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Abstract— In this paper we proposed an evolutionary approach 

for answering open-domain factoid questions, which include 

searching among sentences that are candidate for the final 

answer with Memetic Algorithm (MA), and using lexical and 

syntactic features for calculating fitness of the sentences. Our 

main purpose is making a search engine with accurate 

answering ability, or a web-based Question Answering (QA) 

system. The Text Retrieval Conference (TREC) QA Tracks data 

are used to develop and evaluate the approach. The answering 

process begins with retrieving related documents from a search 

engine. Then, MA searches among all the sentences of these 

documents and finds the best one. Finally, one or more words 

will be extracted based on our hand-made patterns. The results 

of different approaches for local search, mutation, and crossover, 

and also different values for number of reproduction and 

retrieved documents are investigated in the empirical study 

section. The results are promising with sufficient retrieved 

documents, and we have obtained a threshold value for this 

variable. Using MA instead of examining all the sentences is a 

trade-off between lowering the process time and sacrificing the 

accuracy, but the results show that the Mametic-based approach 

is more efficient. 

 

Index Terms— Question Answering, Memetic Algorithm, 

Information Extraction (IE), Natural Language Processing 

(NLP), Local Search, Evolutionary Computing, Dynamic 

Mutation Ratio  

 

I. INTRODUCTION 

Question Answering systems are advanced form of 

search engines and can provide accurate answer to a 

query, instead of a list of links to potentially relevant web 

pages. So, QA systems have additional step that extract 

exact answer from one of the retrieved sources. One of 

the main advantages of these systems is providing an 

easy interaction with huge set of text sources. These 

systems can resolve the information need indicated in a 

query, retrieve the related information, and extract an 

answer from them in a form with respect to the question 

[1]. An important usage of these systems is being an 

expert interface in systems such as automatic servicing to 

customers, for example Anna in Ikea web site, and 

answering user’s questions in instruments, like Siri in 

Apple. 

Early QA systems were designed in order to enable 

users to ask questions from structured data, like personnel 

data [2]. These structured-based systems can answer 

questions from a specific subject and that is why they are 

called Restricted-domain QA (RDQA) systems. But there 

are systems that can answer questions, independent of the 

domain and they are called Open-domain QA (ODQA) 

systems. The first ODQA system was MURAX [3] and it 

used Information Retrieval (IR) with NLP to answer 

questions. The ODQA approach differs significantly from 

RDQA, where a natural language query is transformed 

into a Structured Query Language (SQL). Instead, in 

ODQA, the answer must be extracted rather than 

executed [2]. 

Although off-line QA systems existed before the 

search engines, but the first web-based QA was 

developed many years after the appearance of the search 

engines in 2004, called START [4]. 

The direction of research in ODQA systems has been 

mainly handled by TREC. The Text Retrieval Conference 

arranged a competition for ODQA systems in 1999, 

called QA Track. The early competitions focused on 

factoid question, that is, questions requiring a simple fact. 

But two other question types were added later, named list 

questions, that is, questions requiring a list of items, and 

“other” questions, that is, questions requiring a fact about 

a subject that is not mentioned in the factoid and list 

questions. In addition to these three types, there are other 

question types based on TREC classification, including: 

definition, hypothetical, causal, relationship, procedural, 

and confirmation [5]. The target of this paper is 

answering the factoid questions. 

Another related issue is the corpus that the answers are 

extracted from. There are famous collections such as 

AQUAINT, which is used in TREC QA Track, but our 

approach was designed for web data, so the Internet texts 

are used. 

The remainder of this paper is organized as follows: in 

section 2, related works will be mentioned. In section 3, 

the overall structure of our approach will be represented, 

and sections 4 and 5 are empirical study and conclusions. 

 



40 A Memetic-Based Approach for Web-Based Question Answering 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 09, 39-45 

II. RELATED WORKS 

Evolutionary algorithms have been used in natural 

language processing problems such as ranking how-to 

questions [6], natural language tagging [7], text 

classification [8], and also question answering systems 

[9]. 

