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Abstract—Association rules are the main technique for data 

mining. Apriori algorithm is a classical algorithm of association 

rule mining. Lots of algorithms for mining association rules and 

their mutations are proposed on basis of Apriori algorithm, but 

traditional algorithms are not efficient. For the two bottlenecks 

of frequent itemsets mining: the large multitude of candidate 2- 

itemsets, the poor efficiency of counting their support. Proposed 

algorithm reduces one redundant pruning operations of
2C . If 

the number of frequent 1-itemsets is n, then the number of 

connected candidate 2-itemsets is
nC , while pruning operations

nC . The proposed algorithm decreases pruning operations of 

candidate 2-itemsets, thereby saving time and increasing 

efficiency. For the bottleneck: poor efficiency of counting 

support, proposed algorithm optimizes subset operation, 

through the transaction tag to speed up support calculations. 

Algorithm Apriori is one of the oldest and most versatile 

algorithms of Frequent Pattern Mining (FPM). Its advantages 

and its moderate traverse of the search space pay off when 

mining very large databases. Proposed algorithm improves 

Apriori algorithm by the way of a decrease of pruning 

operations, which generates the candidate 2-itemsets by the 

apriori-gen operation. Besides, it adopts the tag-counting 

method to calculate support quickly. So the bottleneck is 

overcome. 

 

Index Terms—association rule mining, frequent itemset 

generation, support and confidence 

 

I.  INTRODUCTION 

A.  Basic Concepts 

Many business enterprises accumulate large quantities 

of data from their day to day operations. For example, 

huge amounts of customer purchase data are collected 

daily at the checkout counters of grocery stores. Table 1 

illustrates an example of such data, commonly known as 

market basket transactions. Each row in this table 

corresponds to a transaction, which contains a unique 

identifier labeled TID and a set of items bought by a 

given customer. Retailers are interested in analyzing the 

data to learn about the purchasing behavior of their 

customers. Such valuable information can be used to 

support a variety of business-related applications such as 

marketing promotions, inventory management, and 

customer relationship management. 

Association analysis is useful for discovering 

interesting relationships hidden in large data sets [1]. The 

uncovered relationships can be represented in the form of 

association rules or sets of frequent items. The following 

rule can be extracted from the data set shown in Table 1: 

{Diapers} → {Beer} 

 

Table 1. An example of market basket transactions 

TID Items 

1 {Bread, Milk} 

2 {Bread, Diapers, Beer, Eggs} 

3 {Milk, Diapers, Beer, Cola} 

4 {Bread, Milk, Diapers, Beer} 

5 {Bread, Milk, Diapers, Cola} 

 

The rule suggests that a strong relationship exists 

between the sale of diapers and beer because many 

customers who buy diapers also buy beer. Retailers can 

use this type of rules to help them identify new 

opportunities for cross selling their products to the 

customers. 

Besides market basket data, association analysis is also 

applicable to other application domains such as 

bioinformatics, medical diagnosis, Web mining, and 

scientific data analysis. In the analysis of Earth science 

data, for example, the association patterns may reveal 

interesting connections among the ocean, land, and 

atmospheric processes. Such information may help Earth 

scientists develop a better understanding of how the 

different elements of the Earth system interact with each 

other [2] [3]. 

B.  Itemset and Support Count  

Let I = {i1, i2.  . . id} be the set of all items in a market 

basket data and T = {t1, t2.  . . tN} be the set of all 

transactions. Each transaction ti contains a subset of 

items chosen from I. In association analysis, a collection 

of zero or more items is termed an itemset. If an itemset 

contains k items, it is called a k-itemset. The null set is an 

itemset that does not contain any items. 

The transaction width is defined as the number of 

items present in a transaction. A transaction tj is said to 

contain an itemset X if X is a subset of tj. An important 

property of an itemset is its support count, which refers to 

the number of transactions that contain a particular 

itemset.  

