
I.J. Information Technology and Computer Science, 2014, 07, 15-23
Published Online June 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.07.03

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

Improved Apriori Algorithm for Mining

Association Rules

Darshan M. Tank

Department of Information Technology, L.E.College, Morbi-363642, India

Email: dmtank@gmail.com

Abstract—Association rules are the main technique for data

mining. Apriori algorithm is a classical algorithm of association

rule mining. Lots of algorithms for mining association rules and

their mutations are proposed on basis of Apriori algorithm, but

traditional algorithms are not efficient. For the two bottlenecks

of frequent itemsets mining: the large multitude of candidate 2-

itemsets, the poor efficiency of counting their support. Proposed

algorithm reduces one redundant pruning operations of
2C . If

the number of frequent 1-itemsets is n, then the number of

connected candidate 2-itemsets is
nC , while pruning operations

nC . The proposed algorithm decreases pruning operations of

candidate 2-itemsets, thereby saving time and increasing

efficiency. For the bottleneck: poor efficiency of counting

support, proposed algorithm optimizes subset operation,

through the transaction tag to speed up support calculations.

Algorithm Apriori is one of the oldest and most versatile

algorithms of Frequent Pattern Mining (FPM). Its advantages

and its moderate traverse of the search space pay off when

mining very large databases. Proposed algorithm improves

Apriori algorithm by the way of a decrease of pruning

operations, which generates the candidate 2-itemsets by the

apriori-gen operation. Besides, it adopts the tag-counting

method to calculate support quickly. So the bottleneck is

overcome.

Index Terms—association rule mining, frequent itemset

generation, support and confidence

I. INTRODUCTION

A. Basic Concepts

Many business enterprises accumulate large quantities

of data from their day to day operations. For example,

huge amounts of customer purchase data are collected

daily at the checkout counters of grocery stores. Table 1

illustrates an example of such data, commonly known as

market basket transactions. Each row in this table

corresponds to a transaction, which contains a unique

identifier labeled TID and a set of items bought by a

given customer. Retailers are interested in analyzing the

data to learn about the purchasing behavior of their

customers. Such valuable information can be used to

support a variety of business-related applications such as

marketing promotions, inventory management, and

customer relationship management.

Association analysis is useful for discovering

interesting relationships hidden in large data sets [1]. The

uncovered relationships can be represented in the form of

association rules or sets of frequent items. The following

rule can be extracted from the data set shown in Table 1:

{Diapers} → {Beer}

Table 1. An example of market basket transactions

TID Items

1 {Bread, Milk}

2 {Bread, Diapers, Beer, Eggs}

3 {Milk, Diapers, Beer, Cola}

4 {Bread, Milk, Diapers, Beer}

5 {Bread, Milk, Diapers, Cola}

The rule suggests that a strong relationship exists

between the sale of diapers and beer because many

customers who buy diapers also buy beer. Retailers can

use this type of rules to help them identify new

opportunities for cross selling their products to the

customers.

Besides market basket data, association analysis is also

applicable to other application domains such as

bioinformatics, medical diagnosis, Web mining, and

scientific data analysis. In the analysis of Earth science

data, for example, the association patterns may reveal

interesting connections among the ocean, land, and

atmospheric processes. Such information may help Earth

scientists develop a better understanding of how the

different elements of the Earth system interact with each

other [2] [3].

B. Itemset and Support Count

Let I = {i1, i2. . . id} be the set of all items in a market

basket data and T = {t1, t2. . . tN} be the set of all

transactions. Each transaction ti contains a subset of

items chosen from I. In association analysis, a collection

of zero or more items is termed an itemset. If an itemset

contains k items, it is called a k-itemset. The null set is an

itemset that does not contain any items.

The transaction width is defined as the number of

items present in a transaction. A transaction tj is said to

contain an itemset X if X is a subset of tj. An important

property of an itemset is its support count, which refers to

the number of transactions that contain a particular

itemset.

