
I.J. Information Technology and Computer Science, 2014, 09, 39-45
Published Online August 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.09.05

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

A Memetic-Based Approach for Web-Based

Question Answering

Iman Khodadi
Faculty of Electrical and Computer Engineering of Tarbiat Modares University, Tehran, Iran

E-mail: iman.khodadi@modares.ac.ir

Mohammad Saniee Abadeh
Faculty of Electrical and Computer Engineering of Tarbiat Modares University, Tehran, Iran

E-mail: saniee@modares.ac.ir

Abstract— In this paper we proposed an evolutionary approach

for answering open-domain factoid questions, which include

searching among sentences that are candidate for the final

answer with Memetic Algorithm (MA), and using lexical and

syntactic features for calculating fitness of the sentences. Our

main purpose is making a search engine with accurate

answering ability, or a web-based Question Answering (QA)

system. The Text Retrieval Conference (TREC) QA Tracks data

are used to develop and evaluate the approach. The answering

process begins with retrieving related documents from a search

engine. Then, MA searches among all the sentences of these

documents and finds the best one. Finally, one or more words

will be extracted based on our hand-made patterns. The results

of different approaches for local search, mutation, and crossover,

and also different values for number of reproduction and

retrieved documents are investigated in the empirical study

section. The results are promising with sufficient retrieved

documents, and we have obtained a threshold value for this

variable. Using MA instead of examining all the sentences is a

trade-off between lowering the process time and sacrificing the

accuracy, but the results show that the Mametic-based approach

is more efficient.

Index Terms— Question Answering, Memetic Algorithm,

Information Extraction (IE), Natural Language Processing

(NLP), Local Search, Evolutionary Computing, Dynamic

Mutation Ratio

I. INTRODUCTION

Question Answering systems are advanced form of

search engines and can provide accurate answer to a

query, instead of a list of links to potentially relevant web

pages. So, QA systems have additional step that extract

exact answer from one of the retrieved sources. One of

the main advantages of these systems is providing an

easy interaction with huge set of text sources. These

systems can resolve the information need indicated in a

query, retrieve the related information, and extract an

answer from them in a form with respect to the question

[1]. An important usage of these systems is being an

expert interface in systems such as automatic servicing to

customers, for example Anna in Ikea web site, and

answering user’s questions in instruments, like Siri in

Apple.

Early QA systems were designed in order to enable

users to ask questions from structured data, like personnel

data [2]. These structured-based systems can answer

questions from a specific subject and that is why they are

called Restricted-domain QA (RDQA) systems. But there

are systems that can answer questions, independent of the

domain and they are called Open-domain QA (ODQA)

systems. The first ODQA system was MURAX [3] and it

used Information Retrieval (IR) with NLP to answer

questions. The ODQA approach differs significantly from

RDQA, where a natural language query is transformed

into a Structured Query Language (SQL). Instead, in

ODQA, the answer must be extracted rather than

executed [2].

Although off-line QA systems existed before the

search engines, but the first web-based QA was

developed many years after the appearance of the search

engines in 2004, called START [4].

The direction of research in ODQA systems has been

mainly handled by TREC. The Text Retrieval Conference

arranged a competition for ODQA systems in 1999,

called QA Track. The early competitions focused on

factoid question, that is, questions requiring a simple fact.

But two other question types were added later, named list

questions, that is, questions requiring a list of items, and

“other” questions, that is, questions requiring a fact about

a subject that is not mentioned in the factoid and list

questions. In addition to these three types, there are other

question types based on TREC classification, including:

definition, hypothetical, causal, relationship, procedural,

and confirmation [5]. The target of this paper is

answering the factoid questions.

Another related issue is the corpus that the answers are

extracted from. There are famous collections such as

AQUAINT, which is used in TREC QA Track, but our

approach was designed for web data, so the Internet texts

are used.

The remainder of this paper is organized as follows: in

section 2, related works will be mentioned. In section 3,

the overall structure of our approach will be represented,

and sections 4 and 5 are empirical study and conclusions.

40 A Memetic-Based Approach for Web-Based Question Answering

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

II. RELATED WORKS

Evolutionary algorithms have been used in natural

language processing problems such as ranking how-to

questions [6], natural language tagging [7], text

classification [8], and also question answering systems

[9].