C.  Association Rule  

An association rule is an implication expression of the 

form X → Y , where X and Y are disjoint itemsets, i.e., 
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X ∩ Y = ∅. The strength of an association rule can be 

measured in terms of its support and confidence. Support 

determines how often a rule is applicable to a given data 

set, while confidence determines how frequently items in 

Y appear in transactions that contain X. The formal 

definitions of these metrics are 

Support, s(X → Y) = ( )X Y

N

  

Confidence, c(X → Y) =  ( )

( )

X Y

X





 

D.  Support and Confidence 

Support is an important measure because a rule that 

has very low support may occur simply by chance. A low 

support rule is also likely to be uninteresting from a 

business perspective because it may not be profitable to 

promote items that customers seldom buy together. 

Support is often used to eliminate uninteresting rules. 

Support has a desirable property that can be exploited for 

the efficient discovery of association rules. 

Confidence measures the reliability of the inference 

made by a rule. For a given rule X → Y , the higher the 

confidence, the more likely it is for Y to be present in 

transactions that contain X. Confidence also provides an 

estimate of the conditional probability of Y given X.  

E.  Frequent Itemset Generation 

A lattice structure can be used to enumerate the list of 

all possible itemsets. In general, a data set that contains k 

items can potentially generate up to 2K
−1 frequent 

itemsets, excluding the null set. Because k can be very 

large in many practical applications, the search space of 

itemsets that need to be explored is exponentially large. 

A brute-force approach for finding frequent itemsets is 

to determine the support count for every candidate 

itemset in the lattice structure. To do this, we need to 

compare each candidate against every transaction, an 

operation that is shown in Fig. 1. If the candidate is 

contained in a transaction, its support count will be 

incremented. Such an approach can be very expensive 

because it requires O (NMw) comparisons, where N is 

the number of transactions, M = 2K
−1 is the number of 

candidate itemsets, and w is the maximum transaction 

width. 

 

 

Fig 1. Counting the support of candidate itemsets 

 

There are several ways to reduce the computational 

complexity of frequent itemset generation. 

 

1) Reduce the number of candidate itemsets (M). The 

Apriori principle, described in the next section, is an 

effective way to eliminate some of the candidate 

itemsets without counting their support values. 

2) Reduce the number of comparisons. Instead of 

matching each candidate itemset against every 

transaction, we can reduce the number of comparisons 

by using more advanced data structures, either to store 

the candidate itemsets or to compress the data set. 

 

II. THE APRIORI PRINCIPLE 

Support measure helps to reduce the number of 

candidate itemsets explored during frequent itemset 

generation. The use of support for pruning candidate 

itemsets is guided by the Apriori Principle. “If an itemset 

is frequent, then all of its subsets must also be frequent.” 

Considering the itemset lattice shown in Fig. 2, suppose 

{c, d, e} is a frequent itemset. Any transaction that 

contains {c, d, e} must also contain its subsets, {c, d}, {c, 

e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is 

frequent, then all subsets of {c, d, e} must also be 

frequent [6]. 

 

Fig. 2. An illustration of the Apriori principle 

 

Conversely, if an itemset such as {a, b} is infrequent, 

then all of its supersets must be infrequent too. As 
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illustrated in Fig. 3, the entire sub graph containing the 

supersets of {a, b} can be pruned immediately once {a, b} 

is found to be infrequent. This strategy of trimming the 

exponential search space based on the support measure is 

known as support-based pruning. Such a pruning strategy 

is made possible by a key property of the support 

measure, namely, that the support for an itemset never 

exceeds the support for its subsets. This property is also 

known as the anti-monotone property of the support 

measure. 

 

Fig. 3. An illustration of support-based pruning 

 

Any measure that possesses an anti-monotone property 

can be incorporated directly into the mining algorithm to 

effectively prune the exponential search space of 

candidate itemsets. 

A. Frequent Itemset Generation in the Apriori 

Algorithm 

Apriori is the first association rule mining algorithm 

that pioneered the use of support-based pruning to 

systematically control the exponential growth of 

candidate itemsets. Fig. 4 provides a high-level 

illustration of the frequent itemset generation part of the 

Apriori algorithm for the transactions shown in Table 1. 

Considering the support threshold is 60%, which is 

equivalent to a minimum support count equal to 3. 

