
I.J. Information Technology and Computer Science, 2014, 09, 14-23
Published Online August 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.09.02

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

Error Detection in a Multi-user Request System

Using Enhanced CRC Algorithm

Eke O. Bartholomew
Dept. of Computer Science and Information Technology, University of Port Harcourt, Port Harcourt, 500009, Nigeria

E-mail: bathoyol@gmail.com

Ebong A. Oscar
Dept. of Computer Science Uyo City Polytechnic, Uyo, Nigeria

E-mail: oskndot@yahoo.com

Abstract— Error and error related issues have been a challenge

in the development and reliable usage of computing systems

and application. The ability to detect minute error in a system

improves the reliability of the system by aiding developers and

users to know were challenges are so that they can be fixed

during development and even when the system is already in use.

In other to achieve that different algorithm have been used

including the Cyclic Redundancy Check 16-bit, 32-bit and

higher bits. In this paper, error detection schemes are examined

and the way they check and detect error in multi-user request

and transmitted system. The paper also offers improvement on

a Cyclic Redundancy Checks 32-bit detection algorithm for the

detection of error that can occur in transmitted data and on

stored, backed-up and archived data in the system without

consuming large resources as the higher bits..

Index Terms— Detection, Cyclic Redundancy Checks(CRC),

Multi-User Request System, Error Detection Algorithm.

I. INTRODUCTION

Errors in data cause a variety of problems and raises

costs in several areas. The cost due to lack of data and

availability of unreliable data are very serious. It is

important to be able to detect these errors in other to

proffer mitigation for the error related challenges.

Detecting data errors in programs often takes as much, or

more, of the analysis and programming efforts than the

main logic. The earlier an error is detected, the cheaper it

is to correct it. A common way of detecting error is re-

key verifying selected data items, combined with

programs that look for invalid data [3]. In a multi-user

system, error detection can be much more tasking, such

that re-key verifying alone may not be enough.

An error detection scheme is a crucial part of feedback

error correction schemes such as ARQ (Automatic

Repeat reQuest), which are required for attaining reliable

communications over unreliable channels. The most

important performance measure for an error detection

scheme is its undetected error probability, which is the

probability corresponding to the event such that an

erroneous received word passes the detection test [11].

A multi-user request system is a system that allows

multiple users on different computers or terminals to

access a single system with one OS (Operating System)

on it. These systems are often quite complicated and

must be able to properly manage the necessary tasks

required by the different users connected to it. The users

will typically be at terminals or computers that give them

access to the system through a network, as well as other

machines on the system such as printers. A multi-user

system differs from a single-user system on a network in

that each user is accessing the same program at different

machines. In online query, web users can issue semantic

query to the system which can be accessed by many

other users [13].A multi-user system usually involves a

large amount of information shared among its users.

Multi-user operating systems and application software

have been in use for decades and are still pervasive today.

Those systems allow concurrent access by multiple users

so as to facilitate effective sharing of computing

resources [12].

The operating system on a computer is one of the most

important programs used. It is typically responsible for

managing memory and processing for other applications

and programs being run, as well as recognizing and using

hardware connected to the system, and properly handling

user interaction and data requests. On a system using a

multi-user operating system this can be even more

important, since many people require the system to be

functioning properly simultaneously. This type of system

is often used on mainframes and similar machines, and if

the system fails it can affect dozens or even hundreds of

users connected to the system for services.

This is also true for object oriented distributed systems

(OODS), were the objects are viewed as resources and

concurrency control techniques are usually applied on the

database tier [14]. A multi-user request system allows

multiple users to access the data and processes of a single

machine from different computers or terminals. These

were previously often connected to the larger system

through a wired network, though now wireless

networking for this type of system is equally used. A

multi-user system is often used in businesses and offices

where different users need to access the same resources,

but these resources cannot be installed on every system.

In a multi-user request system, the system must be able

to handle the various needs and requests of all of the

users effectively and efficiently. Indeed, this system

 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm 15

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

intends to utilize the available operating system by

means of keeping the usage of resources appropriate for

each user and keeping these resource allocations separate.

By doing this, the multi-user system is able to better

ensure that each user does not hinder the efforts of

another, and that if the system fails or has an error for

one user, it might not affect all of the other users. This

makes a multi-user request system typically quite a bit

more difficult than a single-user system that only needs

to handle the requests and operations of one person.

In a multi-user request system, for example, the

system may need to handle numerous users attempting to

use a single resource simultaneously. The system

processes the requests and places the task in a queue that

keeps them organized and allows each job to be carried

out one at a time. Without a multi-user request system,

the jobs or data management could become intermingled

and the resulting information pages would be virtually

incomprehensible and error prone. Nevertheless, in

information theory with applications in computer science

and telecommunication, error detection or error control

are techniques that enable reliable delivery of digital data

over unreliable communication channels. Many

communication channels are subject to channel noise,

and thus errors may be introduced during transmission

from the source to a receiver. Error detection techniques

allow detecting such errors, while error correction

enables reconstruction of the original data [1].

