
I.J. Information Technology and Computer Science, 2015, 01, 1-11
Published Online December 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2015.01.01

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

TSSR: A Proposed Tool for Secure Software

Requirement Management

Prof. Mohammad Ubaidullah Bokhari
Department of Computer Science, Aligarh Muslim University, Aligarh, India

Email: mubokhari@gmail.com

Shams Tabrez Siddiqui
Department of Computer Science, Aligarh Muslim University, Aligarh, India

Email: stsiddiqui.rs@amu.ac.in, stabrezsiddiqui@gmail.com

Abstract— This paper provides a unified framework in which

entire design of the project can be captured right from the

beginning of the software development. This paper discusses

about the requirements which should be included in the

development of the requirement management tools. As the

requirements, criteria which have been discussed, we introduce

a requirement management tool known as TSSR (Tool for

Secure Software Requirement). This tool manages risk analysis,

system requirements, security of the system and project,

users/group restriction, encrypted database, traceability and

extension of the tool to interact with external requirement

management tools. The aim of this paper is to describe the

TSSR framework and its four components: Planner, Modeller,

Prover and Documenter which will be helpful in interacting and

managing requirements with arbitrary number of external tools

for secure software development.

Index Terms— Software Development, Requirement

Management Tools, Secure Software Requirement Management,

Risk Analysis, Encrypted Database and Traceability

I. INTRODUCTION

Requirements are developed based on the project; as

the size of the project increases, they become more

concrete, more elaborate, more detailed and additionally

more complex. The effort on requirements does not end

even when the project enters the design, integration and

implementation phases. Requirements changes, tracing to

other development artifacts should be handled and

established.

The requirements for a system are mostly large in

numbers and too complex to be captured at once by

humans and this is not a new problem. To handle the

complexity of the project, a systematic tool supported

requirements management (RM) should be established.

The option of a RM tool is a significant and sensitive

issue [1]. We have to select RM Tool on the basis of our

requirements, the size of the group, and size of the project

[2]. Since the requirements are used and changed

virtually throughout the development process. A

developer knows that changing tool within the middle of

a project is an expensive and time-consuming business

[3].

Requirement management tools are general argument

for security requirement engineering such tools is based

on the spreadsheet metaphor [4]. In metaphor a table is

used to enter the attributes of the natural language

requirement. Certain heavyweight requirement

management tools contain its own extension Language

(EXL), scripting frameworks which allowing

augmentation with additional functionality for extending

tool to interact with external tools [5]. Unfortunately, the

generic strength of the requirements management tools is

also its weakness; due to the lack of distinct semantics

means analysts annually maintain traceability links

between requirements and non requirements artifacts.

Security is considered as a non-functional requirement

which is more seriously taken into account nowadays [6]

[7]. A good requirement requirements specification

documents includes both functional and non-functional

requirements [8] [9].

Expertise in different areas of a requirement

engineering, security, we need to define useful

requirements from the abstract common security goals.

There are many RMT that uses low level formal

verification. The security problem varies in almost all of

the Requirement Management Tools. Just a few of the

tools have solved security problem by providing

centralized repository. The requirement included with the

proposed tool are Risk analysis, impact analysis,

restricted users/groups and encrypted database that will

be helpful in developing secure projects.

This paper is structured in V sections, Section I is

Introduction which discusses the requirements of

Requirement Management Tools, security aspects of it

and how to secure your project using RM Tools. Section

II discusses Requirements for developing RMT from the

system developers point of view, users point of view as

well as from tool administrator's point of view. Section

III is about the new tool known as Tool for Secure

Software Requirement (TSSR) Management which

discusses its components and framework in detail, based

on the requirements which have been discussed in

Section II. Section IV is Tool Interaction in which, the

discussion is on how to import and export this tool with

the third party tool in the project if required. Section V is

a conclusion which concludes that developing a secure

software right from the beginning of project development.

mailto:stabrezsiddiqui@gmail.com

2 TSSR: A Proposed Tool for Secure Software Requirement Management

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

II. REQUIREMENTS FOR DEVELOPING RMT

This section describes the criteria and their

requirements that needed from the system developers’

point of view as well as tool administrators’ point of view

while developing RM Tool.

A. Requirement Management Information Model

The tool must allow the users to freely define a

Requirements managements Information model (RMI)

that must be independent of process and method [10].

 The RMI must be easily changeable during the

entire project.

 Database objects must be uniquely identifiable over

its lifetime of the project.

 Reuse and Inheritance ought to be available for all

classes, types and attributes.

 If required RMI could be defined graphically.

B. Views

Various views of the same data must be supported by

the tool.

 The tool must enable views and should be defined

centrally as well as with a user-specific manner.

 In the current view the objects must be changeable

and freely configurable

 The requirements of the users must be viewed in an

information-model-oriented and document-oriented

manner. i.e. tables, forms

 The RM tool must provide suitable views of the

enormous amount of information accessible in the

tool which will be helpful for the users to accept that

tool [11].

C. Formatting and Multimedia files

The tool should enable the requirements to be enriched

with formatting. Specifications that are created with text

processing tools like Word, which contain lots of

graphics or other different multimedia elements, must be

directly visible within the RM Tools user interface.

 The tool should support basic text formatting.

 The tool should enable mathematical formulas to be

utilized in the description of the texts.

 The tool should also support scientific and foreign-

language character sets.

 In the database non-text objects should be saved

directly or at least in a configuration management

tool which is tightly coupled.

D. Change Management and Comments

The tool must handle formal change requests,

systematically to reduce errors. This function must be

customizable and integrated into rights management to

change the process of the users.

 A restrictive change management is important in the

later phases of the project development.

 The change requests should have accepted, rejected

or pending like public status information.

 The users might add comments and changes to

requirements in the comment or discussion function.

E. History Documentation

 All changes made to the requirements should be

tracked and kept within the database.

 The tool objects should be versioned, and distinction

between them as a major and minor version.

 The tool should have a facility to allow a

requirement to be changed back if required to any

previous state anytime. Older versions and changes

should always be available.

 The tool should generate freely configurable change

reports and these reports should moreover relate to

views, baselines and document generation.