C. Association Rule

An association rule is an implication expression of the

form X → Y , where X and Y are disjoint itemsets, i.e.,

16 Improved Apriori Algorithm for Mining Association Rules

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

X ∩ Y = ∅. The strength of an association rule can be

measured in terms of its support and confidence. Support

determines how often a rule is applicable to a given data

set, while confidence determines how frequently items in

Y appear in transactions that contain X. The formal

definitions of these metrics are

Support, s(X → Y) = ()X Y

N

Confidence, c(X → Y) = ()

()

X Y

X

D. Support and Confidence

Support is an important measure because a rule that

has very low support may occur simply by chance. A low

support rule is also likely to be uninteresting from a

business perspective because it may not be profitable to

promote items that customers seldom buy together.

Support is often used to eliminate uninteresting rules.

Support has a desirable property that can be exploited for

the efficient discovery of association rules.

Confidence measures the reliability of the inference

made by a rule. For a given rule X → Y , the higher the

confidence, the more likely it is for Y to be present in

transactions that contain X. Confidence also provides an

estimate of the conditional probability of Y given X.

E. Frequent Itemset Generation

A lattice structure can be used to enumerate the list of

all possible itemsets. In general, a data set that contains k

items can potentially generate up to 2K
−1 frequent

itemsets, excluding the null set. Because k can be very

large in many practical applications, the search space of

itemsets that need to be explored is exponentially large.

A brute-force approach for finding frequent itemsets is

to determine the support count for every candidate

itemset in the lattice structure. To do this, we need to

compare each candidate against every transaction, an

operation that is shown in Fig. 1. If the candidate is

contained in a transaction, its support count will be

incremented. Such an approach can be very expensive

because it requires O (NMw) comparisons, where N is

the number of transactions, M = 2K
−1 is the number of

candidate itemsets, and w is the maximum transaction

width.

Fig 1. Counting the support of candidate itemsets

There are several ways to reduce the computational

complexity of frequent itemset generation.

1) Reduce the number of candidate itemsets (M). The

Apriori principle, described in the next section, is an

effective way to eliminate some of the candidate

itemsets without counting their support values.

2) Reduce the number of comparisons. Instead of

matching each candidate itemset against every

transaction, we can reduce the number of comparisons

by using more advanced data structures, either to store

the candidate itemsets or to compress the data set.

II. THE APRIORI PRINCIPLE

Support measure helps to reduce the number of

candidate itemsets explored during frequent itemset

generation. The use of support for pruning candidate

itemsets is guided by the Apriori Principle. “If an itemset

is frequent, then all of its subsets must also be frequent.”

Considering the itemset lattice shown in Fig. 2, suppose

{c, d, e} is a frequent itemset. Any transaction that

contains {c, d, e} must also contain its subsets, {c, d}, {c,

e}, {d, e}, {c}, {d}, and {e}. As a result, if {c, d, e} is

frequent, then all subsets of {c, d, e} must also be

frequent [6].

Fig. 2. An illustration of the Apriori principle

Conversely, if an itemset such as {a, b} is infrequent,

then all of its supersets must be infrequent too. As

 Improved Apriori Algorithm for Mining Association Rules 17

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

illustrated in Fig. 3, the entire sub graph containing the

supersets of {a, b} can be pruned immediately once {a, b}

is found to be infrequent. This strategy of trimming the

exponential search space based on the support measure is

known as support-based pruning. Such a pruning strategy

is made possible by a key property of the support

measure, namely, that the support for an itemset never

exceeds the support for its subsets. This property is also

known as the anti-monotone property of the support

measure.

Fig. 3. An illustration of support-based pruning

Any measure that possesses an anti-monotone property

can be incorporated directly into the mining algorithm to

effectively prune the exponential search space of

candidate itemsets.

A. Frequent Itemset Generation in the Apriori

Algorithm

Apriori is the first association rule mining algorithm

that pioneered the use of support-based pruning to

systematically control the exponential growth of

candidate itemsets. Fig. 4 provides a high-level

illustration of the frequent itemset generation part of the

Apriori algorithm for the transactions shown in Table 1.

Considering the support threshold is 60%, which is

equivalent to a minimum support count equal to 3.

