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Abstract— Generally, wireless systems suffer from 

Carrier Frequency Offsets (CFO), which results either 

from the receiver’s oscillator’s impairments or Doppler 

shifts. The frequency offset between transmitter and 

receiver local oscillator is a main drawback of OFDM 

systems. A frequency drift in the receiver’s oscillator 

would result in a frequency offset in the received signal, 

this offset consists of two parts: a Fine offset, as a 

fraction of OFDM subcarrier spacing, and a Coarse 

offset that is equal to an integer multiple of the 

subcarrier spacing. Coarse offsets results in two 

problems; firstly, the modulation symbols are located 

on the wrong frequency bins, secondly, the pilots used 

for channel estimation are misplaced leading to a faulty 

channel estimate and severe signal distortion by the 

Equalizer. Fine Offsets result in a loss of orthogonality 

and thus ICI (Inter-Carrier Interference), as the 

frequency bin of a certain modulation symbol would 

contain some information about the neighboring symbol 

bin.  

 

Index Terms— Orthogonal Frequency Division 

Multiplexing (OFDM), Carrier Frequency Offset (CFO), 

Frequency Offset Estimation, Frequency 

Synchronization, Baseband Processing 

 

I. Introduction 

We consider the problem of oscillator mismatch 

between the transmitter and receiver as a part of 

wireless transmission impairments. The oscillator’s 

mismatch can occur via a frequency drift in the receiver, 

transmitter or both. We will refer the frequency offset to 

the receiver’s oscillator.  

The receiver is assumed to have a frequency drift of 

∆f, in spite that specifications are imposed on the crystal 

oscillators’ accuracy, the high sensitivity of the OFDM 

systems to frequency errors makes seeking an algorithm 

for frequency offset estimation inevitable [1]. As stated 

before, the frequency offset can be decomposed into 

two parts: A fine offset and a coarse offset. Coarse 

offsets result in two problems; improper modulation 

symbols mapping to frequency bins and a catastrophic 

degradation in the quality of channel estimation as pilot 

locations are completely jumbled [2]. Fine Offsets 

result in a loss of orthogonality and thus ICI (Inter-

Carrier Interference), as the frequency bin of a certain 

modulation symbol would contain some information 

about the neighboring symbol bin with the actual 

modulation symbol has its amplitude decreased [3]. The 

paper is organized as follows: in section II we 

demonstrate the effect of frequency offset on OFDM 

signals. Next, in section III, we propose six offset 

estimation algorithms. Finally, we draw our conclusion 

in section IV. 

 

II. Frequency Offset Effects 

In this section, we discuss in details the effect of the 

frequency offset on the OFDM scheme. Next, we 

propose six novel algorithms for frequency offset 

estimation, exploiting the unique properties of the 

OFDM symbols’ structure and the receiver’s knowledge 

of the time domain pilots (known symbols transmitted 

by the receiver).  

OFDM sensitivity to frequency offsets arise from 

being a Multi-carrier modulation scheme. The fact that 

specific frequency bins carry independent information 

makes altering the frequency bins locations intolerable 

[4][5]. A transmitted baseband signal x(t) would be 

perceived by the receiver with an oscillator mismatch as 

x(t) e j2𝜋 ∆f t. Recall the fourier transform property: 

x(t) e j2𝜋 ∆f  t ↔  X(f - ∆f)                                           (1) 

Thus, a multiplication by a complex exponential in 

the time domain causes a frequency shift in the 

frequency domain. Because the DFT (Discrete Fourier 

Transform) has a circular nature, we note that this shift 

comes to be a circular shift of the signal’s spectrum X(f).  

For instance, if we have a 6 subcarrier OFDM system, 

a Coarse offset of 1 subcarrier spacing translates 

subcarrier 6 to the frequency bin related to subcarrier 1, 

and shifts all other subcarriers by 1 bin. Assume the 

receiver tries to decode the incoming OFDM symbol, 

how can it determine which bin maps to which 

subcarrier? Another important problem is that if 

subcarriers 2, 4 and 6 where pilot tones, now they are 

replaced by different subcarriers and the pilot values are 

not known anymore; any pilot aided Channel estimation 

scheme will fail under this scenario. Thus estimation of 

the Coarse offset is mandatory. In Addition, the Fine 
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Offset shows a loss of orthogonality as each frequency 

bin contains contributions from neighboring subcarriers 

and a loss in the amplitude of the desired subcarrier is 

noted.  