F. Baseline

The tool must support baselines that are used to save

the specified set of requirements objects state, before a

larger development step of the document or project,

which is fixed at a given point of time. Baseline

management features provide additional support for

comparing and merging changes [11]. The status saved in

a baseline is the starting point for further development of

the project from that given point. A baseline is a database

consisting of various objects, each in a certain version.

G. Traceability

The tool must facilitate traceability through links

between requirements. The linking ought to be highly

user-friendly in a manner so that it helps only if it is

relatively complete. It has an ability to provide a central,

secure repository for project requirements [12]. Linking

is not popular among developers because its benefit is

mostly visible in later phases of project development.

 The tool must be able to impose the creation or

change of certain links upon creation or change of a

requirement [13].

 Links should be directed an object to a source and

target at the same time and follow the links directly

in both directions.

 Links should connect any objects within the

database, not only in the same module and project.

 The tool must feature a concise graphical

representation and navigation of the traces which is

user-friendly [13].

H. Analysis Functions

The tool should analyze requirements such as analysis

of project progress, risk management and analysis of the

link structure [14].

 The tool should provide latest status and progress

information about the project.

 The tool should analyze inconsistencies in the link

structure approximating finding gaps in the traces.

 The tool must scan the unsuitable/inexact language

or wrongly used terminology in the texts description.

I. Tool Integration

The tool should have open interfaces; the information

stored in them should be visible and linkable to other

tools which are used within the development process. It is

one of the significant features of the RMT. RM tools

must be integrated tightly to improve consistency

 TSSR: A Proposed Tool for Secure Software Requirement Management 3

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

between development phases. It should also allow

complete traceability over the entire product life cycle for

existing tool environments [15].

 The connection should be transparent with 3rd party

tools.

 Linking must not lead to redundant data.

 A Tool must manage the links to external objects in

the same way as internal links.

 Recognized access rights and target the smallest

possible formation of the external objects.

 The tool could support tool integration platforms and

interface should occur automatically for active,

synchronized or change notifications [13].

J. Import/Export

The tool should be able to import/export requirements

specification documents from 3rd party tools. The

simplest method to import text files into a spreadsheet

and export this text as a CSV (common separated values),

or tab delimited format files [11].

 The tool should recognize text marks, formatting,

grammatical structure, line ends or keywords to

interpret them right from the beginning to end of

requirements texts and documents [15].

 The tool should support a semiautomatic import of

requirements from existing documents [16].

K. Document Generation

The tool needs a document generator to generate

official and internal documents with current data from the

database. The generated documents are connected to the

database; an independent document file is created.

Document generator of the RM Tools is one of the main

productivity-enhancing applications. Developers will

generate documents at the push of a button and they don’t

have to carry out the detailed formatting before and after

document generation [13].

 All information which is available in the tool must

be included in the document generator.

 The document should be flexibly configurable,

compared to views, formatting and positioning of

the subset of data, too.

 The document generator should create documents in

certain standard template formats.

 The generated document must be included in non-

textual object and in the Meta information in the

vein of the change history or ownership.

 With including external objects the tool must

generate very large documents about 5000 pages.

 The document generator must be extensible when

required via a programming interface provided by

the tool and the document generated automatically

as a background task.

L. Checking out for Offline Use

The tool ought to have a facility to work offline and

whatever changes or work done during this should be

stored. When users come online the changes should be

enabled and send to the data repository so that other users

can check out the changes which are made offline [14].

M. Web Access

The tool ought to have a web interface or browser-

based client that avoids unnecessary installation of a

client application for sporadic users. They are interested

with the internal users that uses the tool occasionally

collaboration with external partners. Web interfaces offer

a reliable as well as easily manageable opportunity to

work with the requirements. Most of the users are “power

users” for whom the native clients provide a smoother

user experience on the web, some managers and

administrators has headaches while opening the tool to

the web.

N. Database

A RM tool database failure can vanish all the data

which is stored in the database. If developers can’t work

within the deadlines of the project, then it will be very

expensive.

 The tool should use an appropriate database

technology, which must be secure, scalable and

reliable.

 Maintenance work of the database must be done the

system is running.

 The tool must consistently provide the safe

transaction of the database. The database must be

available 24 hours in a day and 365 days in a year.

 The database must have a data-integrity check and

consistency-analysis. In near future if needed, it

must be able to repair such errors.

 The tool must use a database that can be

administered independently so that availability and

security can be improved.

 It must be possible to export all project data and to

import them again at a distinct place or time for/with

different tool.

O. Size Restrictions

The database must able to handle large projects. The

size restriction of the database and the number of

requirements, users, groups as well as upper limit should

not be there. The database fields should not have a fixed

size restriction and if such size restriction exists they

must be known exactly.

 Unlimited number of requirements

 Unlimited size of a requirement

 Unrestricted number of users, user groups and roles

 Unrestricted size of database

P. Encryption

The tool must store information in the database in

encrypted form so that it should not be readable to system

administrators. The tool ought to allow all

communication which is in between client and server

must be in encrypted form. Suppliers have a strong

interest in data security and this is a major problem in this

higher competitive sophisticated market. The

cryptography ought to protect the database from

unauthorized users.

4 TSSR: A Proposed Tool for Secure Software Requirement Management

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

Q. Central Installation

The tool should be centrally installed so that all

project-wide information should be controlled and

changed from one place. Associated changed history

should be available, viewed to all users as well as project

administrator. The RM tool implements a devoted group

of persons to take the responsibility for the exact mapping

of the process specification.

R. Extensibility

The tool ought to be adaptable and extensible

according to the needs and requirements of the software,

project or organization.

 The tool should provide an open and well-

documented object models, whereas API that makes

all data and functions available as well as accessible

to extensions.

 The tool should use standard programming

languages.

 The tools user interface must be customizable and

extensible with the use of a standard script language

[16].

S. Users, Roles and Rights

The tool should allow fine-grained administration of

users, user groups, roles, and rights. A history of changes

to those should be available within the database [14].

 The administrator should assign central the roles to

manage user accounts and groups.

 Centrally users should be defined for all projects.

 API programming or scripting extensions should not

compromise with security concept.

 Users must perform more than one role at a time.

 Access rights should be grantable and a distinction

ought to be made between rights to view and

propose changes and make changes.