In Atkinson et al. [6] Genetic algorithm is used as 

evolutionary optimization for ranking how-to questions 

based on user generated contents. They represented each 

pair of question and answer sentences as a triplet {actor, 

action, object}. So, a how-to question is interpreted as the 

information required for how an actor (for example a 

person) can perform an action (for example solve) to an 

object (for example a Rubik) [6]. They performed 

crossover and other Genetic functions on these triplets in 

order to find the nearest content. 

In Alba et al. [7] the Genetic algorithm is used for 

natural language tagging. They used language tags of 

each word as chromosomes. The fitness of a chromosome 

is a measure of the total correctness probability of its tag 

sequence, according to their training data [7]. 

In Tsai et al. [8] the Genetic algorithm is used for text 

classification. 

Reference [9] used Artificial Immune System 

algorithm for a QA system. 

In Heie et al. [10] a lexical-syntactic approach is used 

for evaluating sentences in a QA system. They used 

question keywords and their hand-made patterns for 

sentence evaluation. 

 

III. STRUCTURE OF THE PROPOSED APPROACH 

All QA systems have three mutual parts: question 

analysis, information retrieval, and information extraction. 

In the question analysis part, system analyses the 

question, and extracts some features, for example 

keywords and question type, that will be used in the next 

parts. In IR part, system retrieves data elements based on 

the extracted features of the previous part. And in IE part, 

system extracts the requested information from the best 

retrieved element and represents it as the final answer. 

This part commonly contains a set of handcrafted rules or 

regular expressions, to extract information. 

Our overall process is illustrated in Fig. 1, where the 

main task is categorized in three groups of document 

retrieval, sentence extraction, and word extraction, which 

will be described in the next three parts. 

 Document retrieval part retrieves top-n (n is a 

variable and different values for it will be examined) 

related documents from a search engine like Google, 

and extracts their texts. The extraction phase is just 

from specific tags that have valuable text, for 

example from <p>text</p> tag. 

 Sentence extraction part first enforces a preprocess 

phase on the retrieved texts that contains splitting 

their sentences and eliminating a set of stop-words 

and punctuations from them. Then it finds the best 

sentence by Memetic algorithm. 

 Word extraction part extracts one or more words 

from the best sentence by means of our hand-made 

patterns and represents the word(s) as the final 

answer. 

 

The first part needs no more description but the other 

two parts will be described with details in the next two 

parts. 

 
Fig. 1. The overall process of the proposed approach, named 

CallSimorgh. 

 

A. Sentence Extraction 

In our proposed approach, named CallSimorgh, 

Memetic algorithm is used for searching among the 

candidates and it employs lexical and syntactic features 

for its fitness function. The lexical features are based on 

N-grams [11] and keywords. 

The syntactic feature that is used in the fitness function 

has a binary state that whether or not, the question and 

the candidate belong to a same pattern (one of our hand-

made patterns). The details of Memetic algorithm used in 

our approach will be described first, and its fitness 

function will be described after that. 

Memetic algorithm was introduced by Moscato [12] in 

1989. Memes are knowledge bricks and they can be 

altered and integrated with other memes to produce new 

ones. The first Memetic algorithm was a developed 

version of Genetic algorithm, including a new function, 

called local search operator [13]. 

MA has been used to solve complex problems recently 

and it has resulted in a high performance. In order to 

describe MA, it is possible to define it with respect to its 

2. Sentence Extraction 

  

1. Document Retrieval 

Answer 

 

3. Word Extraction 

Question 

 

Memetic Algorithm 

Extracting the best sentence 

Searching among the sentences  

Searching the question in a search engine 

Extracting one or more words from the best sentence, based on 

the hand-made patterns 

Preprocess 
 

Extracting the text of the top-n retrieved sources 

Splitting sentences 

Eliminating stop-words and punctuations 
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implementation features [13]. In this case, MA can be 

defined as follows: Memetic algorithm is a meta-heuristic, 

including of an evolutionary framework and a set of local 

search functions, which modify the generation in order to 

gain better individuals. 

Here the MA has been chosen to investigate the effects 

of the local search functions in QA systems area. 

The local search function lets some offspring to 

examine their adjacent candidates and update their fitness 

with the adjacent fitness, or update their fitness and also 

the sentence with the adjacent. The first procedure is 

called Baldwinian version and the second one is called 

Lamarckian version. 