Fig. 4. Illustration of frequent itemset generation using the Apriori

algorithm

Initially, every item is considered as a candidate 1-

itemset. After counting their supports, the candidate

itemsets {Cola} and {Eggs} are discarded because they

appear in fewer than three transactions. In the next

iteration, candidate 2-itemsets are generated using only

the frequent 1-itemsets because the Apriori principle

ensures that all supersets of the infrequent 1-itemsets

must be infrequent. Because there are only four frequent

1-itemsets, the number of candidate 2-itemsets generated

by the algorithm is 4

2

 = 6. Two of these six candidates,

{Beer, Bread} and {Beer, Milk}, are subsequently found

to be infrequent after computing their support values. The

remaining four candidates are frequent, and thus will be

used to generate candidate 3-itemsets. Without support-

based pruning, there are 6

3

 = 20 candidate 3-itemsets

that can be formed using the six items. With the Apriori

principle, we only need to keep candidate 3-itemsets

whose subsets are frequent. The only candidate that has

this property is {Bread, Diapers, Milk}.

The effectiveness of the Apriori pruning strategy can

be shown by counting the number of candidate itemsets

generated. A brute-force strategy of enumerating all

itemsets (up to size 3) as candidates will produce

6

1

 +
6

2

 +
6

3

 = 6 + 15 + 20 = 41

candidates. With the Apriori principle, this number

decreases to

6

1

 +
4

2

 + 1 = 6 + 6 + 1 = 13

candidates, which represents a 68% reduction in the

number of candidate itemsets. The pseudo code for the

frequent itemset generation part of the Apriori algorithm

is shown below.

Apriori algorithm for frequent itemset generation

1. 1k

2. kF | minsupi i I i N

{Find all frequent 1-itemsets}

3. repeat

4. 1k k

5. kC = apriori-gen 1kF {Generate

candidate itemsets}

6. for each transaction t T do

7. tC = subset ,kC t

{Identify all candidates that belong to t}

8. for each candidate itemset

 tc C do

9. 1c c

{Increment support count}

10. end for

11. end for

18 Improved Apriori Algorithm for Mining Association Rules

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

12. kF | minsupkc c C c N

{Extract the frequent k-itemsets}

13. until kF

14. Result = k kF

Procedure apriori_gen (1kF)

1. for each itemsets 1 1kf F do

2. for each itemsets 2 1kf F do

3. if (1 21 1f f) Λ

(1 22 2f f) Λ … Λ (1 22 2f k f k)

 Λ (1 21 1f k f k) then

4. 1 2c f f

 {join step: generate candidates}

5. for each (1k)-

 subsets s of c do

6. if (
1ks f)

 then

7. delete c

{prune step: remove candidates}

8. else

9. add c to kC

10. end for

11. return kC

12. end if

13. end for

14. end for

Procedure subset (kC , t)

1. for all candidates ks C do

2. if t contains s

3. subset = subset + s

4. end for

kC denote the set of candidate k-itemsets and
kF

denote the set of frequent k-itemsets:

 The algorithm initially makes a single pass over the

data set to determine the support of each item. Upon

completion of this step, the set of all frequent 1-

itemsets
1F will be known (steps 1 and 2).

 Next, the algorithm will iteratively generate new

candidate k-itemsets using the frequent (k − 1)-

itemsets found in the previous iteration (step 5).

Candidate generation is implemented using a function

called apriorigen.

 To count the support of the candidates, the algorithm

needs to make an additional pass over the data set

(steps 6–10). The subset function is used to determine

all the candidate itemsets in
kC that are contained in

each transaction t.

 After counting their supports, the algorithm eliminates

all candidate itemsets whose support counts are less

than minsup (step 12).

 The algorithm terminates when there are no new

frequent itemsets generated, i.e., KF (step 13).

The frequent itemset generation part of the Apriori

algorithm has two important characteristics.

1) First, it is a level-wise algorithm; i.e., it traverses the

itemset lattice one level at a time, from frequent 1-

itemsets to the maximum size of frequent itemsets.

2) Second, it employs a generate-and-test strategy for

finding frequent itemsets. At each iteration, new

candidate itemsets are generated from the frequent

itemsets found in the previous iteration. The support

for each candidate is then counted and tested against

the minsup threshold. The total number of iterations

needed by the algorithm is
max 1K , where

maxK is the

maximum size of the frequent itemsets.