III. TOOL FOR SECURE SOFTWARE REQUIREMENT (TSSR)

MANAGEMENT

TSSR is a new requirement management tool used for

managing the requirement which will be helpful in

developing secure software. It has four components and

each component has their own functionalities, which has

been discussed underneath.

Components of TSSR

Fig. 1. Framework of Tool for Secure Software Requirement Management

The main components of the TSSR are:

1) The DOCUMENTER supports the powerful indexing,

structured view, editing of technical documents as well

as it provides an interface to external tools. Within a

single project artifact the DOCUMENTER manages all

associated documents and design constructs. The

database is secure by using cryptography for protecting

the database from unauthorized users. The database

also uses a Cipher Hill security technique for

encryption and decryption of data in the database.

2) The PROVER is used as a plug-in to the

DOCUMENTER that provides intelligent theory

management, literate reasoning, proof support and

theorem-proving in Higher-Order Logic for checking

of mathematical models [17].

3) The MODELLER is a TSSR module supporting

system modeling, System Architecture and verification

using the DOCUMENTER/PROVER system. It also

provides intelligent graphical visualization of design,

reasoning about concurrency, animation and proof for

tasks, real-time properties and sophisticated

hierarchical design for dataflow and state machine [17].

4) The PLANNER supports pre- requirements and

requirement phase for Identify Security Requirements,

PLANNER

MODELLER

PROVER

DOCUMENTER

Structural document

Document Editor

Extended to interact

with External Tools

PROVER Plug-in Theorem Provers

Developing Framework

for Risk Management

SREP Activities

REPOSITORY

U
se

r
s,

 P
ro

je
c
t

A
m

in
,

T
o
o

l
A

d
m

in

 l

T
o
o

l
fo

r
 S

ec
u

r
e

S
o

ft
w

a
r
e
 R

e
q

u
ir

e
m

e
n

t
M

a
n

a
g
e
m

e
n

t

 Cryptography

 Security Techniques

 TSSR: A Proposed Tool for Secure Software Requirement Management 5

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

Plan and Develop Framework for Risk Management

and system requirements using DOCUMENTER /

PROVER / MODELLER shown above in Fig 1. It also

supports in calculating task analysis, impact analysis

and risk analysis of requirement management on the

basis of Multilevel Security Spiral (MSS) Model [18].

Iteration model is considered in this module for the

requirement, time limit, cost expenditure and other

project details.

A. The DOCUMENTER

The DOCUMENTER supports the design and

preparation of structured technical documents. In a

standard file structure a project is just equivalent to a

folder or directory. The project is built as an extension of

existing projects through collecting related design

constructs and documents.

The principal sub-components of DOCUMENTER are

the Document structure, Datastore, the Normative Design

Document (NDD), traceability matrix and Tool Interface

(TI).

1) Document structure

The constructors of a formal document language help

the DOCUMENTER to create documents. Documents are

built through creating a hierarchy of blocks which is

nested within each other. Fig 2, is an example which

shows a mathematical expression, x + y = 3 ^ 2x - y = 3.

Fig. 2. The tree-like operational structure of a mathematical expression (Reprinted [14]).

In the TSSR, document production operators are used

at all levels, the document is written through the

constructor of algebra. The document language grammar

is derived from that given algebra for each TSSR module.

Branching is one of the examples of the mechanism

which builds the block hierarchy. Blocks are collected

into sorts; algebra is a collection of many sorts, similarly

as a typed programming language structure. This

provides meta-information through which the

DOCUMENTER can “understand” the content of a TSSR

document and there are a variety of ways in which this

context-sensitivity is utilized [19]. The user selects a

dummy block at each stage and inserts an operator, or

string/number from the Datastore. The document

language includes mechanisms for modifying the

document’s appearance, and each block in a document

has attributes and it inherits the attribute of parents, as the

standard WYSIWYG formatting style. The style collects

presentation for each artifact together, allowing document

modification in the same manner as cascading style

sheets (CSS) used in HTML documents for modification.

2) The Datastore

Normally a project has one Datastore, or repository,

data can be imported/exported from other projects to the

Datastore. It is a standard database; all elements are

collected in a single table, which is used to records their

result sort and the sorts of their operator arguments [20].

Each row of a table records information of an element

and referred as a fact about that element. In a given TSSR

module or tool plug-in the tables are generated for

information. The Column has a fixed sort and in the table

all data are structured text. The Datastore has three

functions Data Security, Data view and Data input, which

is crucial to the user interaction with the

DOCUMENTER. Data can be entered into TSSR

documents directly from the Datastore, using drag-and-

drop method into dummy blocks. TSSR has a central

storage that makes effective handling of multiple

documents that are probable to share data, which having

different technical documents about the project. Every

single change in the Datastore will search and replace that

element in every document of the project. Data Security

is done in two ways:

 Cryptography

Cryptography is one of the oldest techniques involved

with security and confidentiality of the data. One of the

essential aspects of secure communication, protecting

passwords and user details from unauthorized users is

known as cryptography. As cryptography is necessary for

secure communication, protecting passwords is not

sufficient by itself, there are some security requirements,

including Authentication of the users, Privacy/

6 TSSR: A Proposed Tool for Secure Software Requirement Management

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

confidentiality of users data, integrity of data, Non-

repudiation etc.

 Security Techniques

In TSSR Hill Cipher encryption and decryption method

is used for database security. This cryptography approach

provides additional level of security to the database

system. The basic concept of this algorithm is that each

letter of the alphabet is allotted a number starting from 0

in a continuous sequence. Alphabets are numbered as

A=0, B=1, C=2, D=3, E=4………, Z=25 but this is not a

fixed requirement of the cipher. In this the encryption

takes n successive plain text letters and substitutes them

for n cipher text letters [21].

In case of n=3, the encryption expressed in terms of

matrix multiplication.

Mathematical model:

Abbreviations used in this model are;

P = plain text,

C = cipher text,

K = key used for encryption of plain text to cipher text,

K-1 = Inverse of key K used for decryption of cipher

text to plain text.