The pseudo code of MA that is used in this paper is 

illustrated in Fig. 2. The overall steps are as follows: 

selecting the initial population, evaluating the initial 

population fitness, performing the local search function 

on initial population, and saving the best answer. Then 

the algorithm iterates Repcount times and performs the 

“For” loop. This loop contains: selecting the parents, 

performing crossover function, performing mutation 

function, evaluating the children, performing the local 

search function, replacing the new population, and saving 

the best answer. Each element of this code will be 

described in the following parts. 

 Population: the preprocess part splits sentences and 

then assigns a number to each sentence starting from 

1 to up. MA uses these numbers in binary form as 

the chromosomes or population. Each chromosome 

has a satellite data that indicates whether the 

sentence is first, last, or middle in its paragraph. 

 Inputs and outputs: inputs are illustrated in Table 1, 

and output is the best sentence. 

 Selection function: The algorithm chooses Popsize 

members of the population based on Proportional 

selection that is, selecting each individual with the 

probability of (1). 
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 Crossover function: The crossover and mutation 

function should produce new sentences, and also 

give credit to adjacent sentences of a high fitness 

candidate. Both Uniform and One-point crossovers 

are used and the results are represented in section 4. 

The crossover function is performed on every two 

possible parents with the probability of Pc, unless 

both are the same. 

 Mutation function: Fogarty [14] showed that 

dynamic mutation ratio increases the accuracy. He 

proposed (2) for changing the mutation probability 

Pm in tth iteration for jth bit (j is from 1 to nb; nb is the 

least significant bit). This method performs the 

Multiple-bits flipping mutation. 
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We updated this formula in order to apply the effect of 

the sentence fitness. If a sentence has a high fitness, its 

less significant bits will be changed with a high 

probability and if it has a low fitness, its more significant 

bits will be changed with a high probability. Our 

proposed equation is (3): 
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Table 1. The inputs of MA in the proposed approach 

Parameter Description 

Popsize Population size 

Pop Population with their fitness 

Probsize Number of all sentences in documents 

Pc Probability of the crossover 

Pm1 Probability of the first mutation 

Pm2 Probability of the second mutation 

MPopsize Memetic population size 

MPop Memetic population 

Repcount Number of reproduction 

Parsize Parent size 

Sbest Best sentence 

 

In order to set the final value between 0 and 1, the 

fitness is restricted to 3 digits of precision. So, (fit×1000) 

and Pꞌm are always between 0 and 1. 

 

Fig. 2. The pseudo code of MA in the proposed approach. 

 

Another mutation is also used that is, changing an odd 

value to even and vice versa with the probability of Pm2. 

The reason of performing this mutation is that the results 

showed the offspring of even values with One-point and 

Uniform crossovers are mostly even too (same for odd 

values). So offspring values with a probability will be 

added or subtracted by 1. 

Function MemeticAlgorithm Returns best visited sentence 

Inputs: Popsize, Probsize, Pc, Pm1, Pm2, MPopsize, Repcount, Parsize 

Output: Sbest 

        Pop = InitializePopulation(Popsize, Probsize) 

        EvaluatePopulation(Pop) 

        MPop = SelectMemeticPopulation(Pop, MPopsize) 

        Pop = LocalSearch(MPop) 

        Sbest = GetBestSolution(Pop) 

        For  i = 0 To i < Repcount  Do 

                Parents = SelectParents(Pop, Parsize) 

                Foreach parent1, parent2 In Parents Do 

                        child1, child2 = Crossover(parent1, parent2, Pc) 

                        Children = Mutation(child1, Pm1) 

      Children = Mutation(child1, Pm2) 

       Children = Mutation(child1, Pm1) 

                        Children = Mutation(child2, Pm2) 

                End  

                EvaluatePopulation(Children) 

                MPop = SelectMemeticPopulation(Children, MPopsize) 

                Children = LocalSearch(MPop) 

                Pop = Replace(Pop, Children) 

                Sbest = GetBestSolution(Pop) 

        End 

Return Sbest 
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 Local search function: The first local search that is 

used examines the next and previous K sentences of 

the randomly chosen high fitness sentences in order 

to replace a better neighbor with the original one. 