B. Candidate Generation and Pruning

The apriori-gen function shown in Step 5 of algorithm

generates candidate itemsets by performing the following

two operations:

1) Candidate Generation: This operation generates new

candidate k-itemsets based on the frequent (k − 1) -

itemsets found in the previous iteration.

2) Candidate Pruning: This operation eliminates some

of the candidate k-itemsets using the support-based

pruning strategy.

Considering a candidate k-itemset, X = { 1, 2,..........., ki i i },

the algorithm must determine whether all of its proper

subsets, X − ji (j = 1, 2, . . . ,k), are frequent. If

one of them is infrequent, then X is immediately pruned.

This approach can effectively reduce the number of

candidate itemsets considered during support counting.

The complexity of this operation is O k for each

candidate k-itemset [6] [7].

In principle, there are many ways to generate candidate

itemsets. The following is a list of requirements for an

effective candidate generation procedure:

1) It should avoid generating too many unnecessary

candidates. A candidate itemset is unnecessary if at

least one of its subsets is infrequent. Such a candidate

is guaranteed to be infrequent according to the

antimonotone property of support.

2) It must ensure that the candidate set is complete, i.e.,

no frequent itemsets are left out by the candidate

generation procedure. To ensure completeness, the set

of candidate itemsets must subsume the set of all

frequent itemsets.

3) It should not generate the same candidate itemset more

than once. Generation of duplicate candidates leads to

wasted computations and thus should be avoided for

efficiency reasons.

 Improved Apriori Algorithm for Mining Association Rules 19

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

III. PROPOSED ALGORITHM FOR MINING

ASSOCIATION RULES

A. Enhancement of Subset Procedure

Procedure subset (kC , t)

1. for all candidates ks C do

2. if t contains s

3. subset = subset + s

4. end for

Improved Procedure subset (kC , t)

1. for all candidates ks C do

2. If (first item of mins) (last item of

maxs)

3. subset = subset + s

4. end for

Its running time is | |kD , this is a very large number.

Considering k = 3, the transaction t (x2, x6, x7, x9), the

itemsets s (x4, x6, x10). Refinement of this sentence: “if t

contain s during a judge are the following conditions: if (t

contains x4) (t contains x6) (t contains x10)

then…..” Obviously, t does not contain s, but still have to

compare one by one [8].

The proposed algorithm improves the subset operation

through adding a tag column on the transaction database,

of which values are the first and the last numbers of

itemsets. If (first item of x > = min) (last item of x <=

max), then t contains s. Otherwise t does not contain s.

B. Proposed Apriori Algorithm

The Proposed algorithm can be divided into two steps.

First, the algorithm finds out all frequent itemsets. Then

it generates all association rules from frequent itemsets.

Input: A database D and min-support

Output: All the frequent itemsets of the database

1. 1k

2. kL | minsupi i I i N

{Find all frequent 1-itemsets}

3.
2 1 1C L L

4. for all candidates 2c C do

5. tC = subset 2 ,C t

6. for all candidates tc C do

7. 1c c

8. end for

9. 2 | minsupkL c c C c N

10. end for

11. repeat

12. 3k

13. kC = apriori-gen 1kL

{Generate candidate itemsets}

14. for each transaction t T do

15. tC = subset ,kC t

{Identify all candidates that belong to t}

16. for each candidate itemset

tc C do

17. 1c c

{Increment support count}

18. end for

19. end for

20. kL | minsupkc c C c N

{Extract the frequent k-itemsets}

21. until kL

22. Result =
k kL

As 2C is connected by 1L and pruning two-generated,

of which pruning operations to test whether a subset of

2C is frequent itemsets. Because
2 1 1C L L , the subset

of the set must be frequent. Therefore, the proposed

algorithm generates 2C by the direct connection of 1L ,

rather than by pruning operation [14] [17].

IV. WORKING OF PROPOSED ALGORITHM

A transactional database is showed in Table 2, and the

minimum support threshold is 20%.The result of mining

association rules which is generated by proposed

algorithm is illustrated as follows.