C = Ek(P) = KP mod 26

P = Dk(P) = K-1C mod 26 = K-1KP = P

K is the key matrix

K-1 is the matrix inverse. The inverse matrix can be

calculated as K.K-1 = I where I is the identity matrix.

3) The Normative Design Document

A project contains exactly one NDD which is a

structured document within the block hierarchy. NDD

helps to enter all Datastore table entries into the project

[22]. The NDD is literately programmed script through

that the user controls all interactions with tools. A

command supports the uniformity of tool interaction and

inserted in the NDD to initiate the appropriate tool action.

The Command is a special sort of structured text. The

NDD is a linear script which allows the user to keep

contextual focus whilst controlling several tools. In NDD

the theorem prover tool will not accept or consider

constants that have not been declared on associate earlier

stage of the software development life cycle.

4) Traceability

Traceability is primarily used in software development

projects to trace application, business, security or any

other requirements for their implementation, testing or

completion [23].

 Bi-directional Traceability

The direction of traceability information is called bi-

directional traceability and even forward or backward

traceability. Forward traceability is the ability to trace a

requirement to components of a design or implementation.

Backward traceability is the ability to trace a requirement

to its source [24].

 Traceability Matrix

Traceability Matrix is primarily used in software

development projects to trace business, application,

security or any other requirements for their

implementation, testing or completion. A Traceability

Matrix is a worksheet type document consisting of tables.

 Requirements Traceability Matrix

The Requirements Traceability Matrix (RTM) captures

the user with complete system requirements for the

system, or a portion of that system. RTM captures all

requirements with their traceability in a single document.

It also provides bi-directional traceability between

numerous associated requirements. Requirements tracing

is the process of documenting the links between the user

requirements for the system and the work products

developed to implement and verify those requirements

[25]. Document Unique ID is given which is associated

with a specific requirement to easily trace that specific

document shown in Table 1.

Table 1. Template of Requirements Traceability Matrix [25].

R
e
q

u
ir

em
e
n

t
ID

R
e
q

u
ir

em
e
n

t
T

y
p

e

R
e
q

u
ir

em
e
n

t

d
e
sc

ri
p

ti
o

n

R
is

k
s

T
ra

c
e

fr
o

m
 u

se
r

R
e
q

u
ir

em
e
n

t/

T
ra

c
e

to
 s

y
st

e
m

R
e
q

u
ir

em
e
n

t

T
ra

c
e

to
 D

e
si

g
n

S
p

e
c
if

ic
a

ti
o

n

U
n

it
 T

e
st

 c
a

se

In
te

g
ra

ti
o

n
 T

e
st

C
a

se

S
y

st
e
m

 T
e
st

 c
a

se
s

U
se

r
 A

cc
e
p

ta
n

c
e

T
e
st

 c
a

se

T
ra

c
e

to
 T

es
t

S
c
r
ip

t

 Requirements Traceability Techniques

There are so many requirements traceability techniques,

but that were identified in the systematic review are

briefly described below [26].

 Information Retrieval (IR)

Information Retrieval (IR) [27, 28, 29] approach is

used to automate the generation of traceability links.

Commonly IR methods include, Probabilistic Models

(PM), Vector Space Model (VSM) and Latent Semantic

Indexing (LSI). IR methods are generally based on

similarity comparison and probabilistic value of two

artifacts.

 Event Based Traceability (EBT)

Event Based Traceability (EBT) approach was to

provide accurate maintenance of traceability relationships

as publisher-subscriber relationship [30, 31]. This

http://www.surfcanyon.com/search?q=traceability%20matrix%20RTM&f=slc&p=wtiffrwo

 TSSR: A Proposed Tool for Secure Software Requirement Management 7

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

relationship depends on object whenever a requirement

change occurs; an event message is published, which is

then notified to all.

 Rule Based (RB) Approach

Rule-based (RB) approach is to automatically generate

traceability links using rules [32]. There are two

requirement traceability rules: inter-requirement

traceability rule and requirement to- object model

traceability rule. The two rules are used for three specific

documents such as use case documents (UCD),

requirement statement document (RSD, and analysis

object model (AOM).

 Scenario-Based Approach (SB)

According to [32, 33] scenarios are used to model

system functionality and to generate functional test cases.

Scenarios-based test cases create a mapping between

requirements and other artifacts like design and code. The

traceability is established by mapping scenarios with the

design elements. Scenarios are created to trace only the

interesting cases, therefore they might not provide

complete coverage.

 Goal Centric Traceability (GCT)

The traceability of Non-Functional Requirements

(NFR) is difficult. This is due to the fact that extensive

interdependencies and trade-offs exists between them.

Goal Centric Traceability (GCT) technique has been

successfully evaluated in a case study with a real world

project [27].

4) The Tool Interface

The TSSR interfaces are used for a broad range of

external tools. Just an abrupt list would include:

requirements analysis tools; theorem provers and model

checkers; programming support tools; algebraic analysis

tools and numerical analysis tools; system simulation

tools; drawing tools; project management tools; and

version control tools. The TSSR assumes that tools apply

some function or commands to input data and produces

some diagnostic output data. The NDD command scripts

are used to input data to tools from the datastore, and are

sent to the appropriate syntactic form rear to the tool. The

TSSR received the tool output, inserted as appropriate

into the Datastore and NDD. The NDD provides the

linear program script which sequences the computations

to be beatific and sent to the tool. The tool computation is

controlled by the user through the NDD. Error messages

are handled properly and displayed appropriately to the

user. The TSSR architecture is abundant, flexible to

handle a variety of different external tools through means

of plug-ins, where as in the tool the plug-in encapsulates

the operator syntax. Plug-ins interfaces with

disambiguates and identical syntax has different meaning

in different tools.

B. The PROVER

The PROVER will be a TSSR plug-in which provides

theorem prover tools for high assurance of semantic

checking of mathematical models [17]. Isabelle is a

generic theorem prover, designed for interactive

reasoning in a variety of formal theories [34]. Isabelle

provides advantageous proof procedures for First-order

logics, Constructive Type Theory, set theory, and higher-

order logic. We briefly discuss the use and choice of

Isabelle, what is involved in defining the plug-in, and also

the benefits of the TSSR during this setting.