A. Error

Science and engineering often involves measurements

of different types. It is important to understand the

nature and sources of errors, and know ways to detect

and estimate them [8]. We must be familiar with the

meaning of errors and with methods to compare data

from various experiments as well as with theoretical

model results. Good understanding of the meaning errors

is needed in other to know how to detect them. Detecting

data error could involve the use of theoretical models and

performance measures can be done by checking the

undetected error probability of the scheme [11].

The word “error” entails different meanings and

usages relative to how it is conceptually applied. The

concrete meaning of the Latin word "error" is

"wandering" or "straying". Unlike an illusion, an error or

a mistake can sometimes be dispelled through knowledge

(knowing that one is looking at a mirage and not at real

water does not make the mirage disappear). For example,

a person who uses too much of an ingredient in a recipe

and has a failed product can learn the right amount to use

and avoid repeating the mistake. However, some errors

can occur even when individuals have the required

knowledge to perform a task correctly. Examples include

forgetting to collect change after buying chocolate from a

vending machine and forgetting the original document

after making photocopies. Some errors occur when an

individual is distracted by something else.

Technically, an error is the difference between a

computed or measured value and a true or theoretically

correct value. An error is the change or the mismatching

which take place between the data unit sent by

transmitter and the data unit received by the receiver e.g.

11101010 is sent by sender and 10101010 is received by

receiver; the second digit from the left is altered from 1

to 0 on transmission.

B. Organization of the Paper

This paper presents review of literature on error

detection and some error detection techniques in section

II. It also performed an analytical findings based on the

CRC error technique, its strength as well its weaknesses

in section III. Based on the weakness in execution some

enhancement was done on the algorithm which proved to

be effective and showed higher and better rates of

detecting error when implemented in section IV

compared with the other technique in literature. Sections

V, VI and VII presented the Summary, Conclusion and

Recommendation respectively.

II. ERROR DETECTION

Regardless of the design of a system, there may still be

errors, resulting in the change of one or more bits in a

transmitted frame. When a code word is transmitted

within the system, one or more number of transmitted

bits of data will be reversed due to transmission

impairments. Thus error will be introduced. It is possible

to detect these errors if the received code word is not one

of the valid code words. To detect the errors at the

receiver, the valid code words should be separated by a

distance of more than 1 [8]. Nevertheless, in error

detection, whenever bits flow from one point to another,

they are subject to unpredictable changes because of

interference. This interference can change the shape of

the signal. In a single-bit error, a 0 is changed to a 1 or a

1 to a 0. The term single-bit error means that only 1 bit of

a given data unit (such as a byte, character, or packet) is

changed from 1 to 0 or from 0 to 1. The term burst error

means that 2 or more bits in the data unit have changed

from 1 to 0 or from 0 to 1.

A. Error Redundancy Detection.

The concept of including extra information in the

transmission of error detection is a good one. But instead

of repeating the entire data stream, a shorter group of bits

may be appended to the end of each unit. This technique

is called redundancy [9] because the extra bits are

redundant to the information; they are discarded as soon

as the accuracy of the transmission has been determined.

In fig.1 the process of using redundant bits to check

the accuracy of data unit is illustrated. In this

fundamental concept, the data stream

(11100000000101010) is generated and it passes through

a device that analyzes it and adds on appropriately coded

redundancy check value (111011101). The value is

communicated using the appropriate channel to the

receiver. In the receiver mode, the entire stream is put

through a checking function. If the received bit stream

passes the checking criteria, the data portion of the data

unit is accepted but if the bit stream fails the checking

criteria the data is rejected and the redundant bits are

discarded.

16 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

Fig. 1. Use of redundant bits to check the accuracy of a data unit.

(Courtesy: [9] modified)

If the data stream passes the checking criteria we can

infer that the data is not corrupted on transit and that the

information is not tampered with or error-injected on

transit along the communication channel used in moving

the information from the sender to the receiver. We

found out that the efficiency of this error detection

technique depends largely on the checking function. If

the message processing process are adequate and the

checking function can handle checking process

efficiently then the result expected could be dependable.

But if the checking function is slow or the corrupting

system can manipulate its operations then the system will

not be reliable. However the actual challenge is on the

volume of information for checking which shifts concern

more in the direction of the efficiency of the checking

process since the currently used checker have been said

by Thamer [9] to be accurate. The checker may be simple

or complex but it is not the simplicity or the complexity

that determine the efficiency and efficacy of the checking

process or its algorithm when large transmitted data is

considered.

B. Simple Parity Check

The most common and least expensive mechanism for

error detection is the parity check. Parity checking can be

simple or two-dimensional as illustrated in fig.2.

In this technique, a redundant bit, called a parity bit, is

added to every data unit so that the total number of bits

in the unit (including the parity bit) becomes even (or

odd).

C. Two Dimensional Parity Check

A better approach is the two dimensional parity checks.