In Atkinson et al. [6] Genetic algorithm is used as

evolutionary optimization for ranking how-to questions

based on user generated contents. They represented each

pair of question and answer sentences as a triplet {actor,

action, object}. So, a how-to question is interpreted as the

information required for how an actor (for example a

person) can perform an action (for example solve) to an

object (for example a Rubik) [6]. They performed

crossover and other Genetic functions on these triplets in

order to find the nearest content.

In Alba et al. [7] the Genetic algorithm is used for

natural language tagging. They used language tags of

each word as chromosomes. The fitness of a chromosome

is a measure of the total correctness probability of its tag

sequence, according to their training data [7].

In Tsai et al. [8] the Genetic algorithm is used for text

classification.

Reference [9] used Artificial Immune System

algorithm for a QA system.

In Heie et al. [10] a lexical-syntactic approach is used

for evaluating sentences in a QA system. They used

question keywords and their hand-made patterns for

sentence evaluation.

III. STRUCTURE OF THE PROPOSED APPROACH

All QA systems have three mutual parts: question

analysis, information retrieval, and information extraction.

In the question analysis part, system analyses the

question, and extracts some features, for example

keywords and question type, that will be used in the next

parts. In IR part, system retrieves data elements based on

the extracted features of the previous part. And in IE part,

system extracts the requested information from the best

retrieved element and represents it as the final answer.

This part commonly contains a set of handcrafted rules or

regular expressions, to extract information.

Our overall process is illustrated in Fig. 1, where the

main task is categorized in three groups of document

retrieval, sentence extraction, and word extraction, which

will be described in the next three parts.

 Document retrieval part retrieves top-n (n is a

variable and different values for it will be examined)

related documents from a search engine like Google,

and extracts their texts. The extraction phase is just

from specific tags that have valuable text, for

example from <p>text</p> tag.

 Sentence extraction part first enforces a preprocess

phase on the retrieved texts that contains splitting

their sentences and eliminating a set of stop-words

and punctuations from them. Then it finds the best

sentence by Memetic algorithm.

 Word extraction part extracts one or more words

from the best sentence by means of our hand-made

patterns and represents the word(s) as the final

answer.

The first part needs no more description but the other

two parts will be described with details in the next two

parts.

Fig. 1. The overall process of the proposed approach, named

CallSimorgh.

A. Sentence Extraction

In our proposed approach, named CallSimorgh,

Memetic algorithm is used for searching among the

candidates and it employs lexical and syntactic features

for its fitness function. The lexical features are based on

N-grams [11] and keywords.

The syntactic feature that is used in the fitness function

has a binary state that whether or not, the question and

the candidate belong to a same pattern (one of our hand-

made patterns). The details of Memetic algorithm used in

our approach will be described first, and its fitness

function will be described after that.

Memetic algorithm was introduced by Moscato [12] in

1989. Memes are knowledge bricks and they can be

altered and integrated with other memes to produce new

ones. The first Memetic algorithm was a developed

version of Genetic algorithm, including a new function,

called local search operator [13].

MA has been used to solve complex problems recently

and it has resulted in a high performance. In order to

describe MA, it is possible to define it with respect to its

2. Sentence Extraction

1. Document Retrieval

Answer

3. Word Extraction

Question

Memetic Algorithm

Extracting the best sentence

Searching among the sentences

Searching the question in a search engine

Extracting one or more words from the best sentence, based on

the hand-made patterns

Preprocess

Extracting the text of the top-n retrieved sources

Splitting sentences

Eliminating stop-words and punctuations

 A Memetic-Based Approach for Web-Based Question Answering 41

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

implementation features [13]. In this case, MA can be

defined as follows: Memetic algorithm is a meta-heuristic,

including of an evolutionary framework and a set of local

search functions, which modify the generation in order to

gain better individuals.

Here the MA has been chosen to investigate the effects

of the local search functions in QA systems area.

The local search function lets some offspring to

examine their adjacent candidates and update their fitness

with the adjacent fitness, or update their fitness and also

the sentence with the adjacent. The first procedure is

called Baldwinian version and the second one is called

Lamarckian version.

The pseudo code of MA that is used in this paper is

illustrated in Fig. 2. The overall steps are as follows:

selecting the initial population, evaluating the initial

population fitness, performing the local search function

on initial population, and saving the best answer. Then

the algorithm iterates Repcount times and performs the

“For” loop. This loop contains: selecting the parents,

performing crossover function, performing mutation

function, evaluating the children, performing the local

search function, replacing the new population, and saving

the best answer. Each element of this code will be

described in the following parts.