1) Theorem provers

A theorem prover tool provides a safe mechanism for

applying set Theory and inference rules of an accustomed

logic to accustomed axioms. The user extends a generic

theorem prover to core meta-theory in which object

logics can be constructed. Such tools provide an absolute

powerful environment for acumen reasoning in complex

or complicated settings without having the possibility of

making the absent minded mistakes which are so

prevalent, expensive and costly in human endeavors.

Isabelle tool plug-in is considered for the project. The

TSSR MODELLER modules principal application will be

considered for high assurance system modelling. Isabelle

is a generic theorem prover. It is written in standard XL.

In a programmable meta-language inference rules are

expressed as functions and the true propositions they

construct are known as theorems. By writing programs in

a meta-language, users automate the proof process as

much as desired.

A recent development of a “front-end” Isar language

which provides sophisticated support to the

mathematician or developers for the formal definition of

mathematical objects. The working environment is very

close to the ‘natural’mode of proof for the practicing

mathematician and it is machine-assisted and human

readable [35].

Isabelle allows users to define theories which are a

collection of named objects and theorems of principal

interest in the usual mathematics, especially for system

modelling, and the most advanced, is Higher Order Logic

(HOL) [36]. It is also observed that the meta-logic

(higher-order logic) has simple models and helpful for

informal mathematical reasoning. The user can extend

HOL to model a system of interest as required in named

theories files. Due to this it will be the core inclusion in

the theorem PROVER module.

Isabelle is an interactive proof tool. There are many

significant reasons to select an interactive tool because it

is well suited to the task of generic modelling. Isabelle

also features efficient automatic reasoning tools.

The user must select the implemented proof tactics at

each stage of the evolving proof. One of the reasons for

selecting Isabelle is that it has no rules for inputs or

outputs; they generally describe a relationship between

premises bounds and conclusion that must hold in a valid

proof [34].

There is no general algorithm for constructing a formal

proof of any assets; therefore an automatic tool is needed

to target a subclass of subgoals tightly. The interactive

proof tool clearly provides the user a lot of power so that

the user can extend the logical structure almost

indefinitely.

The user often needs to accumulate and keep track of

the logical changes involved; it is not necessarily an

acceptable idea to have tactics which accomplish an

8 TSSR: A Proposed Tool for Secure Software Requirement Management

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

ample change from one proof state to the next. The

machine-generated proof is unlikely to be very intuitive

or useful for the users, when the automatic proof attempt

does not succeed. TSSR modules target highly desirable

automatic theorem provers and model checkers in a later

phase.

2) The PROVER plug-in

Isabelle tool has a plug-in for the PROVER which has

five effects on the DOCUMENTER:

 With appropriate menus it can extend the user

interface to the tool;

 With appropriate tables it extends the DataStore to

the Isar language;

 The Prover Plug-in incorporates and manages the

files which is required by the tool, and producing

them from the natural input to the NDD;

 Prover Plug-in provides the appropriate code for the

tool interface which understands how to return from

a given Isar command initiated via the user’s NDD.

 Full traceability is provided by it, so that after

completion the user can see all the links.

On the basis of Isar experience the PROVER’s

graphical interface improves significantly. The PROVER

will allow significant automation of frequent activities.

The PROVER will accomplish it accessible for users to

analyze and inspect the new Isabelle code in powerful

ways by storing a simple model of an Isabelle

development in the Datastore. It will even be possible and

accessible to include the results of such analyses directly

in their documents to accept and update them

automatically with changes to the code.

C. The MODELLER

In Fig1, the framework of the tool has a MODELLER

module which is using the PROVER plug-in, that provide

a comprehensive, high-assurance environment for the

specification and design of critical engineering projects.

The MODELLER targets the design, modelling stages

of system development, verification, intelligent graphical

visualization of design, animation proof, and system

architecture for the critical importance for successful

acquisition of the projects. An extensive reasoning

environment has been developed in Isabelle/Isar to

support the TSSR approach to high-assurance

developments [37]. A sophisticated GUI foreground end

to this acumen reasoning environment which will be

developed using the DOCUMENTER and PROVER

infrastructure.

1) Requirements capture and analysis

The MODELLER requirements language has a feature

like Z- schema calculus [38]. As we have known that the

Z- schema calculus has proved to be an able and powerful

tool for naming, structuring, grouping and reusing

complex system requirements [17]. Moreover, for a

formal notation, it has an almost advanced relatively user

base. As such, it is a natural basis from which the TSSR

requirements language is built. In the TSSR, the schema

calculus is extended in the Object Z style with schema

types [39]. This brings the schema calculus benefits of

structuring and reuse to the description of complex

component hierarchies and is a critical enabler for the

treatment of very large systems [17].

2) Horizontal Design Hierarchies

Facilities for imposing a hierarchical structure which

allows reuse of common components that are critical to

the efficient specification and design of complex systems.

In addition, evocative visualizations of designs can

provide a powerful pedagogical aid [17]. In the TSSR, a

familiar block diagram is adopted as the basal tool for

system design. The TSSR block diagrams depict simple

input/output components. They have well defined input

and output interfaces; and allows the unrestricted use of

internal interfaces, including feedback loops. An able and

powerful typing discipline is imposed on all interfaces

that include the use of structured schema types and

polymorphism.

3) Vertical Design Hierarchies

To describe a system at different levels of abstraction

and to demonstrate corresponding arguments between the

different abstractions is an important mechanism for

developing and communicating system assurance.

Testing and reasoning must be used for appropriate

correspondences of the demonstrated abstraction levels.

Such a hierarchy of abstract system descriptions is

alleged as a vertical design, because it spans a number of

abstraction levels [17].

D. The PLANNER

1) Security Requirements Engineering Process (SREP)

The security requirements engineering process is a risk

driven and assets based methods which focuses on

security concepts write from the early phase of the

software development lifecycle [8].

2) Risk Management

Risk management is the identification, assessment, and

prioritization of risks. Risks can appear from uncertainty

or ambiguity in financial markets, credit risk, threats from

project failures, legal liabilities, accidents, natural or

accustomed causes and disasters as able-bodied as a

deliberate attack from an adversary, or events of

uncertain or ambiguous or unpredictable root-cause [49].