In this method, a block of bits is organized in a table

(rows and columns).

Fig. 3. Two Dimensional Parity Checker (Courtesy [9])

First we calculate the parity bit for each data unit.

Then we organize them as showing in fig. 3. We then

calculate the parity bit for each column and create a new

row of 8 bits. They are the parity bits for the whole block.

The first parity bit in the fifth row is calculated based on

all first bits; the second parity bit is calculated based on

all second bits, and so on. We then attach the 8 parity bits

to the original data and data and sent to the receiver. For

example, suppose the following block is sent:

10101001 00111001 11011101 11100111 10101010

However, it is hit by a burst noise of length 8, and

some bits are corrupted.

10101001 10001001 11011101 11100111 10101010

When the receiver check the parity bits, some of the

bits do not follow the even-parity rule and the whole

block is discarded (the non marching bits are shown in

bold).

10101001 10001001 11011101 11100111 10101010

D. Parity Generator

Assuming the number giving us is 11000011. Before

transmitting we pass the data unit through a parity

generator. The parity generator counts the bits and

appends the parity bit to the end. The total number of bits

is now an even number. The system now transmits the

entire expanded unit across the network link. When it

reaches its destination, the receiver puts all 8 bits through

an even parity checking function. If the receiver sees

Data

11100000000

101010

Calculate

Parity bit

Data Count bits

Yes

No
Data Even Reject

Data

Count bits 111011101

Transmission mode

Accept Data

Fig. 2. Parity Checking

Parity Checking

Simple

Two dimensional

Sender mode

Data 11100000000101010

11100000000101010 111011101

Data and Redundancy

Communication Channel

Receivers Mode

Data 11100000000101010

11100000000101010 111011101

 Data and Redundancy

Yes

No
Data OK? Reject

Data

 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm 17

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

11000011, it counts four is, an even number and the data

unit passes. But, if instead of 11000011, the receiver sees

11001011 then when the parity checker counts the 1s it

gets 5 an odd number. The receiver knows that an error

has been introduced into the data somewhere and

therefore rejects the whole unit. In fig. 4, it is clear that

the data that have even 1s are assigned 0, making

0111001 to be 01110010 but the other data with odd 1s

are assigned 1 to make the data even making 1100111 to

be 11001111, 1011101 to be 10111011 and making

0101001 to be 01010011. Column parity is generated

also to make the bits even up column-wise producing the

last set of data 1100

Fig. 4. Data and Parity Bit Generation

E. Cyclic Redundancy Check (CRC)

Cyclic Redundancy check method is a powerful

mechanism of error detection. Unlike the parity check

which is based on addition, CRC is based on binary

division. In CRC, instead of adding bits to achieve a

desired parity, a sequence of redundant bits, called the

CRC or the CRC remainder, is appended to the end of a

data unit so that the resulting data unit becomes exactly

divisible by a second predetermined binary number. At

its destination the incoming data unit is divided by the

same number. If at this step there is no remainder, the

data unit is assumed to be intact and is therefore accepted.

A remainder indicates that the data unit has been

damaged in transit and therefore must be rejected. The

redundancy bits used by CRC are derived by dividing the

data unit by a predetermined divisor, the remainder is the

CRC. A CRC must have two qualities. It must have

exactly one less bit than the divisor, and appending it to

the end of the data string must make the resulting bit

sequence exactly divisible by the divisor.

F. CRC Generator and Checker

First, a string of n 0’s is appended to the data unit. The

number n is less than the number of bits in the

predetermined divisor, which are n + 1 bits.

Second, the newly formed data unit is divided by the

divisor, using a process called binary division the

remainder resulting from this division is the CRC.

Third, the CRC of n bits derived in step 2 replaces the

appended Os at the end of the data unit. The data unit

arrives at the receiver data first followed by the CRC.

The receiver treats the whole string as a unit and divides

it by the same divisor that was used to find the CRC

remainder. If the string arrives without error, the CRC

checker yields a remainder of zero and the data unit

passes. If the string has been changed in transit the

division yields a non-zero remainder and the data unit

does not pass.

Fig. 5. Cyclic Redundancy Checker

G. Checksum Error Detection

Another method of error detection uses a process

known as checksum to generate an error-detection

character. The character results from summing all the

bytes of a message together, discarding and carries over

from the addition. Again, the process is repeated at the

receiver and the two checksums are compared. A match

between receiver checksum and transmitted checksum

indicates good data. A mismatch indicates an error has

occurred. This method, like CRC, is capable of detecting

single or multiple errors in the message. The major

advantage of checksum is that it is simple to implement

in either hardware or software. The drawback to

checksum is that, unless you use a fairly large checksum

(16- or 32-bit instead of 8-bit), there are several data-bit

patterns that could produce the same checksum result,

thereby decreasing its effectiveness. It is possible that if

enough errors occur in a message that a checksum could

be produced that would be the same as a good message.