We proposed (4) for this purpose that with taking 

the fitness value, it gives a number that shows how 

many next and previous sentences must be examined. 
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5fit
K                                                      (4) 

To make this equation, some assumptions have been 

made. First, the highest value for the fitness must be 

indicated. For this reason, sentences are restricted to 

contain 1 to 16 words. With this assumption the highest 

fitness will be 9.107 according to our fitness function. 

And also a maximum for K must be indicated, that is, at 

most how many words can be examined. With 

assumption of 5 for the highest K, the output of (4) will 

be between 0 and 5. 

Our second local search is examining the first and last 

sentences in paragraph of the candidate. The first and last 

sentences of a paragraph mostly contain useful 

information that can be the final answer. 

In local search function the algorithm chooses MPopsize 

of the high fitness sentences with Proportional selection 

and performs the two local search functions on them. 

 Replacement function: The replacement function 

chooses 0.1 of the best parents and 0.9 of the best 

offspring. These values have the best result between 

three series of values that we tested. 

 Termination condition: The termination condition 

is that the number of iterations must reach to a 

certain number of Repcount. Different values for this 

variable were tested and the results are represented 

in section 4. 

 In the remaining paragraphs of this section, the 

details of the fitness function will be described. 

The question Q and the candidate (sentence) AC can be 

represented as a set of features. The feature groups that 

have been used for this purpose with their level of 

sophistication are illustrated in Fig. 3. Fig. 3 also contains 

the features that are used in this paper; containing lexical 

and syntactic features. The details of the features that we 

used will be described in the following paragraphs. 

 

Fig. 3. The groups of the features for evaluating the sentences, and the 

features that are used in the proposed approach. 

 

With a list of candidates, the probability that AC 

contains the final answer is shown as P(AC|Q). Each 

candidate that has the best value will be the sentence of 

the final answer A based on (5). 

 )|(maxarg QAPA C
AC                                       
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But the question Q can be represented as a set of 

features F: 

F={QK, QG, QT}.                                                        (6) 

 QT (Question type): the words of the question, 

mostly the beginning ones that show the question 

type, like where, when, how many, and so on. The 

candidate type must match with the question type. 

Our hand-made question types will be described in 

part B of this section. 

 QK (Question keywords): the keywords of the 

question, excluding the QT words and propositions. 

 QG (Question N-grams): the bigrams and trigrams 

of the question. The QK unigrams are separated from 

QG because there is no need to examine all words, 

including the QT words and propositions, and also 

different weights are assigned to each one. 

 

For example in question “Where is the capital of Iran?”, 

“Where” and  “is” belong to QT, “capital” and “Iran” 

belong to QK, and “capital of”, “of Iran”, and “capital of 

Iran” belong to QG. Sometimes only QG discriminates the 

candidates. For example in the previous question, two 

candidates “Tehran is the capital of Iran” and “Tehran is 

the capital of Tehran province and it is the most 

populated city of Iran” have question keywords and type, 

but only the first one has N-grams and this feature will 

separate them. 

The main equation that is used for calculating the 

relevance of a candidate to a question is (7): 

P(AC|Q)=α×P (AC|QT)+β×P(AC|QK)+γ×P(AC|QG).  (7) 

The weights α, β, and γ are assigned manually to this 

features based on our experiments. The values are 0/1, 

0/5, and 0/4. The calculation details of each part of (7) 

will be described in the following parts. 

QT is a set of question and answer hand-made patterns, 

called P that we made from TREC 2006 questions and 

answers. If the question and the answer patterns match, 

QT will become 1 and if they don’t, it will become 0 

based on (8). We constructed 26 hand-made patterns for 

this purpose. 

  T1 Q
|  .

0 otherwise

C i i

C T

if i P A P P
P A Q

     
 


   (8) 

To implement the QK, first all subsets of the question, 

called Si (i is from 1 to n), must be made. Then for every 

candidate, number of intersection of words with each 

subset must be calculated and divided by the length of the 

intersection. The division of these results by n will be the 

final value for QK based on (9). 