From the above discussion, it is apparent that an 

algorithm for frequency offset estimation is mandatory 

for proper system operation. We propose six different 

algorithms for Offset estimation; the algorithms are 

given the following names: 

1. The Spectral-Correlation Algorithm (AWGN channel, 

Joint Fine and Coarse offset detection) 

2. The Linear Phase Smoothening Algorithm (AWGN 

channel, Joint Fine and Coarse offset    detection) 

3. Blind Cyclic-prefix based Frequency Offset 

estimation Algorithm (Fading channel, Fine offset 

detection) and Large Span Cyclic-prefix based 

Algorithm 

4. Sample-level frequency offset estimation Algorithm 

(Ideal channel, Joint Fine and Coarse offset detection) 

5. Frequency Offset estimation by Phase difference 

Spectral decomposition (AWGN channel, Joint Fine 

and Coarse offset detection)  

6. Iterative Cyclic-prefix based algorithm (Fading 

channel, Fine and Coarse offset detection) 

 

III. Frequency Offset Estimation Algorithms 

In this section we discuss the six proposed algorithms 

for estimating the frequency offset in OFDM: 

 

3.1 The Spectral Correlation Algorithm 

The first proposal relies on the utilization of time 

domain pilots (a known symbol by the receiver). 

Because the time domain structure of the pilots is 

known, the receiver can deduce the frequency domain 

structure of this specific OFDM symbol.  

Because the effect of the frequency offset is a shift in 

the frequency domain, then the received pilot symbol 

has a spectrum that is a circular shift of a frequency 

domain structure that we already know. Let the pilot 

symbol’s frequency domain structure be denoted by 

T( ), and the received symbol’s DFT as ( , we 

define a the cross-correlation function as (E[.] is the 

expected value: 

C(g) = E[T*( ) (  ]                                   (2) 

Because the cross correlation function measures the 

similarity between a signal and a shifted version of it 

across different shift, it is logical that function C(g) will 

have a maximum value at exactly g = ∆f.  Thus our 

estimate can be formulated as: 

∆ = maxg C(g)                                                        (3) 

This estimate bundles both the Coarse and Fine 

offsets together with no discrimination. The Algorithm 

provides satisfactory performance in AWGN. 

An important issue regarding the spectral correlation 

algorithm is the finest frequency offset it can detect. 

Because T( ) and ( are obtained via N-point FFT, 

thus we have one sample per subcarrier, and the 

Algorithm cannot detect the fine component with N-

point FFT, only Coarse component is detected. 

A minor modification to the Algorithm above is to 

obtain T( ) and (  via Nextra-point FFT. Thus, if we 

want to detect frequency offsets that are as fine as 0.1 

subcarriers, then Nextra = 10N, where N is the OFDM 

transmission mode.  

The Spectral Correlation algorithm is very robust 

when applied to AWGN channels. The fact that noise 

components in the frequency domain have no or little 

effect on the degree of similarity between the signal’s 

DFT and its shifted version means that the estimation 

quality will be SNR (Signal-to-Noise Ratio) 

independent. Fig. 1 shows the resilience of the estimate 

over low and high SNR channels.  

 

Fig. 1: Estimation error versus subcarrier spacing in AWGN 

 

However, a severe challenge arises when dealing 

with fading channels. If the channel exhibits very large 

values for the delay spread and frequency selective 

behaviour become inevitable, the received signal has a 

frequency domain structure of T( ).H( ), where H ) 

is the channel response. The performance becomes 

catastrophically degraded in frequency selective 

channels and the Algorithm is no more reliable. In spite 

of the fact that flat fading channels have no impact on 

the Algorithm’s operation, an OFDM system’s receiver 

will rarely face a flat channel.  
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Fig. 2: The estimation error over a range of different SNRs in a 

frequency selective channel, the error is as high as 140 dB, and the 

algorithm becomes unreliable 

 

