
I.J. Information Technology and Computer Science, 2014, 08, 72-78
Published Online July 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.08.10

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

Coupling Metric for Understandability and

Modifiability of a Package in Object-Oriented

Design

Sandip Mal
Department of Computer Science and Engineering, Central University of Jharkhand, India

Email: sandip.mal@cuj.ac.in

Kumar Rajnish

Department of Information Technology, BIT, Mesra, India

Email: krajnish@bitmesra.ac.in

Abstract— This paper presents a new coupling metric (Coup),

which is based on the formal definition of methods and

variables of classes, and packages. The proposed metric has

been validated theoretically against Briand properties as well as

empirically using packages taken from two open source

software systems and four experienced teams. We measure

Coup value by our own CC tool. An attempt has also been made

to present a strong correlation between Coup values and

understandability of the packages and between Coup values and

modified classes of the packages. The results indicate that Coup

is used to predict understandability and modifiability of a

package in Object-Oriented design. Finally this paper proves

that Coup is a better predictor of understandability and

modifiability of a package than other existing coupling metrics

in the literature.

Index Terms— Package, Coupling, Metric, Understandability,

Modifiability, Quality Factor, Object-Oriented

I. INTRODUCTION

Software engineering is an engineering discipline that

is concerned with all aspects of software production.

Software products consist of developed programs and

associated documentation. Essential product attributes are

modifiability, dependability, understandability and

usability. Coupling measures the degree of interaction

and relationships among source code elements, such as

classes, methods, attributes, and packages in Object-

Oriented (OO) software systems. It has important

applications in software development and maintenance.

They are used to help developers, testers and maintainer’s

reason about software complexity and software quality

attributes. The current research on modeling and

measuring the relationships among software components

through coupling analysis is insufficient. Coupling

measures are incomplete in their precision of definition

and quantitative computation. One of the main goals

behind OO analysis and design is to implement a

software system where classes of a package have low

coupling among them. This paper presents a coupling

metric between classes and show how classes of a

package are coupled with each other. This coupling

measure is well correlate with quality factors like

understandability and modifiability.

For OO systems, most of the coupling metrics have

been defined up to class level [1-8] and only a few

metrics exist for measurement of coupling at the higher

levels of abstraction in OO systems [9-11]. Other work

related to packages or other higher abstraction levels has

been carried out in [12-19] [21]. Many researchers have

been proposed coupling metrics and their reviews are

available in the literature but the most important metrics

have been selected for our comparative study. Table 1

describes the details of metric chosen for comparative

study.

Table 1. Existing Coupling Metrics

Name Definition

CBO [2] [23]
Classes are coupled if methods or instance variables in one class are used by the other.

CBO for a class is number of other classes coupled with it.

RFC [2] [23] Count of all methods in the class plus all methods called in other classes.

Fan out[24] The fan out of a class is the number of its immediately subordinate classes.

The rest of the paper is organized as follows. Section 2

describes some basic definitions and new coupling metric

with a working example. Section 3 provides theoretical

validation of proposed metrics against Briand properties.

Section 4 presents a case study on open source software

system. Section 5 presents conclusion and future work.

II. PROPOSED COUPLING METRIC AND WORKING

EXAMPLE

Before going to define proposed coupling metric, some

basic definition about class, method, variable, and

 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design 73

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

package has been discussed first. This basic definition is

useful for theoretical and empirical validation of

proposed coupling metric.

1. Package: Package is a set of classes, sub packages

and interfaces (Java/C# application) as their elements.

Further, these sub-packages also may contain classes, sub

packages and interfaces as their elements. This leads to a

hierarchical structure of packages in a software system.

But this study ignores the sub packages and considers

only the first level of hierarchical structure.

2. Empty Package: A package that have no elements

in it and hence, there is no relations with other packages.

It is denoted by (Ө, Ө).

3. Class: Class is a set of global variable V = {v1,

v2,, vn} and set of methods M = {m1, m2,, mn}.

4. Method: In OO programming, a method is a

subroutine (or procedure) associated with a class.

Methods have the special property that at runtime, they

have access to data stored in an instance of the class.

5. Global Variable: Suppose Packages of a system

contains a set of classes C = {C1, C2,…Cm}. CoupM(i,j)

is the coupling value by sharing methods between Class i

and j. Similarly CoupV(i,j) is the coupling value by

sharing variable between Class i and j.