 Population: the preprocess part splits sentences and

then assigns a number to each sentence starting from

1 to up. MA uses these numbers in binary form as

the chromosomes or population. Each chromosome

has a satellite data that indicates whether the

sentence is first, last, or middle in its paragraph.

 Inputs and outputs: inputs are illustrated in Table 1,

and output is the best sentence.

 Selection function: The algorithm chooses Popsize

members of the population based on Proportional

selection that is, selecting each individual with the

probability of (1).

j

j

i
iselectionalproportion

xfit

xfit
xP

)(

)(
 =)(_ (1)

 Crossover function: The crossover and mutation

function should produce new sentences, and also

give credit to adjacent sentences of a high fitness

candidate. Both Uniform and One-point crossovers

are used and the results are represented in section 4.

The crossover function is performed on every two

possible parents with the probability of Pc, unless

both are the same.

 Mutation function: Fogarty [14] showed that

dynamic mutation ratio increases the accuracy. He

proposed (2) for changing the mutation probability

Pm in tth iteration for jth bit (j is from 1 to nb; nb is the

least significant bit). This method performs the

Multiple-bits flipping mutation.

 11 2

4026.0

21905

28
),(

jtjm tjP (2)

We updated this formula in order to apply the effect of

the sentence fitness. If a sentence has a high fitness, its

less significant bits will be changed with a high

probability and if it has a low fitness, its more significant

bits will be changed with a high probability. Our

proposed equation is (3):

)1000/()
2

4026.0

21905

28
(),(

11
fittjP

jtjm
 (3)

Table 1. The inputs of MA in the proposed approach

Parameter Description

Popsize Population size

Pop Population with their fitness

Probsize Number of all sentences in documents

Pc Probability of the crossover

Pm1 Probability of the first mutation

Pm2 Probability of the second mutation

MPopsize Memetic population size

MPop Memetic population

Repcount Number of reproduction

Parsize Parent size

Sbest Best sentence

In order to set the final value between 0 and 1, the

fitness is restricted to 3 digits of precision. So, (fit×1000)

and Pꞌm are always between 0 and 1.

Fig. 2. The pseudo code of MA in the proposed approach.

Another mutation is also used that is, changing an odd

value to even and vice versa with the probability of Pm2.

The reason of performing this mutation is that the results

showed the offspring of even values with One-point and

Uniform crossovers are mostly even too (same for odd

values). So offspring values with a probability will be

added or subtracted by 1.

Function MemeticAlgorithm Returns best visited sentence

Inputs: Popsize, Probsize, Pc, Pm1, Pm2, MPopsize, Repcount, Parsize

Output: Sbest

 Pop = InitializePopulation(Popsize, Probsize)

 EvaluatePopulation(Pop)

 MPop = SelectMemeticPopulation(Pop, MPopsize)

 Pop = LocalSearch(MPop)

 Sbest = GetBestSolution(Pop)

 For i = 0 To i < Repcount Do

 Parents = SelectParents(Pop, Parsize)

 Foreach parent1, parent2 In Parents Do

 child1, child2 = Crossover(parent1, parent2, Pc)

 Children = Mutation(child1, Pm1)

 Children = Mutation(child1, Pm2)

 Children = Mutation(child1, Pm1)

 Children = Mutation(child2, Pm2)

 End

 EvaluatePopulation(Children)

 MPop = SelectMemeticPopulation(Children, MPopsize)

 Children = LocalSearch(MPop)

 Pop = Replace(Pop, Children)

 Sbest = GetBestSolution(Pop)

 End

Return Sbest

42 A Memetic-Based Approach for Web-Based Question Answering

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

 Local search function: The first local search that is

used examines the next and previous K sentences of

the randomly chosen high fitness sentences in order

to replace a better neighbor with the original one.

We proposed (4) for this purpose that with taking

the fitness value, it gives a number that shows how

many next and previous sentences must be examined.

107.9

5fit
K (4)

To make this equation, some assumptions have been

made. First, the highest value for the fitness must be

indicated. For this reason, sentences are restricted to

contain 1 to 16 words. With this assumption the highest

fitness will be 9.107 according to our fitness function.