Table 2. Transactional Database D

Transaction No. Itemsets

T100 I1, I2, I5

T200 I2, I4

T300 I2, I3

T400 I1, I2, I4

T500 I1, I3

T600 I2, I3

T700 I1, I3

T800 I1, I2, I3, I5

T900 I1, I2, I3

Table 3. The Database in the proposed algorithm

Transaction No. Itemsets Tag

T100 I1, I2, I5 1, 5

T200 I2, I4 2, 4

T300 I2, I3 2, 3

T400 I1, I2, I4 1, 2, 4

T500 I1, I3 1, 3

T600 I2, I3 2, 3

T700 I1, I3 1, 3

T800 I1, I2, I3, I5 1, 2, 3, 5

T900 I1, I2, I3 1, 2, 3

20 Improved Apriori Algorithm for Mining Association Rules

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

The first to deal with a database in the form of Table 3,

the last one marked with the corresponding transaction of

the smallest item serial number and the largest serial

number. After the first scan the database, looking for 1L ,

you can compare the various tag of the transaction,

because 1L is not in [2, 4], or in [2, 3], and so on to

avoid many comparison of the operation and thereby

saving time.

After calculating support, 1L = {I1, I2, I3, I4, I5}.

According to the improved algorithm, 2C connected

directly by 1L is no need for pruning operations. Thus,

2C = {(I1, I2), (I1, I3), (I1, I4), (I1, I5), (I2, I3), (I2, I4),

(I2, I5), (I3, I4), (I3, I5), (I4, I5)}. As (I1, I2) in [1, 5], it

includes the transaction T100 and increases the

corresponding support. And so on, 2L = {(I1, I2), (I1,

I3), (I1, I5), (I2, I3), (I2, I4), (I2, I5)}. After pruning after

connecting 3C = {(I1, I2, I3), (I1, I2, I5)}. Itemsets (I1,

I2, I3) in [1, 5], and so increases in support. Because it is

not in [2, 4] or [2, 3] and therefore do not increase

support. Finally, 3L = {(I1, I2, I3), (I1, I2, I5)}. 4C can

not be find as the algorithm end. Clearly, the proposed

algorithm reduces the number of unnecessary operations,

streamline the collection of frequent generation and

improve the efficiency of the algorithm.

V. IMPLEMENTATION

A. Class File Detail

1) Apriori.cs

It contains class and methods used to implement the

APriori Market Based Analysis Data Mining Algorithm.

Apriori class implements the APriori algorithm for

market based analysis. This class implements the APriori

algorithm and creates association between items in a

transaction.

2) DataAccessLayer.cs

Implements data access to relational databases and

XML data stores.

3) DataMining.cs

A class that provides data mining services using

C#.NET, ADO.NET, XML.NET and a Market Based

Analysis Data Mining Algorithm.

4) Itemsets.cs

An abstract class that represents a set items from a

shopping cart. Defines the Level of an Itemset, its Items

and Support Count. The level of an Itemset is the

Hierarchy of an itemset or how many items make up the

Itemset. A one level Itemset contains one item. A two

level Itemset contains two items.

5) DataTransformationServices.cs

DataTransformationServices is used to transform data

contained in tables and relationships like the Northwind

database to a single table containing a TransactionID and

Transactions field which is used for the C#.NET market

based sales data mining.

B. Screen Shots

Fig. 5. Output of application using Apriori algorithm

 Improved Apriori Algorithm for Mining Association Rules 21

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

Fig. 6. Output of application using Improved Apriori algorithm

VI. PERFORMANCE STUDY

In order to study the performance, the computer used

to run the experiments had Intel(R) Pentium D CPU 2.80

GHz processor and 512 MB of memory and 512 MB of

memory. The operating system used was Microsoft

Windows XP Professional. Programs are coded in

C#.NET on the platform of Visual Studio 2005. The

performance of the Apriori algorithm is largely depends

on the internal characteristic of the datasets and the

number of records. To make the time measurements more

reliable, no other application was running on the machine

while the experiments were running.

Algorithm has been tested on the three different

datasets described in the previous chapter. The

performance measure is the execution time (seconds) of

the algorithms on the datasets. The minimum confidence

is set to 50%.