H. Check Sum Generator

In the sender, the check sum generator shown in fig.6

subdivides the data unit into equal segments of n bits.

These segments are added using ones complement

arithmetic in such a way that the total is also n bits long.

That total is then complemented and appended to the 1

and 0 the original data unit as redundancy bits called the

check sum field. The extended data unit is transmitted

across the network. So if the sum of data segment is T,

the checksum will be T.

I. Checksum Checker

The receiver subdivides the data unit as above and

adds all segments and complements the result. If the

extended data unit is intact, the total value found by

Receiver Sender

Zero Accepts / Non Zero rejects

 Divisor

Data 00…0

Data CRC

Data CRC

CRC

Remainder

 Divisor

N+1 bits

Remainder

N bits

1100111 1011101 0111001 0101001

 1 1 0 0 1 1 1 1

 1 0 1 1 1 0 1 1

 0 1 1 1 0 0 1 0

 0 1 0 1 0 0 1 1

 0 1 0 1 0 1 0 1

Row

parity

Column parity

11001111 10111011 01110010 01010011 01010101

18 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

adding the data segments and the check sum field should

be zero. If the result is not zero, the packet contains an

error and the receiver rejects it.

Fig. 6. Checksum Generator

J. Asynchronous Data Error Methods

Probably the most common and oldest method of error

detection is the use of parity. While parity is used in

both asynchronous and synchronous data streams, it

seems to find greater use in low-speed asynchronous

transmission application; however, its use is not

exclusive to that.

K. Parity Error Detection

Parity works by adding an additional bit to each

character word transmitted. The state of this bit is

determined by a combination of factors, the first of

which is the type of parity system employed. The two

types are even and odd parity. The second factor is the

number of logic 1 bits in the data character. In an even

parity system, the parity bit is set to a low state if the

number of logic 1s in the data word is even. If the count

is odd, then the parity bit is set high. For an odd parity

system, the state of the parity bit is reversed. For an odd

count, the bit is set low, and for an even count, it is set

high. To detect data errors, each character word that is

sent has a parity bit computed for it and appended after

the last bit of each character is sent as illustrated in Fig. 7.

At the receiving site, parity bits are recalculated for each

received character. The parity bits sent with each

character are compared to the parity bits the receiver

computes. If their states do not match, then an error has

occurred. If the states do match, then the character may

be error free.

L. Manual Detection Methods

There are also two manual error detection methods.

Proofreading (or sight verification) is the most common

method. It is not especially accurate because the mind

has a way of fooling our eyes. Nevertheless, it finds

many errors. Surprisingly, continuous proofreading is not

as fast as key entry. Some reject re-entry systems provide

for selected proofreading while the rejects are being

corrected. This can be a valuable feature. Re-key verify

is the time proven method of manual error detection.

Over decades of use it has been proven to be about

99.9% accurate. The cost is similar to the cost to key the

data. However, usually not all of the data has to be

verified which saves labor. Data elements that can be

programmatically validated, or whose accuracy is not

important, do not need to be key verified. Good data

entry programs have this capability. Verifying only

sample portions of the data is a statistical method used to

detect problems with equipment and personnel.

Fig. 7. Even Parity for ASCII B (a) Parity for Bad

III. ANALYTICAL FINDINGS

Data or database is said to be defective or error prone

if there is any form of inconsistency in the content of

data sent and the data stored in the database. Error or

defect detection analysis reduces the time, resource, and

cost required to rework, re-store and retransmit data

within a multi-user database environment. Early data

defect detection prevents data defect migration to

archives or other repository of the data store. It also

enhances reliability and maintenance of stored data in the

database. Hence there is a continuous need to test data in

the database and data that are backed up before they are

archived [15]. In is not ideal to restore untested backup

or to wait till there is need for database restore before

data can be backed up.

When archiving backups there is a need to clearly

label each backup volume. Special parameters are

required to actually restore the database. The data

however needed to be verified before they could be

backed-up. This is done to check the status of the backup,

to check if there are any bad (defective) blocks, and

report whether the blocks are recoverable. The cyclic

redundancy check (CRC) model and algorithm is one of

the best check sum used in verifying defectiveness in the

stored data [6].

In this paper we have looked at CRC but we still will

analyze the CRC with the view of improving the model

by adding module that checks transmitted data against

stored data in the databases. This will require the

extension of the CRC algorithm to achieve. The new

algorithm can then be used in databases to compare the

data stored and the data ready for archival so that data

recovery when databases fail can be improved. This aids

the correction of the challenge associated with having

n bits

 n bits

 n bits

 n bits

n bits

 n bits
If the result is 0,

keep otherwise

discard

Result

Section 1

Section 2

Check Sum

Section K

Sum

Complement

n bits

bits
n bits

n bits

n bits

 n bits

 n bits

Check sum

Section 1

Section 2

Check Sum

Section K

Sum

Complement

Even
Odd

0 1 0 0 0 0 1 0

Parity Generator

0 1 0 0 0 0 1 0 0

LSB MSB

LSB MSB

Adding

parity

Even

Odd

d

d

0 1 0 0 0 0 1 0

Parity Generator

0 1 0 0 0 0 1 0 0

LSB MSB

LSB MSB

Adding

parity

 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm 19

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

aspects of archives corrupted by electronic back-up

processes.