The strategies to manage threats typically include

transferring the threat to third parties, avoiding the threat,

reducing or abbreviating the negative effect or probability

of the threat, or even accepting some or all of the

potential or absolute consequences of a particular threat,

and the opposites for opportunities [40].

3) Identify security objectives, dependencies and threats

To determine the security objectives of the

organization as well as legal requirements, we will take

into account of security policies of that organization [51].

Assumption of security objectives for the environments

are retrieved and made in this process [8]. Treats target

asset which prevents security objective from being

achieved. It is better to develop artifacts to develop new

specific, generic threats or requirements and it is

necessary to look for threats that are not related to or

linked with the assets of the repository.

http://en.wikipedia.org/wiki/Risk
http://en.wikipedia.org/wiki/Root_cause

 TSSR: A Proposed Tool for Secure Software Requirement Management 9

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

4) Task Analysis

Task analysis defined as the study of what a user is

required to do to achieve a system goal in terms of

actions and/or cognitive processes [41, 42]. Task analysis

covers several techniques, but particular relevance to

• Hierarchical Task Analysis (HTA) is most

commonly used task analysis technique. HTA

technique is used to represent the relationships

between tasks and subtasks [43].

• Time Analysis (TA) is used to document the temporal

aspects of the tasks. TA technique is well suited for

possible resource problems in performing tasks and

represents task dependencies [43].

• LINK analysis is the simplest techniques, which is

simply demonstrating the frequency of linkage

between tasks. Most often link analysis is based on

observational data that is why it can be easily

performed [43].

Data about how target users plan to use the system-to-

be is modelled in TSSR using personas and tasks.

Although there is no agreed way of measuring the

usability of a task with respect to its participating

personas, persona and task, usability attributes match

attributes found in the ISO 9241-11 framework [44][45].

 (1)

Each property has an associated value x, maps in the

range and corresponds to the quantitative

value of none, low, medium and high respectively.

Usability of a task T, written as and computed

using formula 1

 is the mean task efficiency,

 is the mean task satisfaction and is the mean tack

effectiveness.

Variables t, f, m and c refer to task duration, frequency,

mental demands and goal conflicts respectively.

5) Risk Analysis

A risk analysis involves identifying the most probable

threats to project and analyzing the related vulnerabilities

of the project to these threats [53]. The risk analysis

process provides the foundation for the intact recovery

planning effort [46]. Threats are synonymous with attacks,

and vulnerabilities are properties of a system, making it

liable to exploitation [45].

 (2)

Each element n is scored based on the

value none, low medium or high.

is the likelihood of the thread, computed using

formula 2, where

is the likelihood of the thread T associated with

risk R.

 is the mean likelihood value for the thread TR

To score risks with respect to the perceived value of

the assets threatened, we model a security property using

a row vector [ciao], where c, i, a, and o represent the

values held for confidentiality, integrity, availability and

accountability respectively [47].

6) Impact Analysis

An impact analysis involves identifying the critical

functions of the project and determining the impact of not

performing the function beyond the maximum acceptable

outage [48]. Impact as a part determined to be affected,

and therefore worthy of inspection. Activity of

identifying what to modify to accomplish a change, or the

potential consequences of changes [50].

Risk impact I is illustrated by a security property,

representing the value of the assets at risk from threat T

[45].

 (3)

Risk impact IR is computed using formula 3, where

is the security property of associated with risk R,

is the security property of the vulnerable at risk.

 is the mean security property for risk threat.

To perform impact analysis different search algorithms

are identified. Each of these algorithms has been

presented in at least one paper [52]:

 Stochastically guided: probabilities used for

performing analysis and derived from the situation,

using characteristics of the artifacts.

 Unguided/exhaustive: traceability information is

used to identify a brute force solution. E.g

transitivity closure algorithms.

 Semantically guided: the analysis is performed for

objects and relationships using predetermined

semantics.

IV. TOOL INTERACTION

TSSR used to read third party tool format and export to

that format. As it is discussed earlier in this paper that

TSSR is having plugin architecture, this option will be

helpful in writing a TSSR plugin that recognizes files of

third party tools. The third party’s tool module will read

TSSR means, or more likely the whole projects. A plugin

for third party tool could be written in TSSR extension

language (EXL) to input and allow transparent, export of

the TSSR project into that tool. The Plugin would also be

written in the third party tool’s extension language, so

that it will allow them to import TSSR project into them.

V. CONCLUSION

We know that there are thousands of requirement

management tools that are available in the markets in

which few of them are free of cost. But for secure

software development only a few tools are helpful.

10 TSSR: A Proposed Tool for Secure Software Requirement Management

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

In this paper, we introduce a framework of a new tool

which is helpful for developing secure projects. The tool

has four components; MODELLER, PLANNER,

PROVER and DOCUMENTER, the tool is known as

TSSR. The PLANNER module includes risk analysis,

task analysis, which will be helpful in identifying,

analyzing the security aspects of the project. The

MODELLER module supports system modeling, system

architecture and verification of the projects. It also

provides intelligent graphical visualization of design and

reasoning about concurrency. The PROVER provides

intelligent management theory, literate reasoning, proof

support and theorem proving for checking of

mathematical models. The last module is the

DOCUMENTER which supports the power indexing,

structure view, editing of technical documents as well as

it provides an interface to external tools. It also manages

a central repository database which is using hill cipher

encryption and decryption security technique so that the

database will be secure. The Planner and Documenter

modules are useful in developing secure software right

from the initial stage in the vein of risk analyzing to

secure central repository system.

REFERENCES

[1] Anthony Finkelstein, Wolfgang Emmerich, “The Future of

Requirements Management Tools,” In: Information

Systems in Public Administration and Law, 2000.

[2] Daniyal M Alghazzawi, Shams Tabrez Siddiqui,

Mohammad Ubaidullah Bokhari, Hatem S Abu Hamatta,

"Selecting Appropriate Requirements Management Tool

for Developing Secure Enterprises Software,” IJITCS,

vol.6, no.4, pp.49-55, 2014. DOI:

10.5815/ijitcs.2014.04.06

[3] Rajat R Sud, James D Arthur, “Requirement Management

Tools-A Qualitative Assessment,” Technical Report 03-10,

February 01 2003.

