 

PWiseGen-GM (MDPM) allowed the construction of 

CAs/MCAs of smaller size as compared to those 

generated using other strategies. 

VII.  CONCLUSION AND FUTURE WORK 

In this paper, we have examined the impact of 

mutation strategy on the performance of GA used to 

construct CAs/MCAs for pair-wise testing. First, we have 

proposed few improvements to the existing smart 

mutation techniques. Secondly, we have proposed a 

greedy approach to perform mutation. Experiments 

performed on a set of benchmark problems indicate the 

effectiveness of the proposed approach in terms of quality 

of generated CAs/MCAs and the number of generations 

in which the solution is achieved, when compared to the 

existing smart mutation techniques. Comparison with the 

existing state-of-the-art algorithms shows that the 

proposed approach outperforms the existing approaches 

in most of the cases in terms of CA/MCA size.  

In future, we plan to find out how effectively the 

proposed greedy algorithm can be applied to construct 

higher strength CAs/MCAs. Furthermore, we also plan to 

construct CAs/MCAs that can handle constraint between 

various configuration parameters of the system under test.  

Table 3. Comparison of PWiseGen-GM (MDPM) with the existing state-of-the-art algorithms. 

The * shows that PWiseGen with MDPM performs best in these cases. 

Id. Dataset Jenny PICT1 ACTS 

(IPOG) 

AllPairs PWiseGen-GM 

 (MDPM) 

1 33 9/0.015 10 9/0.003 9/0.015 9/0.0624 

2 34 11/0.015 13 9/0.002 9/0.016 9/0.078 

3 35 14/0.031 12 15/0.016 14/0.016 11*/0.078 
4 36 15/0.046 14 15/0.015 14/0.015 12*/0.109 

5 37 16/0.046 16 15/0.014 14/0.014 13*/1.201 
6 38 17/0.046 16 15/0.016 14/0.016 14/2.13 

7 313 18/0.062 20 19/0.014 17/0.016 16*/10.45 

8 510 45/0.062 47 45/0.003 47/0.15 43*/40.29 
9 1020 193/2.308 216 227/0.53 219/0.015 210/ 792.8 

10 2100 16/0.249 16 16/0.078 15/0.11 13*/6.24 

11 4100 53/2.527 56 57/0.093 59/0.109 55/901.8 
12 2233 12/0.015 10 9/0.003 10/0.016 8*/5.678 

13 4534 26/0.031 26 24/0.001 25/0.015 21*/1.95 

14 513822 23/0.031 20 19/0.002 20/0.016 16*/6.302 
15 273241102 106/0.327 100 100/0.016 100/0.016 100/1.232 

16 7262423222 57/0.078 56 53/0.001 54/0.009 53/5.896 

17 21345 26/0.124 23 24/0.015 27/0.014 20*/14.617 
18 82726252 76/0.093 80 72/0.003 76/0.009 70*/8.502 

19 644527 53/0.109 55 44/0.006 48/0.012 44/15.069 

20 514431125 32/0.093 32 26/0.015 29/0.011 26/10.052 
21 6151463823 40/0.03 38 36/0.016 37/0.01 34*/17.534 

22 624929 44/0.109 41 39/0.016 40/0.016 38*/6.38 

23 655534 56/0.124 59 56/0.015 55/0.008 54*/103.10 
24 716151453823 50/0.140 46 43/0.016 42/0.018 44/14.08 

25 694327 64/0.187 67 61/0.016 67/0.014 60*/32.07 

26  674823 63/0.171 63 54/0.016 59/0.014 54/145.54 

27 415317229 39/0.405 38 33/0.031 36/0.019 33/170.75 

28 41339235 31/0.436 29 28/0.016 27/0.028 25*/316.04 

 

                                                           
1 The provision for capturing the array generation time was not available in the tool.  
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