A. Analysis of CRC System

CRC is very good on error detecting, however what

have given error detection expert run for their effort is

the way to discover and deploy the best generator

polynomial that is adequate in handling increased volume

of data both stored and transmitted across networks and

servers.

In contemporary society, cloud computing, distributed

computing and grid computing have added more impetus

to the need to making sure that stored data in various

locations and mirrors are not only consistent but error

free. The users need to relax while they transmit the large

volume of data from one point to another; and when their

databases are archived for future reference. The need for

generator polynomial is well known but getting the right

polynomial is a different challenge. Different CRC

standards have various generator polynomials.

The CRC polynomial generation is done by providing

a new generator polynomial, improving on the algorithm

and improving on the calculation implementation.

B. CRC-32 Design

In CRC system the Exclusive OR gate is at the point

of receiving the message, the message is then moved

from point 0 in register to point 31 in the register which

is 32 points. In each of these registers corresponding bits

are stored and used in processing the message to be able

to check for error. The length of bit can enable double

encoding which can be deployed in making attempt at

recovering possible lost code. To develop a hardware

circuit for computing the CRC checksum, we reduce the

polynomial division process to its essentials. The process

employs a shift register, which we denote by CRC. This

is of length r (the degree of G) bits, not as you might

expect. When the subtractions (exclusive or’s) are done,

it is not necessary to represent the high-order bit, because

the high-order bits of G and the quantity it is being

subtracted from are both 1.

C. CRC Algorithm Design

The enhanced CRC algorithm is described as:

Step 1: Start

Step 2: Initialize the CRC register to all 0-bits

Step 3. Hash message for operations.

Step 4: Get first/next message bit m.

Step 5: If the high-order bit of CRC is 1,

Step 6: Shift CRC and m together left 1 position,

 and XOR the result with the low-order r

 bits of G.

 Otherwise,

Step 7: Just shift CRC and m left 1 position.

Step 8: If there are more message bits, go back to

 get the next one Go to Step 3.

It might seem that the subtraction should be done first,

and then the shift. It would be done that way if the CRC

register held the entire generator polynomials, which in

bit form are bits. Instead, the CRC register holds only the

low-order r bits of G, so the shift is done first, to align

things properly.

Below is shown the contents of the CRC register for

the generator G and the message M Expressed in binary,

G = 1011 and M = 11100110.000 Initial CRC contents.

High-order bit is 0, so just shift in first message bit. 001

High-order bit is 0, so just shift in second message bit,

giving: 011 High-order bit is 0 again, so just shift in third

message bit, giving: 111 High-order bit is 1, so shift and

then XOR with 011, giving: 101 High-order bit is 1, so

shift and then XOR with 011, giving:

001 High-order bit is 0, so just shift in fifth message

bit, giving:

011 High-order bit is 0, so just shift in sixth message

bit, giving:

111 High-order bit is 1, so shift and then XOR with

011, giving:

101 There are no more message bits, so this is the

remainder. These steps can be implemented with the

(simplified) circuit shown in Fig.8, which is known as a

feedback shift register.

Fig. 8. Polynomial division circuit for G =x3 + x + 1.

The three boxes in the figure represent the three bits of

the CRC register. When a message bit comes in, if the

high-order bit (x2 box) is 0, simultaneously the message

bit is shifted into the x0 box, the bit in x0 is shifted to x1,

the bit in x1 is shifted to x2, and the bit in x2 is discarded.

If the high-order bit of the CRC register is 1, then a 1 is

present at the lower input of each of the two exclusive or

gates. When a message bit comes in, the same shifting

takes place but the three bits that wind up in the CRC

register have been exclusive or’ed with binary 011. When

all the message bits have been processed, the CRC holds

M mod G. If the circuit of Fig. 8 were used for the CRC

calculation, then after processing the message, r (in this

case 3) 0-bits would have to be fed in. Then the CRC

register would have the desired checksum, but, there is a

way to avoid this step with a simple rearrangement of the

circuit.

20 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

Instead of feeding the message in at the right end, feed

it in at the left end, r steps away, as shown in Fig. 9. This

has the effect of pre-multiplying the input message M by

xr. But pre-multiplying and post-multiplying are the same

for polynomials. Therefore, as each message bit comes in,

the CRC register contents are the remainder for the

portion of the message processed, as if that portion had r

0-bits appended.

D. Challenges in the Designs

The behavior of checksum and cyclic redundancy

check (CRC) algorithms have historically been studied

under the assumption that the data fed to the algorithms

was uniformly distributed. For instance, the work on

Fletcher’s checksum [2] and the CRC-32 [10] shows that

if one assumes random data drawn from a uniform

distribution one can show a number of nice error

detection properties for various checksums and CRCs.