Table 4. Dataset characteristics

Datasets Transactions
Distinct

Items

Maximum

Transaction
Size

Average

Transaction
Size

Retail Sales 5000 200 8 3.0

Adventure
Works

15000 500 12 5.0

A. Experimental Analysis

(1) Retail Sales Dataset

Table 5. The comparison of the runtime at different minimum

support between the Apriori algorithm and the Improved Apriori

algorithm

Minimum
Support

(%)

Execution Time (Seconds)
Rule

Count
Apriori

Improved

Apriori

1 8.42 8.29 23

2 8.21 8.14 23

3 8.21 8.15 23

4 7.92 7.71 17

5 7.65 7.65 16

6 7.90 7.65 16

7 7.75 7.65 16

8 7.35 7.21 10

9 7.14 6.81 3

10 6.76 6.68 0

22 Improved Apriori Algorithm for Mining Association Rules

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

Fig. 7. The comparison of runtime at different minimum supports

between the original Apriori and the improved Apriori

(2) Adventure Works Dataset

Table 6. The comparison of the runtime at different minimum

support between the Apriori algorithm and the Improved Apriori

algorithm

Minimum
Support

(%)

Execution Time (Seconds)
Rule

Count
Apriori

Improved
Apriori

10 534.67 533.54 1024

15 242.78 241.92 817

20 87.73 87.41 321

25 56.14 55.94 50

30 53.15 52.97 9

35 52.48 52.34 2

40 53.45 52.23 0

45 53.09 53.00 0

50 52.35 52.25 0

Fig. 8. The comparison of runtime at different minimum supports

between the original Apriori and the improved Apriori

Fig. 7 and Fig. 8 show the execution times for the two

datasets for increasing values of minimum support. As

the minimum support increases, the execution time of the

algorithm decreases because of decreases in the total

number of candidates and large itemsets. From the above

result, we can contrast the changes in efficiency. With the

decrease of minimum support to some content, the

Improved Apriori algorithm tends to prevail, and with the

further decrease of minimum support, the advantage of

the Improved Apriori algorithm can be greatly enhanced.

From the above figures, we can conclude that, with the

reduction of the minimum support, the efficiency of the

Improved Apriori algorithm can change correspondingly

from a lower level to a higher level than that of the

classic Apriori algorithm. When the value of minimum

support count is small enough, the efficiency of the

modified algorithm is improved. The total number of

records and the characteristic of data will affect the

performance of the algorithm.

VII. CONCLUSION AND FUTURE WORK

The proposed algorithm for mining association rule,

decreases pruning operations of candidate 2-itemsets,

thereby saving time and increase efficiency. It optimizes

subset operation, through the transaction tag to speed up

support calculations. The experimental results obtained

from tests show that proposed system outperforms

original one efficiently.

The current mining methods require users to define

one or more parameters before their execution; however,

most of them do not mention how users can adjust these

parameters online while they are running. It is not

feasible for users to wait until a mining algorithm to stop

before they can reset the parameters. This is because it

may take a long time for the algorithm to finish due to

the continuous arrival and huge amount of data. For

further improvement, we may consider either let the users

adjust online or let the mining algorithm auto-adjust most

of the key parameters in association rule mining, such as

support, confidence and error rate.

REFERENCES

[1] Mining Association Rules between Sets of Items in Large

Databases by R. C. Agarwal, Imielienski T., and Swami A.

[2] Efficiently Mining Long Patterns from Databases by R.

Bayardo. In Proc. of 2006 ACM-SIGMOD Intl. Conf. on

Management of Data

[3] Fast Discovery of Association Rules. By Agrawal,

A.,Mannila, H., Srikant, R., Toivonen, H., and Verkamo,

A.