And also a maximum for K must be indicated, that is, at

most how many words can be examined. With

assumption of 5 for the highest K, the output of (4) will

be between 0 and 5.

Our second local search is examining the first and last

sentences in paragraph of the candidate. The first and last

sentences of a paragraph mostly contain useful

information that can be the final answer.

In local search function the algorithm chooses MPopsize

of the high fitness sentences with Proportional selection

and performs the two local search functions on them.

 Replacement function: The replacement function

chooses 0.1 of the best parents and 0.9 of the best

offspring. These values have the best result between

three series of values that we tested.

 Termination condition: The termination condition

is that the number of iterations must reach to a

certain number of Repcount. Different values for this

variable were tested and the results are represented

in section 4.

 In the remaining paragraphs of this section, the

details of the fitness function will be described.

The question Q and the candidate (sentence) AC can be

represented as a set of features. The feature groups that

have been used for this purpose with their level of

sophistication are illustrated in Fig. 3. Fig. 3 also contains

the features that are used in this paper; containing lexical

and syntactic features. The details of the features that we

used will be described in the following paragraphs.

Fig. 3. The groups of the features for evaluating the sentences, and the

features that are used in the proposed approach.

With a list of candidates, the probability that AC

contains the final answer is shown as P(AC|Q). Each

candidate that has the best value will be the sentence of

the final answer A based on (5).

)|(maxarg QAPA C
AC

(5)

But the question Q can be represented as a set of

features F:

F={QK, QG, QT}. (6)

 QT (Question type): the words of the question,

mostly the beginning ones that show the question

type, like where, when, how many, and so on. The

candidate type must match with the question type.

Our hand-made question types will be described in

part B of this section.

 QK (Question keywords): the keywords of the

question, excluding the QT words and propositions.

 QG (Question N-grams): the bigrams and trigrams

of the question. The QK unigrams are separated from

QG because there is no need to examine all words,

including the QT words and propositions, and also

different weights are assigned to each one.

For example in question “Where is the capital of Iran?”,

“Where” and “is” belong to QT, “capital” and “Iran”

belong to QK, and “capital of”, “of Iran”, and “capital of

Iran” belong to QG. Sometimes only QG discriminates the

candidates. For example in the previous question, two

candidates “Tehran is the capital of Iran” and “Tehran is

the capital of Tehran province and it is the most

populated city of Iran” have question keywords and type,

but only the first one has N-grams and this feature will

separate them.

The main equation that is used for calculating the

relevance of a candidate to a question is (7):

P(AC|Q)=α×P (AC|QT)+β×P(AC|QK)+γ×P(AC|QG). (7)

The weights α, β, and γ are assigned manually to this

features based on our experiments. The values are 0/1,

0/5, and 0/4. The calculation details of each part of (7)

will be described in the following parts.

QT is a set of question and answer hand-made patterns,

called P that we made from TREC 2006 questions and

answers. If the question and the answer patterns match,

QT will become 1 and if they don’t, it will become 0

based on (8). We constructed 26 hand-made patterns for

this purpose.

 T1 Q
| .

0 otherwise

C i i

C T

if i P A P P
P A Q

 (8)

To implement the QK, first all subsets of the question,

called Si (i is from 1 to n), must be made. Then for every

candidate, number of intersection of words with each

subset must be calculated and divided by the length of the

intersection. The division of these results by n will be the

final value for QK based on (9).

P(AC | QK) =

n

i i

iC

S

SA

n 1

1

(9)

And in order to calculate QG, all bigrams and trigrams

of the question, called Gi (i is from 1 to m), must be made.

Lexical features: Keywords, Bigrams,

and Trigrams.

Syntactic features: Question type.

Semantic features: -

Pragmatic features: -

Level of

sophistication

 A Memetic-Based Approach for Web-Based Question Answering 43

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

Then, for every candidate, QG will be division of number

of matched N-grams by m based on (10).

P(AC | QG) =

m

i

iC

m

GA

1 (10)

B. Word Extraction

In order to show the overall process and also the word

extraction part, an example will be mentioned. In

question “For which newspaper does Krugman write?”,

the candidate “He is an op-ed columnist for The New

York Times newspaper” will get the values 0.5, 1, and 0

for QK, QT, and QG and with multiplying these values by

the weights, we will have 0.25, 0.1, and 0 and the fitness

will be 0.35. Another candidate is “Krugman writes as a

columnist in The New York Times newspaper.” That will

get 0.5, 0, and 0.2 values and 0.25, 0, and 0.08 with

multiplying by the weights, and the fitness will be 0.33.