Fig. 9. CRC Design Circuit for Polynomial

But our observation on packet data is that in the real

world, communications data is rarely random. Much of

the data is character data, which has distinct skewing

towards certain values (for instance, the character ‘e’ in

English). The worst issue is that Unicode has made it

possible to write complex programs that can convert data

or even databases created and stored as text in English to

say Chinese or even a Nigerian Language. This text and

manipulations on them in stored data are rarely random.

Even binary data has similarly non-random distribution

of values, such as a propensity to contain zeros. In

reports on experiments with running various checksums

and CRCs over real data from UNIX file systems by

Jonathan [4] show that the highly non-uniform

distribution of values and the strong local correlation in

real data causes extremely irregular distributions of

checksum and CRC values. In some tests by Jonathan [4]

less than 0.01% of the possible checksum values

occurred over 15% of the time. This was supported, in

part, by ARPA under Army Contract DABT63-91-K-

0001 and in part, by the U.S. Department of Defense. We

particularly examine the effects of this phenomenon

when applied to the Internet checksum used for IP, TCP,

and UDP [7] and compare it to two variations of

Fletcher’s checksum. We also try to consider the overall

effect on stored data and translatable databases as well as

archival and decided to offer a design proposal called

Extended-CRC (E-CRC).

E. E-CRC Design

In the E-CRC design the CRC is table driven. The

table driven CRC routine uses a different technique than

a loop driven CRC routine. The idea behind this design is

that instead of calculating the CRC bit by bit, pre-

computed bytes are XORed to the data. The benefit of

this improved proposal is that it is software driven

instead of being hardware driven as the CRC-32. Since

the hardware software loop is eliminated the design is

expected to be faster than the loop driven solution. The

drawback is that it may consume more program memory

because of the size of the look-up table.

F. Design of Failure Rate Model

In a multi-user request system, data is usually

distributed in such a way that data packets are often

mixed with data from another packet. It is then important

to compute checksum in pieces and then add the pieces

to get the complete packet sum. Hence we think of the

checksum of a packet broken into cells as being the sum

of the individual checksums of each 48-byte cell. The

usual requirement for a splice to pass the checksum is

that the checksum of the splice add up to the checksum

of the entire first packet contributing to the splice.

Because the splice contains cells of the first and second

packets, this requirement can also be expressed as a

requirement that the checksum of the cells from the first

packet not included in the splice must equal the

checksum from the cells of the second packet that are

included in the splice. If just one cell from the second

packet is included in the splice, this requirement reduces

to the requirement that the checksum of the cell from the

second packet have the same sum as the cell it replaces.

In multicell replacements, the sum of the mixes of cells

must be equal.

Given random data, E-CRC should uniformly scatter

the checksum values over the entire checksum space.

Obviously a checksum algorithm that does not uniformly

distribute checksum values (i.e., has hotspots) will be

more likely to have multiple cells with the same

checksum. We derived this view from examine existing

theorem in [5] and [4]. The theorem further proves that,

over uniformly distributed data, the checksum algorithm

gives a uniform distribution of checksum values. Thus,

any hotspots in the distribution of checksum values are

due to non-uniformity of the data in a multi-user system,

and are not inherent in the checksum algorithm.

 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm 21

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

Although for uniformly distributed data values the

probability distribution of the checksum is uniform

independent of the length of the block of data, this is not

true for nonuniform data. In that case, the expected

probability distribution of the checksum may be

computed by

Pk[i] = (Pk-1[j]Pi[i-j]) (1)

where Pk[i] is the probability that the checksum over a

block of length k (is equal to i).

We can ”Predict k = 2” shows the expected

distribution of checksums over blocks 2 cells long, given

the checksum distribution over one cell given by k = 1.

So, if the non-uniformity is uniform – that is, that every

cell of data is drawn from the same probability

distribution, and that the sum is the sum of independent

samples – then we would expect the distribution of the

sums to conform closely to the line in our graphs. The

predicted value for k = 2 is already close to uniform for

all but the 20 most common values, even though k = 1 is

decidedly non-uniform. It also show that, regardless of

the original distribution, the distribution should get more

uniform as k increases. However, our measurements

show that the non-uniformity extends to larger chunks

than single words or cells, and that the checksum of one

cell is correlated with the checksums of the neighboring

cells. The data does get more uniform but nowhere as

quickly as it should if the cells were roughly independent.

We believe the samples should be somewhat

representative even of non-contiguous blocks. Given the

non-uniform distribution, what, then, is the expected

failure rate of the IP/TCP checksum in detecting splices

for a given distribution, P, of checksum values when

data is transmitted from user to a database store. As

discussed above, it is simply the probability that the

checksum over the cells missing from the first packet is

equal to the checksum over the cells present from the

second packet. For a given probability distribution P this

probability is

P(failure) =  P[i]2 (2)

The models (eq 1 and eq 2) can be used to compute the

probability of the checksum match for substitution of

length k cells in the implementation of the system in this

paper.