 

 

Fig. 4. Illustration of frequent itemset generation using the Apriori 

algorithm 

 

Initially, every item is considered as a candidate 1-

itemset. After counting their supports, the candidate 

itemsets {Cola} and {Eggs} are discarded because they 

appear in fewer than three transactions. In the next 

iteration, candidate 2-itemsets are generated using only 

the frequent 1-itemsets because the Apriori principle 

ensures that all supersets of the infrequent 1-itemsets 

must be infrequent. Because there are only four frequent 

1-itemsets, the number of candidate 2-itemsets generated 

by the algorithm is 4

2

 
 
 

 = 6. Two of these six candidates, 

{Beer, Bread} and {Beer, Milk}, are subsequently found 

to be infrequent after computing their support values. The 

remaining four candidates are frequent, and thus will be 

used to generate candidate 3-itemsets. Without support-

based pruning, there are 6

3

 
 
 

 = 20 candidate 3-itemsets 

that can be formed using the six items. With the Apriori 

principle, we only need to keep candidate 3-itemsets 

whose subsets are frequent. The only candidate that has 

this property is {Bread, Diapers, Milk}. 

The effectiveness of the Apriori pruning strategy can 

be shown by counting the number of candidate itemsets 

generated. A brute-force strategy of enumerating all 

itemsets (up to size 3) as candidates will produce  

6

1

 
 
 

 + 
6

2

 
 
 

 + 
6

3

 
 
 

 = 6 + 15 + 20 = 41 

candidates. With the Apriori principle, this number 

decreases to 

6

1

 
 
 

 + 
4

2

 
 
 

 + 1 = 6 + 6 + 1 = 13 

candidates, which represents a 68% reduction in the 

number of candidate itemsets. The pseudo code for the 

frequent itemset generation part of the Apriori algorithm 

is shown below.  

 

Apriori algorithm for frequent itemset generation  

1.  1k   

2.  kF     | minsupi i I i N     

{Find all frequent 1-itemsets} 

3.  repeat 

4.   1k k   

5.   kC  = apriori-gen  1kF   {Generate 

candidate itemsets} 

6.   for each transaction t T  do 

7.    tC  = subset  ,kC t  

{Identify all candidates that belong to t} 

8.    for each candidate itemset    

                                              tc C  do 

9.        1c c     

{Increment support count} 

10.    end for 

11.   end for 
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12.   kF     | minsupkc c C c N     

{Extract the frequent k-itemsets} 

13.  until kF   

14.  Result = k kF  

Procedure apriori_gen ( 1kF  ) 

1. for each itemsets 1 1kf F   do 

2.  for each itemsets 2 1kf F   do 

3.        if (    1 21 1f f  ) Λ  

(    1 22 2f f ) Λ … Λ (    1 22 2f k f k   )

  

 Λ (    1 21 1f k f k   )  then 

4.    1 2c f f 

 {join step: generate candidates} 

5.    for each ( 1k  )- 

     subsets s of c do 

6.                if (
1ks f  )  

                                                                   then 

7.    delete c        

{prune step: remove candidates} 

8.     else  

9.    add c to kC  

10.    end for 

11.    return kC  

12.       end if 

13.  end for 

14. end for 

 

Procedure subset ( kC , t) 

1. for all candidates ks C  do 

2.  if t contains s 

3.       subset = subset +  s  

4. end for 

 

kC  denote the set of candidate k-itemsets and 
kF  

denote the set of frequent k-itemsets:  

 The algorithm initially makes a single pass over the 

data set to determine the support of each item. Upon 

completion of this step, the set of all frequent 1-

itemsets
1F  will be known (steps 1 and 2).  

 Next, the algorithm will iteratively generate new 

candidate k-itemsets using the frequent (k − 1)-

itemsets found in the previous iteration (step 5). 

Candidate generation is implemented using a function 

called apriorigen. 

 To count the support of the candidates, the algorithm 

needs to make an additional pass over the data set 

(steps 6–10). The subset function is used to determine 

all the candidate itemsets in 
kC  that are contained in 

each transaction t. 

 After counting their supports, the algorithm eliminates 

all candidate itemsets whose support counts are less 

than minsup (step 12).  

 The algorithm terminates when there are no new 

frequent itemsets generated, i.e., KF  (step 13).  

 

The frequent itemset generation part of the Apriori 

algorithm has two important characteristics.  

1) First, it is a level-wise algorithm; i.e., it traverses the 

itemset lattice one level at a time, from frequent 1-

itemsets to the maximum size of frequent itemsets.  