The first candidate has a higher fitness value because the

question type is matched, although second one has a

bigram.

Now for extracting words, one of the patterns must be

used. The related pattern for this question is:

QUESTION = <“For which [NOUN]”>

And its related answer pattern (one of its alternations)

is:

ANSWER = <“for [FINAL_ANSWER=The New York

Times] [NOUN=newspaper]”>

So, “The New York Times” will be the final answer.

The noun phrase of the sentence can be indicated by a

POS-tagger.

In the next paragraphs all of our patterns will be

described, including some of the TREC 2007 questions

which have that pattern.

 Where questions: The answer of the “Where”

questions are mostly contains propositions like

[in|near|at|from] that fallowed by one or more words

that their first character is capital case, for example

“in Tehran” or “at Tarbiat Modares”. TREC

example: “Where does Butcher live?”.

 When questions: The answer of the “When”

questions are mostly contains propositions like

[in|on|at] that fallowed by a set of numbers and/or

group of first character capital case words, for

example “on March 22” or “in 2014”. TREC

example: “When did Irving Berlin die?”.

 On what, In what, and By what questions: The

answers of this group contains one of the

[in|near|at|from|on|by] propositions that fallowed by

a set of numbers and/or group of first character

capital case words, for example “by Ferdosi” or “in

Iran”. TREC examples: “On what TV show does

Hammond regularly appear?”, “In what year was the

IMG founded?”, and “By what other name is Merrill

known?”.

 On which, At which, From which, and For which

questions: The answers of this group contains one

of the [in|near|at|from|on|for] propositions that

fallowed by a set of numbers and/or group of first

character capital case words, for example “from

Persian gulf”, “for Bazinama magazine”. TREC

examples: “At which university does Krugman

teach?”, “From which university did Krugman

receive his Ph.D.?”, “On which street is Merrill

Lynch headquarters located?”, “For which Kurt

Weill song did Bobby Darin receive a Grammy

award?”, and sometimes in a form like “Hammond’s

shows appear on which network?”.

 How old, How much, and How many questions:

The answers of these questions are mostly contains

numbers in the numeric or alphabetic form. TREC

examples: “How old is Darrell Hammond?”, “How

many songs did Irving Berlin compose?”, and “How

much does an American Girl doll cost?”.

 Which, How, Whose, and What questions: The

answers of these questions are mostly the noun

phrase of the answer’s sentence, except the question

keywords. TREC example: “Which company is Jay-

Z president of?”, “Whose place would Miers have

taken on the Supreme Court?”, “How did Irving

Berlin die?”, and “What is Krugman’s academic

specialty?”.

 Who questions: The answers of the “Who”

questions are mostly contains propositions like

[by|with] that fallowed by one or more words that

their first character is capital case, for example “by

Cyrus”, and “with Dariush”. TREC example: “Who

is Cunard’s president and managing director?”

IV. EMPIRICAL STUDY

For evaluation of our approach, we used TREC 2007

(the last QA track) questions and answers. The questions

are from 70 subjects and each one has about 4 factoid

questions [15].

In TREC QA tracks, the accuracy measure has been

used to assess system performance and it investigates

whether the final answer is the exact requested answer or

not, that means, not more and not less. We have tested

TREC 2007 questions with web data because our purpose

was building a web-based system. The TREC questions

were searched in Google and sentences of the top-n web

sites were used as the population of MA. The accuracy of

the system was calculated for different values of n and

the results are illustrated in Fig. 4. The best accuracy is

0.37 for n=19.

0.370.370.370.36
0.31 0.33

0.28

0

0.1

0.2

0.3

0.4

5 10 15 18 19 20 25

Number of retrieved documents

A
cc

u
ra

cy

Fig. 4. The accuracy of the proposed approach with different number of

retrieved documents values.

44 A Memetic-Based Approach for Web-Based Question Answering

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

The number of reproduction variable is set to 12 in the

previous test. But this variable has a direct effect in

calculating the accuracy. So the accuracy with different

values for this variable was calculated and the results are

illustrated in Fig. 5. In this test and following tests, the

number of the retrieved documents (or n) is equal to 19.