[4] G. Kotonvy and I. Sommerville, Requirements

Engineering, John Wiley & Sons, New York, 1998.

[5] Shams Tabrez Siddiqui, “Needs, Types and Benefits of

Requirements Management Tools,” International Journal

of Trends in Computer Science, Volume 2, Issue 11, 2013

ISSN: 7462 – 8452.

[6] Vineet Kumar Maurya, “Suraksha: A Security Designers’

Workbench,” Presented at Hack.in 2009, IIT Kanpur,

India, 17-19 March 2009.

[7] Raimundas Matulevicius, “Process Support for

Requirement Engineering: A Requirement engineering

Tool Evaluation Approach,” Ph.D (Thesis), Department of

Computer and Information science, Norwegian University

of science and Technology. Trondheim, 2005

[8] Daniel Mellado, “A common criteria based security

requirements engineering process for the development of

secure information systems,” Computer Standards &

Interfaces 29, 244–253. Elsevier, 2007.

[9] K. Wiegers, Software Requirements, Microsoft Press,

Redmond, Wash., 1999.

[10] Jun Han, “TRAM: A Tool for Requirements and

Architecture Management,” in the Proceedings of the 24th

Australasian Computer Science Conference, Gold Coast,

Australia, 2001.

[11] “Requirements Management with Enterprises architect,” by

Sparx system, 2010 version1.3 Website:

www.sparxsystems.com

[12] M U Bokhari, Shams T Siddiqui,“A Comparative study of

software requirements tools for secure software

Development,” BVICAM‟S International Journal of IT

(BIJIT), 2010: 207-216.

[13] Matthias Weber and Joachim Weisbrod, “Requirements

Engineering in Automotive Development: Experiences and

Challenges,” IEEE Software, 2003.

[14] M. Hoffmann, N. Kuhn, M. Weber, and M. Bittner,

“Requirements for requirements management tools,” in

RE ’04: Proceedings of the 12th IEEE International

Conference on Requirements Engineering, Washington,

DC, USA, 2004, p. 301–308.

[15] Rajat R Sud, “Requirement Management Tool: Assessment

and Comparison,” Report, February 15, 2012- Version 10.

[16] Raimundas Matulevičius1, Patrick Heymans1, and

Guttorm Sindre2, “Comparing Goal-Modelling Tools With

The Re-Tool Evaluation Approach”, ISSN 1392 – 124X

Information Technology And Control, 2006, Vol.35,

No.3A

[17] Tony Cant, Jim McCarthy and Robyn Stanley, “Tools for

Requirements Management: a Comparison of Telelogic

DOORS and the HiVe”, Defence Science and Technology

Organisation, 2006

[18] Shams Tabrez Siddiqui, “Multilevel Security Spiral (MSS)

Model: NOVEL Approach”, International Journal of

Computer Applications (0975 – 8887) Volume 65– No.20,

March 2013

[19] Unicode. http://www.unicode.org/.

[20] Shams-ul-Arif, Qadeem Khan, S. A. K. Gahyyur,

“Requirements Engineering Processes, Tools/Technologies,

& Methodologies”, International Journal of Reviews in

Computing, 2009.

[21] Jasdeep Singh Bhalla, “A Database Encryption Technique

to Enhance Security Using Hill Cipher Algorithm,”

International Journal of Engineering and Advanced

Technology (IJEAT) ISSN: 2249 – 8958, Volume-2, Issue-

4, April 2013.

[22] Francesca Ricciardi, “Design and Normative Claims in

Organization Studies: A Methodological Proposal,”

Lecture Notes in Information Systems and Organisation 1,

DOI: 10.1007/978-3-642-33371-2_2, _ Springer-Verlag

Berlin Heidelberg 2013

[23] V Kumar, R Thareja, “Goal Structured Requirement

Engineering and Traceability Model for Data

Warehouses,” International Journal of Information

Technology and Computer Science, vol. 12, pg. 78-85.

2013

[24] R. J. Wieringa, “An Introduction to Requirements

Traceability,” Vrije Universiteit, Faculty of Mathematics

and Computer Science, Amsterdam, 1995.

[25] Software Testing-Requirements Traceability

Matrix.Website:http://www.etestinghub.com/requirements

_traceability_matrix.php

[26] Uzair Akbar Raja and Kashif Kamran, “Framework for

Requirements Traceability- TLFRT supporting pre-RS &

post-RS traceability,” School of Engineering Blekinge

Institute of Technology. Master Thesis, 2008

[27] J.Cleland-Huang, R. Settimi, O.B. Khadra, E.

Berezhanskaya, and S. Christina, “Goal-Centric

Traceability for Managing Non-Functional Requirements,”

Proceedings of the 27th international conference on

Software engineering ICSE '05, ACM, pp. 362-371. 2005

[28] J. Huffman Hayes, A. Dekhtyar, and J. Osborne,

“Improving Requirements Tracing via Information

http://www.academicjournalonline.co.in/pdf/new_ijtics/Needs%20Types%20and%20Benefits%20of%20Requirements%20Management%20Tools%20By%20Shams%20Tabrez%20siddiqui.pdf
http://www.academicjournalonline.co.in/pdf/new_ijtics/Needs%20Types%20and%20Benefits%20of%20Requirements%20Management%20Tools%20By%20Shams%20Tabrez%20siddiqui.pdf
http://www.sparxsystems.com/
http://www.unicode.org/
http://www.etestinghub.com/requirements_traceability_matrix.php
http://www.etestinghub.com/requirements_traceability_matrix.php

 TSSR: A Proposed Tool for Secure Software Requirement Management 11

Copyright © 2015 MECS I.J. Information Technology and Computer Science, 2015, 01, 1-11

Retrieval”, Proceedings of 11th IEEE International

Requirements Engineering Conference, IEEE CS Press,

2003, pp.138-147.

[29] J. Cleland-Huang, R. Settimi, C. Duan, and X. Zou,

“Utilizing supporting evidence to improve dynamic

requirements traceability,” Proceedings of IEEE

Intentional Requirement Engineering Conference, 2005, pp.

135–144.