3.2 Linear Phase Smoothening Algorithm  

The previous method was a frequency domain 

technique that exploited the knowledge of the frequency 

domain structure of the time domain pilot. The time 

domain structure of the pilot channel is of course known 

as well. The Linear-Phase smoothening Algorithm 

exploits this knowledge to estimate the frequency offset 

in the time domain. Assume that the received time 

domain pilot symbol and the known one are denoted by 

S ͡(t) and S(t) respectively. Each of the two signals is 

composed of N chips. Assuming an ideal channel where 

no fading occurs and no addition of noise, then: 

S ͡(t) = S(t). e j2𝜋 ∆f  t                                                    (4) 

The phase difference between the two signals per 

chip, assuming that the phase of x is arg(x): 

arg(S ͡(t)) – arg(S(t)) =  

arg(S(t). e j2𝜋 ∆f  t) – arg(S(t)) mod  2𝜋                    (5) 

=  2𝜋 ∆f t      

Thus, when the phase difference is plotted with time, 

it is a straight line of a slope of 2𝜋 ∆f, if we managed to 

calculate this slope, we will be able to detect the 

frequency offset, and hence the name, linear phase 

smoothening. The effect of noise on the phase 

difference is not catastrophic, because a noise sample 

with low amplitudes in the real and imaginary 

components is added to a received chip will not change 

its phase too much as the real and imaginary 

components of the signal’s chip is expected to dominate, 

thus noise causes slight fluctuations around a local 

mean value, this mean value corresponds to the correct 

frequency offset. The fine and the coarse offsets are 

estimated jointly with no discrimination, due to the fact 

that they together decide the slope of the phase 

difference. 

The effect of fading is again catastrophic. Fading can 

be modeled in the time domain as a complex random 

variable multiplied by the signal, thus the phase of 

channel gain in the time domain is directly added to the 

phase of a chip, each frequency component (sinusoidal) 

views a different channel gain in a frequency selective 

channel, and thus, the phase difference between the 

received and the known pilot symbols’ chips cannot 

show a clear slope that we can track, so the method 

offers an unreliable performance. 

If the frequency offset has a quite high value (more 

than one subcarrier spacing), then the phase difference 

may reach 2𝜋 several times within the symbol duration 

and we have a saw tooth signal with many slopes each 

of them corresponds to the frequency offset. To 

calculate the slope, we set two boundary values N1 and 

N2 as chip indexes. The slope is calculated between 

them, then N2 is shifted by a certain value and the slope 

is re-calculated. N2 is shifted again and the process is 

repeated iteratively until the slope values fixes.  

Because noise causes fluctuations about a mean 

desired value, the calculated slope may be faulty and 

the iterations may never converge as N2 may probably 

coincide with chips of low SNR. Thus, we apply the 

phase difference saw tooth signal to a low pass filter 

(moving average filter), this calculates a time domain 

average value or removes most of the white noise power 

in the frequency domain. The results are quite unstable 

for AWGN channels. 

 
Fig. 3: The Phase difference signal over an ideal channel, the slope of 

the saw tooth denotes the frequency offset 

 

 

Fig. 4: The effect of noise on the phase difference, fluctuations around 

the straight line with the targeted slope can disturb the slope detection 
process 
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Fig. 5: Smoothening is applied by a moving average low pass filter to 
get a reliable saw tooth function for slope detection. The dark curve is 

the noise affected phase difference and the red curve is the filtered 

one 

 

3.3 Blind Cyclic Prefix Algorithm 

The previous methods were unreliable for fading 

channels, which is the class of channels usually 

encountered by mobile receivers. The third algorithm 

utilizes the cyclic nature of the time domain structure of 

an OFDM symbol to estimate the frequency offset and 

eliminate the fading effects in a smart way. This 

technique doesn’t use a predefined symbol (time 

domain pilot) and hence the name ‘Blind Cyclic-prefix 

based algorithm’. Assume an OFDM symbol S[n] is 

received and it consists of N + Ncp chips, with N useful 

chips and Ncp cyclic prefix chips. Exploiting the cyclic 

nature of the OFDM symbol we know that the first Ncp 

chips are identical to the last Ncp chips. The phase 

between corresponding chips within the first and last 

Ncp sized windows identifies the frequency offset. The 

power of this method resides in the presence of Ncp 

estimates of the frequency offset (phase difference 

between every two corresponding chips in the first and 

last Ncp set of chips), and thus a representative value for 

them would be far more precise than the estimates 

obtained by the previous algorithms due to the time 

diversified nature of the Ncp estimates.  