2) Second, it employs a generate-and-test strategy for 

finding frequent itemsets. At each iteration, new 

candidate itemsets are generated from the frequent 

itemsets found in the previous iteration. The support 

for each candidate is then counted and tested against 

the minsup threshold. The total number of iterations 

needed by the algorithm is
max 1K  , where 

maxK  is the 

maximum size of the frequent itemsets. 

 

B.  Candidate Generation and Pruning 

The apriori-gen function shown in Step 5 of algorithm 

generates candidate itemsets by performing the following 

two operations:  

1) Candidate Generation: This operation generates new 

candidate k-itemsets based on the frequent (k − 1) - 

itemsets found in the previous iteration. 

2) Candidate Pruning: This operation eliminates some 

of the candidate k-itemsets using the support-based 

pruning strategy. 

Considering a candidate k-itemset, X = { 1, 2,..........., ki i i }, 

the algorithm must determine whether all of its proper 

subsets, X −  ji  ( j  = 1, 2, . . . ,k), are frequent. If 

one of them is infrequent, then X is immediately pruned. 

This approach can effectively reduce the number of 

candidate itemsets considered during support counting. 

The complexity of this operation is  O k  for each 

candidate k-itemset [6] [7].  

In principle, there are many ways to generate candidate 

itemsets. The following is a list of requirements for an 

effective candidate generation procedure: 

1) It should avoid generating too many unnecessary 

candidates. A candidate itemset is unnecessary if at 

least one of its subsets is infrequent. Such a candidate 

is guaranteed to be infrequent according to the 

antimonotone property of support. 

2) It must ensure that the candidate set is complete, i.e., 

no frequent itemsets are left out by the candidate 

generation procedure. To ensure completeness, the set 

of candidate itemsets must subsume the set of all 

frequent itemsets. 

3) It should not generate the same candidate itemset more 

than once. Generation of duplicate candidates leads to 

wasted computations and thus should be avoided for 

efficiency reasons. 
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III. PROPOSED ALGORITHM FOR MINING 

ASSOCIATION RULES 

A. Enhancement of Subset Procedure 

Procedure subset ( kC , t) 

1. for all candidates ks C  do 

2.  if t contains s 

3.       subset = subset +  s  

4. end for 

Improved Procedure subset ( kC , t) 

1. for all candidates ks C  do 

2.         If (first item of mins   )  (last item of 

maxs  ) 

3.        subset = subset +  s  

4. end for 

 

Its running time is  | |kD , this is a very large number. 

Considering k = 3, the transaction t (x2, x6, x7, x9), the 

itemsets s (x4, x6, x10). Refinement of this sentence: “if t 

contain s during a judge are the following conditions: if (t 

contains x4)  (t contains x6)  (t contains x10) 

then…..” Obviously, t does not contain s, but still have to 

compare one by one [8]. 

The proposed algorithm improves the subset operation 

through adding a tag column on the transaction database, 

of which values are the first and the last numbers of 

itemsets. If (first item of x > = min)  (last item of x <= 

max), then t contains s. Otherwise t does not contain s. 

B. Proposed Apriori Algorithm 

The Proposed algorithm can be divided into two steps. 

First, the algorithm finds out all frequent itemsets. Then 

it generates all association rules from frequent itemsets.  

 

Input: A database D and min-support 

Output: All the frequent itemsets of the database 

1.  1k   

2.  kL     | minsupi i I i N     

{Find all frequent 1-itemsets} 

3. 
2 1 1C L L   

4. for all candidates 2c C  do 

5.  tC  = subset  2 ,C t  

6.   for all candidates  tc C  do 

7.       1c c      

8.   end for  

9.   2 | minsupkL c c C c N      

10. end for 

11.  repeat 

12.   3k   

13.   kC  = apriori-gen  1kL           

{Generate candidate itemsets} 

14.   for each transaction t T  do 

15.    tC  = subset  ,kC t        

{Identify all candidates that belong to t} 

16.    for each candidate itemset  

tc C  do 

17.         1c c       

{Increment support count} 

18.    end for 

19.   end for 

20.   kL     | minsupkc c C c N     

{Extract the frequent k-itemsets} 

21.  until kL   

22.  Result = 
k kL  

As 2C  is connected by 1L  and pruning two-generated, 

of which pruning operations to test whether a subset of 

2C  is frequent itemsets. Because
2 1 1C L L  , the subset 

of the set must be frequent. Therefore, the proposed 

algorithm generates 2C  by the direct connection of 1L , 

rather than by pruning operation [14] [17]. 