[4] A New Improvement on Apriori Algorithm by Lei Ji,

Baowen Zhang, Jianhua Li. – June 2008

[5] The analysis and improvement of Apriori algorithm by

HAN Feng, ZHANG Shu-mao, DU Ying-shuang

[6] The Research of Improved Apriori Algorithm for Mining

Association Rules by Fangyi Wang, Erkang Wang, Bowen

Chen

[7] The Optimization and Improvement of the Apriori

Algorithm by Yiwu Xie, Yutong Li, Chunli Wang,

Mingyu Lu (International Symposium on Intelligent

Information Technology Application Workshops)

[8] An Efficient Frequent Patterns Mining Algorithm based on

Apriori Algorithm and the FP-tree Structure by Bo Wu,

Defu Zhang, Qihua Lan, Jiemin Zheng (Third 2008

International Conference on Convergence and Hybrid

Information Technology)

 Improved Apriori Algorithm for Mining Association Rules 23

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 07, 15-23

[9] UCI Repository of Machine Learning Databases by Blake,

C.L. and Merz, C.J. (Dept. of Information and Computer

Science, University of California at Irvine

www.ics.uci.edu/mlearn/MLRepository.html)

[10] Synthetic Data Generation Code for Associations and

Sequential Patterns.

http://www.almaden.ibm.com/software/quest/Resources/in

dex.shtml Intelligent Information Systems, IBM Almaden

Research Center

[11] R.Agrawal and R.Srikant. Mining sequential patterns. In

P.S.Yu and A.L.P.Chen, editors, Proc.11th Int.Conf. Data

Engineering, ICDE, pages3–14.IEEE Press,6–10.1995.

[12] H.Mannila,H.Toivonen,and A.I.Verkamo. Discovering

frequent episodes in sequences. In Proceedings of the First

International Conference on Knowledge Discovery and

Data Mining, pages210–215.AAAI Press, 1995.

[13] K.Hatonen, M.Klemettinen, H. Mannila, P.Ronkainen, and

H.Toivonen. Knowledge discovery from

telecommunication network alarm databases. In S.Y.W.Su,

editor, Proceedings of the twelfth International Conference

on Data Engineering, February 26–March 1,1996,New

Orleans, Louisiana ,pages115–122,1109 Spring Street,

Suite 300,Silver Spring, MD20910, USA,1996.IEEE

Computer Society Press.

[14] A. Inokuchi, T.Washio and H. Motoda. An apriori-based

algorithm for mining frequent substructures from graph

data. In Proceedings of the 4th European Conference on

Principles of Data Mining and Knowledge Discovery,

pages13–23. Springer-Verlag, 2000.

[15] M.Kuramochi and G.Karypis. Frequent sub graph

discovery. In Proceedings of the first IEEE International

Conference on Data Mining, pages313–320, 2001.

[16] Park J S, Chen Ming-Syan, Yu Philip S. Using a hash-

based method with transaction trimming for mining

association rules[J].IEEE Transactions on Knowledge and

Data Engineering,1997,9(5):487-499.

[17] Savasere A, Omiecinski E, Navathe S. An efficient

algorithm for mining association rules in large databases.

Proceedings of the 21st International Conference on Very

large Database, 1995.

[18] Brin S, Motwani R, Ullman J D,et al. Dynamic Itemset

counting and implication rules for market basket data.

ACM SIGMOD International Conference on the

Management of Data, 1997.

[19] Luo Ke,Wu Jie. Apriori algorithm based on the improved.

Computer Engineering and application, 2001, 20:20-22.

[20] Li Xiaohong,Shang Jin. An improvement of the new

Apriori algorithm [J].Computer science, 2007,34 (4) :196-

198.

[21] Gu Qing-feng, SONG Shun-Lin. The improvement of

Apriori algorithm and in SQL applications. Computer

engineering and design 2007,28(13):3060-3233.

[22] Luo Jiawei,Wang Yan. Apriori algorithm with a fully

connected the improvement [J]. Computer applications,

2006. 26 (5):1174-1177.

Author’s Profiles
Darshan M. Tank: Lecturer of Information

Technology at L E College, Morbi, Gujarat,

India. My areas of interest include Business

Intelligence, Data and Knowledge Mining,

Real-Time Data Warehouse, Decision

Support System and Information Retrieval.

How to cite this paper: Darshan M. Tank,"Improved Apriori

Algorithm for Mining Association Rules", International Journal

of Information Technology and Computer Science(IJITCS),

vol.6, no.7, pp.15-23, 2014. DOI: 10.5815/ijitcs.2014.07.03