IV. IMPLEMENTATION AND RESULT

The E-CRC is implemented using two different

programming languages. The programming language for

the development of the system is wxDev C++ and

Assembly. These are selected because of its advantage in

the development of System programs.

The program has an executable which runs on the

console. The system can be executed on the windows

from the command line by using the exe name used in

debugging the program. The main page of the system

produced input screen that allow the user to know when

the system executes and produces the result.

A. Result Profiling

The program was executed and profiled and data

generated from the profiling is displayed as shown in

table 1. The table 1 shows how the probability changes

when we restrict the comparisons to only look at local

data. The first column displays the probability of taking

two blocks of data, each k cells long from anywhere in

the entire file system and finding that their IP checksums

were congruent to each other. The second column shows

the same probability if we limit the search to be within 2

packets length (512 bytes).

Table 1. Probability (as %) of checksum match for substitution of

length k cells

K Globally
Locally

Congruent

Excluding

Identical

1 0.02126770 1.58305972 0.20704272

2 0.01494399 1.30267681 0.17226800

3 0.01348366 1.21236431 0.16614066

4 0.01416288 1.15970577 0.16316988

The third column shows how the probability decreases

when we exclude checksum matches for a pair of blocks

that contained identical data as such a substitution would

not result in any data corruption. It is plotted for clarity

in figure

In table 2 , the result show data on reduction of the

checksum failure rates by the methods. The data for the

other methods where gotten from literature while we

presented them with our result. The data showed higher

and better rates of detecting error when compared with

the other technique in literature. The result of the

checksum also show a remarkable improvement when we

look at the original CRC checksum from where we

extended the model.

Fig 10. Plot of Probability (as %) of checksum match for substitution of

length

Table 2. Table showing the Checksum result data in relation to E-CRC

Error

Detection Method

Data Values

Misses Splices

F255 0.0044358811 138441

CRC 0.0021999117 316

TCP 0.1703438788 5316323

Extended-CRC 0.001002156 295

22 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

The data in the result table was plotted in an excel

chart and the plotted chart is shown in fig.10. The

interpretation from the figure show that the Extended-

CRC developed in this thesis made a remarkable

improvement compared to the original CRC result from

literature.

The chart indicated that finding out the point of

mismatch was faster in the Extended-CRC than the other

methods covered in literature. The slowest showed the

simple TCP and the Fletcher. The Fletcher however how

a remarkable improvement from the TCP and the E-CRC

show even further improvement from the already good

CRC method.

V. SUMMARY

This paper focused on error detection scheme that

checks and detects error in Multi–user request system.

Error and error related issues have been a challenge in

the development and reliable usage of data in computing

systems and application especially in distributed

databases. The ability to detect minor error in a system

enhances system reliability. This is particularly so when

the data is used, transmitted and archived and may be

retrieved for future usage. Users need to be certain that

alteration of any kind does not occur when that data is

moved. This process support developers and end – users

to recognize possible challenges so that they can be

resolved or fixed during development and even when the

system have been put to use.

The approach considered in this paper improves on a

Cyclic Redundancy Check (CRC) detection algorithms

for the detection of error that may possible occur in data

transmission by polynomial selection in computation and

on stored, backed – up and archived data in the system.

The plot in fig. 11 shows the result of the enhancement.

Fig. 11. A plot of the result of Enhanced-CRC

In a multi-user request system, the system must be

able to handle the various needs and requests of all of the

users effectively efficiently. In a multi-user request

system, for example, the system may need to handle

numerous users attempting to use a single resource

simultaneously. The system processes the requests and

places the task in a queue that keeps them organized and

allows each job to be carried out one at a time. Without a

multi-user request system, the jobs or data management

could become intermingled and the resulting information

pages would be virtually incomprehensible and error

prone.

VI. CONCLUSION

In the paper we have implemented error detection in a

Multi-Users Request System, which will serve as a

framework for other error detection schemes. We have

studied other schemes and designed an error checker for

checking of error in system. We have also developed an

error detections system for Multi-User Request Systems

– E-CRC checker. The designed system in the paper has

equally been implemented for detecting errors using

checksum and improved CRC algorithm. In all, this

paper has investigated a theoretical possibility of

developing an error checking model which can be

deployed in providing multi-user error checks. It also has

made analysis of the present error checking systems and

models that are used to be able to evaluate their strength

and pitfalls in realizing the said objective within a stored

data or database environment.

VII. RECOMMENDATION

We recommend the system developed in this project to

researchers who need to understudy the processes

discussed in this project and those developing system for

error minimization. Developers of higher application can

also use it as data-link system to check for error in a

larger system they intend to develop. This will make

them to write lesser code in the process of developing

their own system. Academic workers will also see the

work useful in doing work requiring higher activity

involving data checking and error detection. Developers

of recovery system will also find this work as a useful

launch pad for developing error recovery system since

detection can be properly carried out successfully.