CoupM(i,j)=

CoupV(i,j)=

CoupA(i,j) value is the net coupling value between two

classes i and j and calculated by taking summation value

of CoupM(i,j) and CoupV(i,j).

CoupA(j,j) = 1 if CoupM(i,j) + CoupV(i,j) > 0

 0 otherwise

Coup=

We divide the summation of CoupA(i,j) by 2 because

CoupA(i,j) and CoupA(j,i) is same things. Coup is the

coupling value of a package of p classes.

package p1;

public class C1{

 public int a, b, c;

public void m1(int i){

 }

public void m2(int i){ }

}

public class C2 extends C1{

 a++;

 m1(int i){

 }

}

public class C3 extends C1 {

 public void m1(int i){

 }

public class C4 extends C1 {

 a++; c++;

}

CoupM(C1,C2) = 1, CoupM(C2,C1) = 1

CoupM(C1,C3) =1, CoupM(C3,C1) = 1

The value of CoupM(C1,C4) , CoupM(C2,C3),

CoupM(C2,C4), and CoupM(C3,C4) is zero because

there is no common method.

CoupV(C1,C2) = 1, CoupV(C2,C1) = 1

CoupV(C1,C4) =1, CoupV(C4,C1) = 1

The value of CoupM(C1,C3) , CoupM(C2,C3),

CoupM(C2,C4), and CoupM(C3,C4) is zero because

there is no common variable.

CoupA(C1,C2) =1, CoupA(C2,C1) = 1

CoupA(C1,C3) =1, CoupA(C3,C1) = 1

CoupA(C1,C4) =1, CoupA(C4,C1) = 1

So, Coup=6/2=3

Fig. 1. Example of a Package p1

III. THEORETICAL VALIDATION

The proposed coupling measures are validated

theoretically by analyzing their mathematical properties.

For this purpose, five properties given by Briand et al. in

[20] are used and these properties provide a useful

guideline in construction and validation of coupling

measures in a precise manner and these properties are

necessary to prove the usefulness of a coupling measure.

Property 1: Non-Negativity

The value of coupling between a pair of classes and

Coup value of package will always be non-negative.

Coup ≥0

Thus, Coup satisfies Property 1.

Property 2: Null Value

If the number of class in the package is zero or one or

there is no common variable or no common method

between two classes in a package, then Coup will be null.

So Coup satisfies property 2.

Property 3: Monotonicity

If we add one common method or common variable

then CoupA value will never decrease. So Coup value

will never decrease if we add common method or variable.

So Coup also satisfies property 3.

Property 4: Merging of Classes

This property states that merging of two classes must

not increase coupling of resulting system because some

of the relationships may disappear on merger. Let P be a

package an object-oriented system, and C1, C2 be two

C1 C3 C2

m2 m1

a b c

C4

http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Subroutine
http://en.wikipedia.org/wiki/Class_%28computer_science%29

74 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

classes in P. Let C be the class which is obtained by

merging of C1 and C2. Let P' be the new package of

object-oriented system. Then, in all case Coup of p is

greater than or equal to Coup of p'. Thus, Coup also

satisfies Property 4.

Property 5: Merging of Unconnected Classes

This property states that merging of two unconnected

classes must not increase coupling of resulting system.

When two or more classes having no common method or

variable between them are merged, coupling cannot

increase because apparently unconnected classes are

being encapsulated together in a single class. Let A and B

be two classes in a package P. Let A+B be the class,

which is the union of A and B. Let P’ be the new package

of OO system. If no relationships exist between class A

and B, then Coup of package p is greater than Coup of P’.

Thus, Coup satisfies this property.

Package P Package P’

Fig. 2. Example of Merging of unconnected class

IV. CASE STUDY OF COUP ON OPEN SOURCE SOFTWARE

SYSTEM

Two open source software projects have been chosen

for case-study. XGen [25] Source Code Generator, that

creates Java source code from a simple XML document

and its main function is to generate JDBC compliant

beans that allow object level persistence to relational

databases and The Byte Code Engineering Library

(Apache BCEL) [26] is intended to give users a

convenient way to analyze, create, and manipulate

(binary) Java class files (those ending with .class).The

basic data about these two projects are given in Table 2.

For Coup analysis 4 package of BCEL and 7 package of

XGen have been taken. BCEL have 367 classes in 4

packages and XGen have 73 classes in 7 packages. Table

3 and Table 4 lists the names of packages of BCEL,

XGen and the number of classes contained in each

package.