P(AC | QK) = 





n

i i

iC

S

SA

n 1

1

                                 

(9) 

And in order to calculate QG, all bigrams and trigrams 

of the question, called Gi (i is from 1 to m), must be made. 

Lexical features: Keywords, Bigrams, 

and Trigrams. 

Syntactic features: Question type. 

Semantic features: - 

Pragmatic features: - 

Level of 

sophistication 
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Then, for every candidate, QG will be division of number 

of matched N-grams by m based on (10).

 
P(AC | QG) = 





m
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1                                       (10) 

B. Word Extraction 

In order to show the overall process and also the word 

extraction part, an example will be mentioned. In 

question “For which newspaper does Krugman write?”, 

the candidate “He is an op-ed columnist for The New 

York Times newspaper” will get the values 0.5, 1, and 0 

for QK, QT, and QG and with multiplying these values by 

the weights, we will have 0.25, 0.1, and 0 and the fitness 

will be 0.35. Another candidate is “Krugman writes as a 

columnist in The New York Times newspaper.” That will 

get 0.5, 0, and 0.2 values and 0.25, 0, and 0.08 with 

multiplying by the weights, and the fitness will be 0.33. 

The first candidate has a higher fitness value because the 

question type is matched, although second one has a 

bigram. 

Now for extracting words, one of the patterns must be 

used. The related pattern for this question is: 

QUESTION = <“For which [NOUN]”> 

And its related answer pattern (one of its alternations) 

is: 

ANSWER = <“for [FINAL_ANSWER=The New York 

Times] [NOUN=newspaper]”> 

So, “The New York Times” will be the final answer. 

The noun phrase of the sentence can be indicated by a 

POS-tagger. 

In the next paragraphs all of our patterns will be 

described, including some of the TREC 2007 questions 

which have that pattern. 

 Where questions: The answer of the “Where” 

questions are mostly contains propositions like 

[in|near|at|from] that fallowed by one or more words 

that their first character is capital case, for example 

“in Tehran” or “at Tarbiat Modares”. TREC 

example: “Where does Butcher live?”. 

 When questions: The answer of the “When” 

questions are mostly contains propositions like 

[in|on|at] that fallowed by a set of numbers and/or 

group of first character capital case words, for 

example “on March 22” or “in 2014”. TREC 

example: “When did Irving Berlin die?”. 

 On what, In what, and By what questions: The 

answers of this group contains one of the 

[in|near|at|from|on|by] propositions that fallowed by 

a set of numbers and/or group of first character 

capital case words, for example “by Ferdosi” or “in 

Iran”. TREC examples: “On what TV show does 

Hammond regularly appear?”, “In what year was the 

IMG founded?”, and “By what other name is Merrill 

known?”. 

 On which, At which, From which, and For which 

questions: The answers of this group contains one 

of the [in|near|at|from|on|for] propositions that 

fallowed by a set of numbers and/or group of first 

character capital case words, for example “from 

Persian gulf”, “for Bazinama magazine”. TREC 

examples: “At which university does Krugman 

teach?”, “From which university did Krugman 

receive his Ph.D.?”, “On which street is Merrill 

Lynch headquarters located?”, “For which Kurt 

Weill song did Bobby Darin receive a Grammy 

award?”, and sometimes in a form like “Hammond’s 

shows appear on which network?”. 

 How old, How much, and How many questions: 

The answers of these questions are mostly contains 

numbers in the numeric or alphabetic form. TREC 

examples: “How old is Darrell Hammond?”, “How 

many songs did Irving Berlin compose?”, and “How 

much does an American Girl doll cost?”. 

 Which, How, Whose, and What questions: The 

answers of these questions are mostly the noun 

phrase of the answer’s sentence, except the question 

keywords. TREC example: “Which company is Jay-

Z president of?”, “Whose place would Miers have 

taken on the Supreme Court?”, “How did Irving 

Berlin die?”, and “What is Krugman’s academic 

specialty?”. 

 Who questions: The answers of the “Who” 

questions are mostly contains propositions like 

[by|with] that fallowed by one or more words that 

their first character is capital case, for example “by 

Cyrus”, and “with Dariush”. TREC example: “Who 

is Cunard’s president and managing director?” 