[30] J. Cleland-Huang, C. Sethi, G. Javvaji, and K. Xia,

“Automating speculative queries through event-based

requirements traceability,” Proceedings of the IEEE Joint

International Requirements Engineering Conference

(RE‘02), 2002, pp. 289- 296.

[31] J. Cleland-Huang, C.K. Chang, and M. Christensen,

“Event-Based Traceability for Managing Evolutionary

Change,” IEEE Transactions on Software Engineering, vol.

29, no. 9, IEEE, 2003, pp. 796-810.

[32] F. Blaauboer, K. Sikkel, M.N. Aydin, “Deciding to Adopt

Requirements Traceability in Practice,” Springer Lecture

Notes in Computer Science, vol. 4495/2007, pp 294-308

[33] J.Cleland-Huang, “Toward Improved Traceability of Non-

Functional Requirements”, Proceedings of the 3rd

international workshop on Traceability in emerging forms

of software engineering TEFSE‘05, ACM, 2005, pp. 14-19.

[34] L. C. Paulson and T. Nipkow, “Isabelle: A Generic

Theorem Prover,” in volume 828 of LNCS.Springer-Verlag,

1994.

[35] Markus Wenzel, “Isar — a generic interpretative approach

to readable formal proof documents,” In Y. Bertot, G.

Dowek, A. Hirschowitz, C. Paulin, and L. Thery, editors,

Theorem Proving in Higher Order Logics: TPHOLs ’99,

volume 1690 of LNCS, 1999.

[36] T. Nipkow, L. C. Paulson, and M. Wenzel. Isabelle’s

Logics: HOL, 2001. Part of the Isabelle distribution,

http://isabelle.in.tum.de/doc/logics-HOL.pdf.

[37] B. P. Mahony. The DOVE approach to the design of

complex dynamic processes. 2002. In ‘TPHOLs 2002

(Track B)’,

http://techreports.larc.nasa.gov/ltrs/PDF/2002/cp/NASA-

2002-cp211736.pdf.

[38] J. M. Spivey. The Z Notation: A Reference Manual.

Second edn, Prentice Hall International.

[39] G. Smith. Logic for object-Z, Technical Report 94-48,

Software Verification Research Center, The University of

Queensland, 1994.

[40] Online on: http://en.wikipedia.org/wiki/Risk_management,

March 14, 2014.

[41] B. Kirwan, and L (eds). Ainsworth, K. A Guide to Task

Analysis. Taylor & Francis Ltd. 1992.

[42] J Richardson, T C Ormerod, A Shepherd, “The role of task

analysis in capturing requirements for interface design,”

Interacting with Computers, 1998.

[43] Pedro J. Valderas Aranda,” A Requirements Engineering

Approach for the Development of Web Applications,”

Department of Information Systems and Computation

Technical University of Valencia, Thesis, November 2007.

[44] ISO. ISO 9241-11. Ergonomic requirements for office

work with visual display terminals (VDT) s - Part 11

Guidance on usability. Technical report, 1998.

[45] Shamal Faily, “A framework for usable and secure system

design,” Ph.D(Thesis) Wolfson College University of

Oxford, Hilary Term 2011

[46] Geoffrey H. Wold and Robert F. Shriver, “Risk Analysis

Techniques,” Disaster Recovery Journal© 1997.

[47] IEC. IEC 61508: Functional safety of

electrical/electronic/programmable electronic safety-

related systems. Parts 1-7. International Electro technical

Commission, Switzerland, 1998-2005.

[48] B.J.M. Abma, “Evaluation of requirements management

tools with support for traceability-based change impact

analysis,” Master’s Thesis, September 10, 2009.

[49] Tousif ur Rehman, Muhammad Naeem Ahmed Khan,

Naveed Riaz, “Analysis of Requirement Engineering

Processes, Tools/Techniques and Methodologies,” In I.J.

Information Technology and Computer Science, 2013, 03,

40-48.

[50] S.A Bohner, and R.S Arnold, “Software change impact

analysis,” IEEE Computer Society Press, Los Alamitos,

Calif., 1996.

[51] M.U.Bokhari, “Metrics for Requirement Engineering and

Automated Requirement Tools,” Proceedings of the 5th

National Conference; INDIACom-2011, New Delhi, 2011

[52] S. A. Bohner, "Software Change Impacts - An Evolving

Perspective," Proc. IEEE International Conference on

Software Maintenance, Montreal, Canada, pp. 263-272, 3-

6 October, 2002.

[53] Muhammad Naeem Ahmed Khan, Muhammad Khalid,

Sami ul Haq, "Review of Requirements Management

Issues in Software Development," IJMECS, vol.5, no.1,

pp.21-27, 2013.DOI: 10.5815/ijmecs.2013.01.03

Authors’ Profiles
Prof (Dr) Mohammad Ubaidullah

Bokhari is currently working as a

Professor and Chairman, Department of

Computer Science, AMU, Aligarh. He

has published more than 90 research

papers in different reputed journals and

conference proceedings. He has also

authored 5 books on different fields of

Computer Science. His current research interests are

Requirement Engineering, cryptography, Software Reliability,

Wireless Network Security and Database.

Shams Tabrez Siddiqui received hisB.Sc

and MCA degree from Aligarh Muslim

University, Aligarh, India in 2003 and

2007. He is pursuing Ph.D in Software

Requirement Engineering from AMU,

Aligarh. He is also working as a counselor

for IGNOU. He has published 12 research

papers in different reputed international/

national journals and conference

proceedings. His research interest includes Requirement

Engineering, Software Engineering and Software Security. He

is a member of the Computer Society of India, ACM, IAENG

and IACSIT.

How to cite this paper: Mohammad Ubaidullah Bokhari,

Shams Tabrez Siddiqui,"TSSR: A Proposed Tool for Secure

Software Requirement Management", International Journal of

Information Technology and Computer Science(IJITCS), vol.7,

no.1, pp.1-11, 2015. DOI: 10.5815/ijitcs.2015.01.01

http://isabelle.in.tum.de/doc/logics-HOL.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2002/cp/NASA-2002-cp211736.pdf
http://techreports.larc.nasa.gov/ltrs/PDF/2002/cp/NASA-2002-cp211736.pdf
http://en.wikipedia.org/wiki/Risk_management