Table 2. Information about Project Taken for Case Study

Software Project Apache BCEL XGen 0.5.0

No of Package 4 7

No of Classes 367 73

A. Results

The proposed Coupling Metrics (Coup) has been

applied to seven packages taken from XGen and four

packages taken from BCEL software systems. The Coup

value with their number of classes is given in Table 3 and

Table 4. Our CC tool calculates the Coup value of each

package. Snapshot of result has given in figure 3.

Fig. 3. Snapshot of Result calculating by CC tool

The results given in Table 3 and Table 4 may not be

always true that a package with the large number of

classes have more Coup, as an example, package

org.apache.bcel.classfile and workzen.xgen.engine.

Class A Class B

 Class A+B

 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design 75

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

Table 3. Number of classes and Coup values of four packages Taken
from Apache BCEL

Sl. No. Name of Package No. of Classes Coup

1 org.apache.bcel.classfile 51 24

2 org.apache.bcel.generic 225 37

3 org.apache.bcel.util 28 29

4 org.apache.bcel.verifier 63 15

Table 4. Number of classes and COP values of seven packages Taken
from XGen

Sl. No. Name of Package No. of Classes Coup

1 workzen.xgen.ant 5 4

2 workzen.xgen.engine 2 7

3 workzen.xgen.loader 7 22

4 workzen.xgen.model 17 19

5 workzen.xgen.test 23 16

6 workzen.xgen.type 15 12

7 workzen.xgen.util 4 9

B. Empirical Validation

Four teams of three members each have been set up

and assigned these packages to three teams. These

members are well experienced in Java programming. The

teams set rank to the each package based on a heuristic

score. The heuristic score is the time taken to understand

the package and effort require to find out Coup value

manually by the teams. The packages were ranked 1 to 11

based on their increasing heuristic score and Coup rank is

the rank according to increasing Coup value. Table 5

shows the Coup ranking and the ranking given by four

teams.

The Correlation Coefficient, Rs is used here to test the

significance of the correlation between Coup rank and

individual team's rank. 0.65 cutoff has been considered

for validation of 11 packages. Spearman Correlation

Coefficient for two set is calculated in the following

formula.

Table 5. Coup ranking and Teams ranking of eleven packages taken from two open source system

Sl. No. Name of Package
Team Rank

Coup Rank
1 2 3 4

1 workzen.xgen.ant 1 3 1 3 1

2 workzen.xgen.engine 3 4 2 2 2

3 workzen.xgen.loader 10 9 10 11 8

4 workzen.xgen.model 5 11 7 8 7

5 workzen.xgen.test 9 8 9 7 6

6 workzen.xgen.type 4 7 4 5 4

7 workzen.xgen.util 2 1 3 1 3

8 org.apache.bcel.classfile 6 6 5 4 9

9 org.apache.bcel.generic 11 10 11 10 11

10 org.apache.bcel.util 7 5 8 9 10

11 org.apache.bcel.verifier 8 2 6 6 5

Rs = 1- -1.00 ≤ Rs ≤ +1.00

Following null hypothesis has been set to test the result.

H0: There is no correlation between the Coup rank of a

package and the rank given by teams to the packages.

H1: The alternative hypothesis, there is significant

positive correlation between the Coup rank of a package

and the given by teams to the packages.

Table 6 shows that team 2 cannot evaluate Coup value

properly. Packages with high Coup value is better design

then the low Coup value. This was felt for team 2.

Table 6. Correlation Coefficient between Coup ranking and Teams

ranking of eleven packages

 Team 1 Team 2 Team 3 Team 4

6∑ d2 276 516 204 288

Rs 0.79 0.60 0.84 0.78

Rs > 0.65 √ × √ √

This study also shows a well correlation between Coup

and the quality factors such as understandability,

modifiability. This property of Coup indicates the

usefulness of the proposed metrics. First, we eliminate

team 2 and calculate the effort required to fully

understand the functionality of these packages by these

three valid teams and rank the effort from 1 to 10. A

higher rank indicates that more effort spent on

understanding the package. Table 7 shows the effort

required by each team and average effort. Then all the

packages have been given to most experienced team to

modify the package. We select the team 3, whose

Correlation Coefficient is larger (0.84) than other team as

a most experienced team. The team adds, delete or

modify some classes to add, delete and modify some

feature of the packages and recalculate the Coup values.

Table 8 shows the number of modified classes and new

Coup values.