0.370.370.37

0.3

0.36

0.12

0

0.1

0.2

0.3

0.4

5 10 11 12 13 14

Number of reproduction in MA

A
cc

u
ra

cy

Fig. 5. The accuracy of the proposed approach with different number of

reproduction values in MA.

In the both previous tests, Lamarckian approach is

used for the local search function. The comparison of

Lamarckian and Baldwinian approaches for the local

search functions (for two local searches that are used) is

illustrated in Fig. 6. The results show that Lamarckian

approach has a better output in our implementation.

0.09

0.22

0.28
0.32

0.360.3 0.37

0.12

0

0.1

0.2

0.3

0.4

5 10 11 12

Number of reproduction in MA

A
cc

u
ra

cy

Baldwinian Lamarckian

Fig. 6. The accuracy of the proposed approach with Lamarckian and

Baldwinian approaches for the local search function.

In the three previous examples, Uniform approach is

used for the crossover function. The comparison of One-

point and Uniform approaches is illustrated in Fig. 7. The

results show that the Uniform approach has a better

output in our implementation.

0.12
0.11

0.09
0.05

0.19

0.3

0.36 0.37

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 11 12

Number of reproduction in MA

A
cc

u
ra

cy

One-point Uniform

Fig. 7. The accuracy of the proposed approach with One-point and

Uniform approaches for the crossover function.

In the four previous examples, our proposed mutation

approach is used for the mutation function. Comparison

of three different approaches, including: Single-bit

flipping, Fogarty’s [14] approach, and the proposed

mutation (3) is illustrated in Fig. 8. The results show that

our proposed approach has a better output in our

implementation.

0.26

0.33 0.34

0.08

0.370.36
0.3

0.12
0.2

0.27
0.29

0.07

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

5 10 11 12

Number of reproduction in MA

A
cc

u
ra

cy

Fogarty's [14] approach

Proposed mutation (3)

Single-bit flipping

Fig. 8. The accuracy of the proposed approach with three types of

mutation functions.

In order to highlight the usage of MA, the accuracy and

process time comparisons between evaluating all the

sentences approach and searching with MA approach are

illustrated in Fig. 9 and Fig. 10. The results show that

evaluating all the sentences has a better accuracy, 0.42 in

best case, but this better accuracy has the side effect of

more process time. The MA has a lower accuracy but the

difference is tolerable with respect to much better process

time.

0.420.420.420.40.38 0.42

0.31
0.370.370.33 0.36 0.37

0

0.1

0.2

0.3

0.4

0.5

0.6

10 15 18 19 20 25

Number of retrieved documents

A
cc

u
ra

cy

Evaluating all the sentences

Searching with MA

Fig. 9. Comparison of the accuracy of the proposed approach with the

accuracy of the evaluating all the sentences approach.

The overall evaluation shows that our results are

promising with sufficient retrieved documents. To

quantify this sufficient value, we obtained a threshold for

the number of retrieved documents variable (n=19).

 A Memetic-Based Approach for Web-Based Question Answering 45

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 39-45

6.9

5.95.65.3
4.2

5.9

2.4

4.5
3.9

2.9 3.1
3.5

0

1

2

3

4

5

6

7

8

10 15 18 19 20 25

Number of retrieved sources

T
im

e
(s

)

Evaluating all the sentences

Searching with MA

Fig. 9. Comparison of the process time of the proposed approach with

the process time of the evaluating all the sentences approach.

V. CONCLUSION

In this paper we proposed an evolutionary approach for

Question answering systems. Memetic algorithm is used

because its local search function has a valuable effect to

reach a high accuracy. The results showed that our

approach is more efficient than examining the sentences

one by one, with respect to the accuracy and process time.

A set of equations are proposed for sentence fitness, local

search, and dynamic mutation ratio. And a set of patterns

are made for questions and answers. The best values for

number of reproduction and number of retrieved

documents are also investigated.

But we only performed answering of the factoid

questions and answering to other types can be

investigated in future works. The features that were used

can also become more sophisticated in future works. And

our hand-made patterns can be upgraded with evaluating

more questions and answers.

REFERENCES

[1] Nitin Indurkhya, Fred J. Damerau, Handbook of Natural

Language Processing, 2nd ed., Chapman & Hall/CRC,

2010.