 

IV. EMPIRICAL STUDY 

For evaluation of our approach, we used TREC 2007 

(the last QA track) questions and answers. The questions 

are from 70 subjects and each one has about 4 factoid 

questions [15]. 

In TREC QA tracks, the accuracy measure has been 

used to assess system performance and it investigates 

whether the final answer is the exact requested answer or 

not, that means, not more and not less. We have tested 

TREC 2007 questions with web data because our purpose 

was building a web-based system. The TREC questions 

were searched in Google and sentences of the top-n web 

sites were used as the population of MA. The accuracy of 

the system was calculated for different values of n and 

the results are illustrated in Fig. 4. The best accuracy is 

0.37 for n=19. 
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Fig. 4. The accuracy of the proposed approach with different number of 

retrieved documents values. 
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The number of reproduction variable is set to 12 in the 

previous test. But this variable has a direct effect in 

calculating the accuracy. So the accuracy with different 

values for this variable was calculated and the results are 

illustrated in Fig. 5. In this test and following tests, the 

number of the retrieved documents (or n) is equal to 19. 
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Fig. 5. The accuracy of the proposed approach with different number of 

reproduction values in MA. 

 

In the both previous tests, Lamarckian approach is 

used for the local search function. The comparison of 

Lamarckian and Baldwinian approaches for the local 

search functions (for two local searches that are used) is 

illustrated in Fig. 6. The results show that Lamarckian 

approach has a better output in our implementation. 
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Fig. 6. The accuracy of the proposed approach with Lamarckian and 

Baldwinian approaches for the local search function. 

 

In the three previous examples, Uniform approach is 

used for the crossover function. The comparison of One-

point and Uniform approaches is illustrated in Fig. 7. The 

results show that the Uniform approach has a better 

output in our implementation. 
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Fig. 7. The accuracy of the proposed approach with One-point and 

Uniform approaches for the crossover function. 

In the four previous examples, our proposed mutation 

approach is used for the mutation function. Comparison 

of three different approaches, including: Single-bit 

flipping, Fogarty’s [14] approach, and the proposed 

mutation (3) is illustrated in Fig. 8. The results show that 

our proposed approach has a better output in our 

implementation. 

0.26

0.33 0.34

0.08

0.370.36
0.3

0.12
0.2

0.27
0.29

0.07

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 11 12

Number of reproduction in MA

A
cc

u
ra

cy

Fogarty's [14] approach

Proposed mutation (3)

Single-bit flipping

 
Fig. 8. The accuracy of the proposed approach with three types of 

mutation functions. 

 

In order to highlight the usage of MA, the accuracy and 

process time comparisons between evaluating all the 

sentences approach and searching with MA approach are 

illustrated in Fig. 9 and Fig. 10. The results show that 

evaluating all the sentences has a better accuracy, 0.42 in 

best case, but this better accuracy has the side effect of 

more process time. The MA has a lower accuracy but the 

difference is tolerable with respect to much better process 

time. 
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Fig. 9. Comparison of the accuracy of the proposed approach with the 

accuracy of the evaluating all the sentences approach. 

 

The overall evaluation shows that our results are 

promising with sufficient retrieved documents. To 

quantify this sufficient value, we obtained a threshold for 

the number of retrieved documents variable (n=19). 
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Fig. 9. Comparison of the process time of the proposed approach with 

the process time of the evaluating all the sentences approach. 

 

V. CONCLUSION 

In this paper we proposed an evolutionary approach for 

Question answering systems. Memetic algorithm is used 

because its local search function has a valuable effect to 

reach a high accuracy. The results showed that our 

approach is more efficient than examining the sentences 

one by one, with respect to the accuracy and process time. 

A set of equations are proposed for sentence fitness, local 

search, and dynamic mutation ratio. And a set of patterns 

are made for questions and answers. The best values for 

number of reproduction and number of retrieved 

documents are also investigated. 

But we only performed answering of the factoid 

questions and answering to other types can be 

investigated in future works. The features that were used 

can also become more sophisticated in future works. And 

our hand-made patterns can be upgraded with evaluating 

more questions and answers. 
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