76 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

Table 7. Effort and Coup values of seven packages Taken from two open source system

Sl. No. Name of Package
Team

Average Effort
1 3 4

1 workzen.xgen.ant 4 2 3 3.0

2 workzen.xgen.engine 3 3 2 2.7

3 workzen.xgen.loader 6 5 6 5.7

4 workzen.xgen.model 6 7 8 7.0

5 workzen.xgen.test 4 6 5 5.0

6 workzen.xgen.type 3 2 3 2.7

7 workzen.xgen.util 2 3 2 2.3

8 org.apache.bcel.classfile 4 5 5 4.7

9 org.apache.bcel.generic 8 8 9 8.3

10 org.apache.bcel.util 5 6 6 5.7

11 org.apache.bcel.verifier 4 5 3 4.0

Table 8. Number of modified classes and new Coup values of packages Taken from two open source system

Sl. No. Name of package
No. of Modified Classes

Coup
Add Class Delete Class

1 org.apache.bcel.classfile 0 2 26

2 org.apache.bcel.generic 0 5 41

3 org.apache.bcel.util 1 0 27

4 org.apache.bcel.verifier 2 0 19

5 workzen.xgen.ant 1 0 4

6 workzen.xgen.engine 1 0 5

7 workzen.xgen.loader 0 1 26

8 workzen.xgen.model 0 2 15

9 workzen.xgen.test 3 0 15

10 workzen.xgen.type 0 2 13

11 workzen.xgen.util 2 0 8

Following two null hypotheses has been set to test the

result.

HU0: ρ=0. There is no correlation between the Coup

and the effort required to understand the package.

HU1: ρ≠0. There is strong positive correlation between

the Coup and the effort required to understand the

package.

HM0: ρ=0. There is no correlation between Coup and

the number of modified classes to understand the

modifiability of a package.

HM1: ρ≠0. There is strong positive correlation between

Coup and the number of modified classes to understand

the modifiability of a package.

To test theses hypothesis, first calculate the amount of

correlation between two variables Coup and Average

Effort required for understanding the package. Secondly

calculate the amount of correlation between the numbers

of modified classes and Coup. For this purpose,

Spearman's rank correlation method has been used. Table

9 gives the correlation results. The correlation coefficient

between two variables Coup and Average Effort comes

out to be 0.87 at 0.01 significance levels and the

correlation coefficient between two variables Coup and

modifiability comes out to be 0.58 at 0.01 significance

levels. The results indicate a strong correlation in both

cases. Thus, we reject the null hypothesis HU0, and HM0.

This strong correlation indicates that Coup is a good

predictor of quality factor understandability and

modifiability.

Table 9. Spearman’s Correlation between Coup and Average effort &

Coup and Modifiability

Variable
Coup &Average

Effort

Coup &

Modifiability

Correlation

coefficient (r)
0.87 0.58

A comparison of Coup with the other existing coupling

metrics, given in Table 1, has been described. Table 10

gives the CBO, RFC and Fan out value of each package

of two open source software systems. All the considered

metrics are class level coupling metrics. For measuring

coupling of a package, we take average of coupling

values of classes in a package. Table 10 provides the

average of Coup metric values of classes in a package

and table 11 provides average of Coup metric values after

modifying the packages. JHAWK tool has been used to

find out the metrics values.