 

IV. WORKING OF PROPOSED ALGORITHM 

A transactional database is showed in Table 2, and the 

minimum support threshold is 20%.The result of mining 

association rules which is generated by proposed 

algorithm is illustrated as follows. 

 
Table 2. Transactional Database D 

Transaction No. Itemsets 

T100 I1, I2, I5 

T200 I2, I4 

T300 I2, I3 

T400 I1, I2, I4 

T500 I1, I3 

T600 I2, I3 

T700 I1, I3 

T800 I1, I2, I3, I5 

T900 I1, I2, I3 

 
Table 3. The Database in the proposed algorithm 

Transaction No. Itemsets Tag 

T100 I1, I2, I5 1, 5 

T200 I2, I4 2, 4 

T300 I2, I3 2, 3 

T400 I1, I2, I4 1, 2, 4 

T500 I1, I3 1, 3 

T600 I2, I3 2, 3 

T700 I1, I3 1, 3 

T800 I1, I2, I3, I5 1, 2, 3, 5 

T900 I1, I2, I3 1, 2, 3 
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The first to deal with a database in the form of Table 3, 

the last one marked with the corresponding transaction of 

the smallest item serial number and the largest serial 

number. After the first scan the database, looking for 1L , 

you can compare the various tag of the transaction, 

because 1L  is not in [2, 4], or in [2, 3], and so on to 

avoid many comparison of the operation and thereby 

saving time. 

After calculating support, 1L  = {I1, I2, I3, I4, I5}. 

According to the improved algorithm, 2C  connected 

directly by 1L  is no need for pruning operations. Thus, 

2C  = {(I1, I2), (I1, I3), (I1, I4), (I1, I5), (I2, I3), (I2, I4), 

(I2, I5), (I3, I4), (I3, I5), (I4, I5)}. As (I1, I2) in [1, 5], it 

includes the transaction T100 and increases the 

corresponding support. And so on, 2L  = {(I1, I2), (I1, 

I3), (I1, I5), (I2, I3), (I2, I4), (I2, I5)}. After pruning after 

connecting 3C  = {(I1, I2, I3), (I1, I2, I5)}. Itemsets (I1, 

I2, I3) in [1, 5], and so increases in support. Because it is 

not in [2, 4] or [2, 3] and therefore do not increase 

support. Finally, 3L  = {(I1, I2, I3), (I1, I2, I5)}. 4C  can 

not be find as the algorithm end. Clearly, the proposed 

algorithm reduces the number of unnecessary operations, 

streamline the collection of frequent generation and 

improve the efficiency of the algorithm. 

 

 

 

V. IMPLEMENTATION 

A. Class File Detail 

1) Apriori.cs 

It contains class and methods used to implement the 

APriori Market Based Analysis Data Mining Algorithm. 

Apriori class implements the APriori algorithm for 

market based analysis. This class implements the APriori 

algorithm and creates association between items in a 

transaction.  

2) DataAccessLayer.cs 

Implements data access to relational databases and 

XML data stores. 

3) DataMining.cs 

A class that provides data mining services using 

C#.NET, ADO.NET, XML.NET and a Market Based 

Analysis Data Mining Algorithm. 

4) Itemsets.cs 

An abstract class that represents a set items from a 

shopping cart. Defines the Level of an Itemset, its Items 

and Support Count. The level of an Itemset is the 

Hierarchy of an itemset or how many items make up the 

Itemset. A one level Itemset contains one item. A two 

level Itemset contains two items. 

5) DataTransformationServices.cs 

DataTransformationServices is used to transform data 

contained in tables and relationships like the Northwind 

database to a single table containing a TransactionID and 

Transactions field which is used for the C#.NET market 

based sales data mining. 