Recommendations have also been made which if

developed we believe will proffer better solution to the

realization of error free computing environment.

ACKNOWLEDGMENT

The authors wish to thank Justina Udoh and Mercy

Eke for typing the paper and encouraging us in writing

the paper respectively. We appreciate the support of Oyol

Computer Consult, Inc Choba, PHC Nigeria, (Java

House) for the use of their research facilities in

completing this work.

 Error Detection in a Multi-user Request System Using Enhanced CRC Algorithm 23

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 09, 14-23

REFERENCES

[1] Allen Kent; James G. Williams, Rosalind

Kent(1990). Encyclopedia of Microcomputers: Volume 6

Electronic Dictionaries in Machine Translation to

Evaluation of Software: Microsoft Word Version 4.0. CRC

Press Inc. p. 343. ISBN 978-0-8247-2705-5.

[2] Fletcher, J. A. (2009). An Arithmetic Checksum for Serial

Transmissions. IEEE Trans. On Commun. 58(10), 1321 –

1331.

[3] Gary, C. (2010). Mysterious Russian Numbers Station

Changes Broadcast After 20 Years. Gizmodo. Retrieved

from 12 March 2013.

[4] Jonathan, S., Michael, G., Craig, P., Hughes, J.

Performance of Checksums and CRCs over Real Data,

SIGCOMM Vol 17, pg 126 (2010).

[5] Maha S. And Mohamed K. (2012)Wireless HDVideo

Transmission Over Multicarrier Error-Correction channels,

Journal Of Computer Science vol. 11 Pg 1897-

1913,Science Publications , Alexandria, Egypt

[6] Michael, B. (2007). CRC Implementation, Journal of Data

and Database, Vol 5, pg 56, online.

[7] Postel, J. (1981). Transmission Control Protocol. Internet

Request for Comments, ISI, 3.

[8] [8] Scuro, R. S. (2004). Introduction to Error Theory,

Visual Physics Laboratory, Texas A&M University,

College Station, TX 77843.

[9] Thamer (2000). Information Theory 4th class in

Communications, USA Transactions on Communication

30(1), Viking Software Solutions, Canton Ave., Suite 900,

Tulsa.

[10] Wang, Z.and Crowcroft, J. S. (2002). Detects Cell

Misordering. IEEE Network Magazine, 6(4), 8-19.

[11] Wadayama Tadashi (2010) Error detection by binary

sparse matrices, Journal of Physics: Conference Series pp

233, 012017, IOP Publishing Ltd

[12] Zhang Kehuan, XiaoFeng Wang (2011) Peeping Tom in

the Neighborhood: Keystroke Eavesdropping on Multi-

User Systems, http://static.usenix.org/ event/sec09/ tech/

slides/zhang.pdf

[13] Mohd Kamir Yusof, Ahmad Faisal Amri Abidin, Mohd

Nordin Abdul Rahman,(2012) Architecture for Accessing

Heterogeneous Databases, I.J. Information Technology

and Computer Science, Vol 4 No. 1, 2012, 1, pg. 25-31 in

MECS (http://www.mecs-press.org/)

[14] Geetha V. and Sreenath N.(2013), Semantic Multi-

granular Lock Model for Object Oriented Distributed

Systems, I.J. Information Technology and Computer

Science,Vol. 5 2013, 05, Pg. 74-84 Published Online

April 2013 in MECS (http://www.mecs-press.org/)

[15] Braubach L. and A.Pokahr(2011), “Intelligent Distributed

Computing V”, Proceedings of the 5PthP International

Symposium on Intelligent Distributed Computing (IDC

2011), Springer, pp141-151, 2011.

Authors’ Profiles
Eke O. Bartholomew (PhD).: Dept. of

Computer Science , Fac. of Phy. Sc. and

Info. Technology, University of Port

Harcourt, Nigeria, majors in Software

Engineering, Defect Management and

Web development. Dr. Eke is a member

of ACM, CPN and ISOC. He has over 30

publications in national and international

Journals.

Ebong A. Oscar. : has a Masters degree in

Computer Science in Dept. of Computer

science, University of Port Harcourt,

Nigeria. He majors in Software Defect and

Software Engineering.

How to cite this paper: Eke O. Bartholomew, Ebong A.

Oscar,"Error Detection in a Multi-user Request System Using

Enhanced CRC Algorithm", International Journal of

Information Technology and Computer Science(IJITCS), vol.6,

no.9, pp.14-23, 2014. DOI: 10.5815/ijitcs.2014.09.02

http://books.google.com/?id=ajpoqYqFrkQC&pg=PA343
http://books.google.com/?id=ajpoqYqFrkQC&pg=PA343
http://books.google.com/?id=ajpoqYqFrkQC&pg=PA343
http://en.wikipedia.org/wiki/International_Standard_Book_Number
http://en.wikipedia.org/wiki/Special:BookSources/978-0-8247-2705-5