 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design 77

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

Table 10. CBO, RFC, MPC and Fan In values of 11 packages

Sl. No. Name of Package CBO RFC Fan out

1 workzen.xgen.ant 8.8 30.8 6

2 workzen.xgen.engine 1 25 7

3 workzen.xgen.loader 2.33 32 5

4 workzen.xgen.model 1.12 22.82 3

5 workzen.xgen.test 0.96 32.54 5

6 workzen.xgen.type 2.53 1.6 3

7 workzen.xgen.util 0 22 5

8 org.apache.bcel.classfile 10.21 24.9 4

9 org.apache.bcel.generic 9.46 13.26 4

10 org.apache.bcel.util 1.25 13.75 4

11 org.apache.bcel.verifier 4.56 26.69 5

Table 11. CBO, RFC, MPC and Fan In values of 11 packages after

modification of packages

Sl. No. Name of Package CBO RFC Fan out

1 workzen.xgen.ant 9.2 31 6

2 workzen.xgen.engine 2.3 25.6 8

3 workzen.xgen.loader 2 31.42 5

4 workzen.xgen.model 1.42 23 5

5 workzen.xgen.test 1 32.94 4

6 workzen.xgen.type 1.98 1.2 3

7 workzen.xgen.util 1 27 6

8 org.apache.bcel.class 9.54 22.8 5

9 org.apache.bcel.generic 7.62 10 3

10 org.apache.bcel.util 2 14.35 5

11 org.apache.bcel.verifier 5 26.59 4

Table 12. Spearman’s Correlation between Coup and Average effort &

Coup and Modifiability

 CBO RFC Fan out

Average Effort 0.238 -0.043 0.476

Modifiability 0.216 -0.049 0.526

Table 12 describes the Spearman’s Correlation

between Coup and Average effort & Coup and

Modifiability of CBO, RFC, and Fan out. Positive values

indicate that metric is useful to predict the factors

(Average Effort, Modifiability). CBO and Fan out is the

accepted metrics for measuring Average Effort and

Modifiability but RFC is not a good measure for Average

Effort and Modifiability as it has negative Correlation.

Table 9 shows Correlation Coefficient of Coup (0.87 &

0.58), which is larger than the Correlation Coefficient of

CBO, RFC and Fan out. So we can say that Coup is the

better measure of Average Effort and Modifiability than

CBO, RFC, and Fan out.

V. CONCLUSION AND FUTURE WORK

In this paper, an attempt has been made to propose a

new coupling metric which is based on formal definitions,

properties and relations of classes. The structure of

packages has also been taken into consideration during

the measurement of coupling of a package. The proposed

metrics has been validated theoretically as well as

empirically. The theoretical validation of Coup satisfies

all the properties presented by Briand. In addition to the

proposal and theoretical validation, this paper has also

presented empirical data on Coup from two open source

software system (Apache BCEL, XGen 0.5.0). Both

systems developed in Java. From Table 9, it is found that

there is a strong correlation between Coup and

understandability (0.87, significant label 0.01) and

between Coup and modifiability (0.58, significant label

0.01). So, this study clearly provided that Coup is the

valid indicator of external quality attributes of the

software such as understandability, modifiability and also

better than the other existing coupling metrics. This

firmly believes us that this work will encourage other

researchers and developers to use the results obtained

from this study to predict and measure several other

software quality attributes.

The future scope includes some fundamental issues

 To analyze the nature of proposed metric with

performance indicators such as design, maintenance,

effort and system performance.

 Another interesting study would be together

different coupling metric at various intermediate

stages of the project. This would provide insight into

how application reusability, maintainability,

testability evolves and how it can be managed and

controlled through the use of metrics.

REFERENCES

[1] S R Chidamber, C F. Kemerer, Towards a metrics suite for

object oriented design. In Proc. the 6th ACM Conf. Object-

Oriented Programming: Systems, Languages and Applica-

tions(OOPSLA), Phoenix, AZ, Oct. 6-11, (1991), pp.197-

211.

[2] S R Chidamber, C F. Kemerer, A metrics suite for object

oriented design. IEEE Transactions on Software

Engineering, 20(6) (1994): 476-493.

[3] N. I. Churcher, M J. Shepperd, Comments on `A metrics

suite for object-oriented design'. IEEE Transactions of

Software Engineering, 21(3) (1995), 263-265.

[4] M. Hitz, B. Montazeri, Measuring coupling in object-

oriented systems. Object Currents, 1(4) (1996) ,124-136.

[5] L. Briand, P Devanbu, W. Melo, An investigation into

coupling measures for C++. In Proc. 19th Int. Conf.

Software Eng., Boston, May 17-23, 1997, pp.: 412-421.

[6] K.Rajnish and V. Bhattacherjee, Class Cohesion: An

Empirical and Analytical Approach, International Journal

of Science and Research (IJSR), Victoria, Australia, Vol.2,

No. 1, 2007, pp.53-62, http://www.international.au.in.

[7] S. Mal and K.Rajnish, Applicability of Weyuker’s

Property 9 to Inheritance Metric.International Journal of

Computer Applications, Foundation of Computer Science,

USA, Volume 66– No.12, March 2013.

http://www.international.au.in/

78 Coupling Metric for Understandability and Modifiability of a Package in Object-Oriented Design

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 08, 72-78

[8] B.S. Henderson, L. L. Constantine, I. M. Graham,

Coupling and Cohesion (towards a valid metrics suite for

object oriented analysis and design, Object oriented

systems, vol. 3, 143-158, 1996.

[9] Y S Lee, B S Liang, S F Wu, F J Wang. Measuring the

coupling and cohesion of an object-oriented program based

on information flow. In Proc. International Conference on

Software Quality, Maribor, Slovenia, Nov. 6-9, 1995,

pp.81-90.