[2] Alexander Clark, Chris Fox, Shalom Lappin, The

Handbook of Computational Linguistics and Natural

Language Processing, Wiley-Blackwell, 2010.

[3] Kupiec, J., “MURAX: A Robust Linguistic Approach for

Question-Answering Using an Online Encyclopedia”, In

16th International ACM SIGIR Conference on Research

and Development in Information Retrieval, Pittsburgh, PA,

pp. 181–190, 1993.

[4] Boris Katz, Jimmy J. Lin, Sue Felshin, “The START

Multimedia Information System: Current Technology and

Future Directions”, in: Proceedings of the International

Workshop on Multimedia Information Systems, pp. 117–

123, 2002.

[5] Oleksandr Kolomiyets, Marie-Francine Moens, “A Survey

on Question Answering Technology from an Information

Retrieval Perspective”, Information Sciences, vol. 181, pp.

542–543, 2011.

[6] John Atkinson, Alejandro Figueroa, Christian Andrade,

"Evolutionary Optimization for Ranking How-to Questions

Based on User-generated Contents", Expert Systems with

Applications, vol. 40, pp. 7060–7068, 2013.

[7] Enrique Alba, Gabriel Luque, Lourdes Araujo, “Natural

Language Tagging with Genetic Algorithms”, Information

Processing Letters, vol. 100, pp. 173–182, 2006.

[8] Tsai, C.-F., et al., “Evolutionary Instance Selection for

Text Classification”, J. Syst. Software (2014),

http://dx.doi.org/10.1016/j.jss.2013.12.034, in press.

[9] Mohsen Shakiba Fakhr, Mohammad Saniee Abadeh,

"AISQA - An Artificial Immune Question Answering

System", International Journal of Information Technology

and Computer Science (IJMECS), vol. 4, No. 3, 2012.

[10] Matthias H. Heie, Edward W.D. Whittaker, Sadaoki Furui,

“Question Answering Using Statistical Language

Modeling”, Computer Speech and Language, vol. 26, pp.

193–209, 2012.

[11] Markov, A., “An Example of Statistical Investigation in the

Text of Eugene Onegin Illustrating Coupling of Tests in

Chains”. Proc Academy of Sciences of St. Petersburg, vol.

7, 1913.

[12] P. Moscato, “On Evolution, Search, Optimization, Genetic

Algorithms and Martial Arts: Towards Memetic

Algorithms”, Caltech concurrent computation program

(report 826), 1989.

[13] Ferrante Neri, Carlos Cotta, “Memetic Algorithms and

Memetic Computing Optimization: A Literature Review”,

Swarm and Evolutionary Computation, vol. 2, pp. 1–14,

2012.

[14] T. C. Fogarty, “Varying the Probability of Mutation in the

Genetic Algorithm”, In Proceedings of the third

international conference on genetic algorithms, San Mateo,

C. A., Morgan Kaufmann, pp. 104-109, 1989.

[15] Hoa Trang Dang, Diane Kelly, Jimmy Lin, “Overview of

the TREC 2007 Question Answering Track”, In

Proceedings of the Sixteenth Text Retrieval Conference,

2007.

Authors’ Profiles
Iman Khodadi was born in Tehran, Iran.

He is currently a M.Sc. student in Software

Engineering at Tarbiat Modares University,

Tehran, Iran, in 2014. He received his B.Sc.

in Software Engineering from Science and

Culture University, Tehran, Iran, in 2012.

His research interests are natural language

processing, evolutionary computing, and

machine learning. He is a Lecturer at Science and Culture

University, Tehran, Iran.

Mohammad Saniee Abadeh received his

B.S. degree in Computer Engineering from

Isfahan University of Technology, Isfahan,

Iran, in 2001, the M.S. degree in Artificial

Intelligence from Iran University of

Science and Technology, Tehran, Iran, in

2003 and his Ph.D. degree in Artificial

Intelligence at the Department of

Computer Engineering in Sharif University of Technology,

Tehran, Iran in February 2008. His research has focused on

developing advanced meta-heuristic algorithms for data mining

and knowledge discovery purposes. His interests include data

mining, bio-inspired computing, computational intelligence,

evolutionary algorithms, fuzzy genetic systems and Memetic

algorithms. He is currently a faculty member at the Faculty of

Electrical and Computer Engineering at Tarbiat Modares

University.