B. Screen Shots 

 

Fig. 5. Output of application using Apriori algorithm 
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Fig. 6. Output of application using Improved Apriori algorithm 

 

VI. PERFORMANCE STUDY 

In order to study the performance, the computer used 

to run the experiments had Intel(R) Pentium D CPU 2.80 

GHz processor and 512 MB of memory and 512 MB of 

memory. The operating system used was Microsoft 

Windows XP Professional. Programs are coded in 

C#.NET on the platform of Visual Studio 2005. The 

performance of the Apriori algorithm is largely depends 

on the internal characteristic of the datasets and the 

number of records. To make the time measurements more 

reliable, no other application was running on the machine 

while the experiments were running. 

Algorithm has been tested on the three different 

datasets described in the previous chapter. The 

performance measure is the execution time (seconds) of 

the algorithms on the datasets. The minimum confidence 

is set to 50%. 

 
Table 4. Dataset characteristics 

Datasets Transactions 
Distinct 

Items 

Maximum 

Transaction 
Size 

Average 

Transaction 
Size 

Retail Sales 5000 200 8 3.0 

Adventure 
Works 

15000 500 12 5.0 

 

A. Experimental Analysis 

(1) Retail Sales Dataset  

 
Table 5. The comparison of the runtime at different minimum 

support between the Apriori algorithm and the Improved Apriori 

algorithm 

Minimum 
Support 

(%) 

Execution Time (Seconds) 
Rule 

Count 
Apriori 

Improved 

Apriori 

1 8.42 8.29 23 

2 8.21 8.14 23 

3 8.21 8.15 23 

4 7.92 7.71 17 

5 7.65 7.65 16 

6 7.90 7.65 16 

7 7.75 7.65 16 

8 7.35 7.21 10 

9 7.14 6.81 3 

10 6.76 6.68 0 
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Fig. 7. The comparison of runtime at different minimum supports 

between the original Apriori and the improved Apriori 

 

(2) Adventure Works Dataset 

 
Table 6. The comparison of the runtime at different minimum 

support between the Apriori algorithm and the Improved Apriori 

algorithm 

Minimum 
Support 

(%) 

Execution Time (Seconds) 
Rule 

Count 
Apriori 

Improved 
Apriori 

10 534.67 533.54 1024 

15 242.78 241.92 817 

20 87.73 87.41 321 

25 56.14 55.94 50 

30 53.15 52.97 9 

35 52.48 52.34 2 

40 53.45 52.23 0 

45 53.09 53.00 0 

50 52.35 52.25 0 

 

 

Fig. 8. The comparison of runtime at different minimum supports 

between the original Apriori and the improved Apriori 

 

Fig. 7 and Fig. 8 show the execution times for the two 

datasets for increasing values of minimum support. As 

the minimum support increases, the execution time of the 

algorithm decreases because of decreases in the total 

number of candidates and large itemsets. From the above 

result, we can contrast the changes in efficiency. With the 

decrease of minimum support to some content, the 

Improved Apriori algorithm tends to prevail, and with the 

further decrease of minimum support, the advantage of 

the Improved Apriori algorithm can be greatly enhanced. 

From the above figures, we can conclude that, with the 

reduction of the minimum support, the efficiency of the 

Improved Apriori algorithm can change correspondingly 

from a lower level to a higher level than that of the 

classic Apriori algorithm. When the value of minimum 

support count is small enough, the efficiency of the 

modified algorithm is improved. The total number of 

records and the characteristic of data will affect the 

performance of the algorithm.  

 

VII. CONCLUSION AND FUTURE WORK 

The proposed algorithm for mining association rule, 

decreases pruning operations of candidate 2-itemsets, 

thereby saving time and increase efficiency. It optimizes 

subset operation, through the transaction tag to speed up 

support calculations. The experimental results obtained 

from tests show that proposed system outperforms 

original one efficiently. 

The current mining methods require users to define 

one or more parameters before their execution; however, 

most of them do not mention how users can adjust these 

parameters online while they are running. It is not 

feasible for users to wait until a mining algorithm to stop 

before they can reset the parameters. This is because it 

may take a long time for the algorithm to finish due to 

the continuous arrival and huge amount of data. For 

further improvement, we may consider either let the users 

adjust online or let the mining algorithm auto-adjust most 

of the key parameters in association rule mining, such as 

support, confidence and error rate. 
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