[10] S. Mal and K.Rajnish, “Theoretical validation of New

Class Cohesion Metric against Briand Properties”.

Accepted for the publication in International Conference

on Advanced Computing, Networking, and Informatics

(ICACNI-2013), published by Advances in Intelligent and

soft Computing, springer, Raipur, India.

[11] G Gui, P D Scott, Coupling and cohesion measures for

evaluation of component reusability. In Proc. International

Workshop on Mining Software Repositories, Shanghai,

China, May 22-23, 2006, pp.18-21.

[12] S. A. E. bad, and M. Ahmed, An Evaluation Framework

for Package-Level Cohesion Metrics, International

Conference on Future Information Technology, Singapore

vol.13 (2011), pp-239-243.

[13] L C Briand, J W Daly, J K WÄust, A unified framework

for coupling measurement in object-oriented systems.

IEEE Transactions on Software Engineering, 1999, 25(1):

91-121.

[14] E Allen, T Khoshgoftaar. Measuring coupling and

cohesion of software modules: An information theory

approach. In Proc. the Seventh International Software

Metrics Symposium, London, UK, April 4-6, 2001,

pp.124-134.

[15] T Xu, K Qian, X He, Service oriented dynamic decoupling

metrics. In Proc. the 2006 International Conference on

Semantic Web and Web Services (SWWS'06), Las Vegas,

USA, June 26-29, 2006, pp.170-176.

[16] V Gupta, J. K Chhabra, Package coupling measurement in

object-oriented software. Journal of computer science and

technology 24(2): 273-283 Mar. 2009.

[17] X Franch, J P. Carvallo, A quality-model-based approach

for describing and evaluating software packages. In Proc.

IEEE Joint International Conference on Requirements

Engineering (RE'02), Essan, Germany, Sept. 9-13, 2002,

pp.1-8.

[18] H. Washizaki, H. Yamamoto, Y. Fukazawa, A metrics

suite for measuring reusability of software components. In

Proc. the Ninth International Software Metrics Symposium

(METRICS'03), 2003.

[19] W. Li, S. Henry, Object-oriented metrics that predict

maintainability. Journal of Systems and Software, 1993,

23(2): 111-122.

[20] L. Briand, S. Morasca, V. Basili, Property-based software

engineering measurement. IEEE Transactions of Software

Engineering, (1996), 22(1): 68-86.

[21] http://sourceforge.net/projects/xgen/

[22] http://jakarta.apache.org

[23] E. Brito, F Abreu, and W. Melo, Evaluating the impact of

OO Design on Software Quality. Proc. Third International

Software Metrics Symposium. (Berin 1996).

[24] http://www.virtualmachinery.com/jhawkmetricsclass.html

Authors’ Profiles
Mr. Sandip Mal is working as an assistant professor in Central

University of Jharkhand, India. He is doing his Research from

Birla Institute of Technology, Department of Computer Science

and Engineering, Mesra, Ranchi, Jharkhand, India.He received

his M.E (Software Engineering) degree

from Birla Institute of Technology,

Mesra, Ranchi, Jharkhand, India in year

2012 and B.Tech degree from West

Bengal University of Technology, West

Bengal, India in the year of 2008. His

research area is Object-Oriented Metrics,

Software Engineering and Programming

Languages.

Dr. Kumar Rajnish is an Assistant

Professor in the Department of

Information Technology at Birla

Institute of Technology, Mesra, Ranchi,

Jharkahnd, India. He received his PhD

in Engineering from BIT Mesra, Ranchi,

Jharkhand, India in the year of 2009. He

received his MCA Degree from MMM

Engineering College, Gorakhpur, State

of Uttar Pradesh, India. He received his B.Sc Mathematics

(Honours) from Ranchi College Ranchi, India in the year 1998.

He has 24 International and National Research Publications. His

Research area is Object-Oriented Metrics, Object-Oriented

Software Engineering, Software Quality Metrics, Programming

Languages, and Database System.

How to cite this paper: Sandip Mal, Kumar Rajnish,"Coupling

Metric for Understandability and Modifiability of a Package in

Object-Oriented Design", International Journal of Information

Technology and Computer Science(IJITCS), vol.6, no.8, pp.72-

78, 2014. DOI: 10.5815/ijitcs.2014.08.10

http://sourceforge.net/projects/xgen/
http://jakarta.apache.org/