For S[n] being the received time domain OFDM 

symbol, Tc the chip duration and Tu the useful period 

(NTc) we can find Ncp estimates for the frequency offset 

as: 

∆ k  =   ,  

k = 0,1,….. Ncp – 1                                       (6) 

Thus, we have a vector of Ncp estimates ∆  , to get a 

representative estimate value for them we obtain their 

average as: 

∆   =  i                                      (7) 

Elimination of fading and noise is done by this 

averaging; the estimated value obtained is very accurate. 

To further study the effect of averaging on fading 

assume we receive a faded signal S[n] C[n], where C[n] 

is the channel gain in the time domain at the OFDM 

symbol chips, thus: 

∆ k  =  

,  

k = 0,1,….. Ncp – 1                                                (8) 

where S[n] is a single tone. Let the vector ∆  in this 

case be: 

∆  =  [ + φ1 – α1 ,  + φ2 – α2,  

 + φ3 – α3, …….,  + φ Ncp – α Ncp ]    (9) 

where φk and αk are the phases of the channel gain at 

the kth chip in addition to the effect of noise in the first 

Ncp and the last Ncp windows, by averaging as equation 

(7) implies: 

∆ =  +                    (10) 

Assuming that both φi and αi have the same 

probability density functions with a mean of 𝝁, if Ncp is 

large enough, we find that: 

∆ =  +   -   

     + 𝝁 – 𝝁 =                   (11) 

In the previous equations, we obtained a vector of 

estimates ∆  based on every sample (chip) in the cyclic 

prefix. Averaging on these estimates would eliminate 

the effect of noise, but one might think of the role of 

fading in distorting the offset estimates as being 

eliminated by subtracting the corresponding chips of 

data and cyclic prefix, because each chip is a linear 

combination of sinusoids at a certain time instant, and 

each sinusoid is affected by a different channel gain, 

when subtracting the two chips, the phase acquired by 

the channel gain will be eliminated. This is based on the 

assumption that the channel is constant over an OFDM 

symbol. 

In fact, this is only true for a stationary receiver or a 

time invariant channel, however, when the receiver 

moves even at low speeds, we cannot guarantee that all 

the frequency components have their gains constant 

over the entire OFDM symbol because the coherence 

time is a statistical variable. Some frequency 

components in the data chips may have different gain 

from that perceived by the cyclic prefix chips, and the 

phase difference is not zero.  
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We note that use of phase difference to detect the 

frequency offset means that ambiguity occurs in our 

estimation. Our estimate can only identify the smallest 

offset frequency satisfying the phase condition between 

S[k] and S[k+N] chips. However, other offset 

frequencies with extra integer multiples of 2𝜋 will not 

be detectable. This is analogous to the phase condition 

that identifies existing modes in a cavity resonator. 

Assume an ideal channel and the phase difference 

between two samples in S[k] and S[k+N] is ωo, thus: 

∆ω Tu = ωo  yields same estimate as  

∆ω Tu = ωo + m2𝜋, m = 0,1,2,…                            (12) 

The estimated frequency offset becomes ∆ω = , the 

maximum correctly estimated offset is at ∆ω Tu = 2𝜋 

and is given by: 

∆ω  =                                                                 (13) 

If the system bandwidth is W, and Tu = , and the 

subcarrier spacing  fs=  =  , the maximum 

detectable offset is: 

∆ω     = 2𝜋 fs = ωs                                           (14) 

Thus, the cyclic prefix based method can only 

estimate the fine component; the coarse component 

goes transparently undetectable. A method to estimate 

the coarse component separately (Large Span Cyclic-

Prefix based Algorithm) was developed, it obtains the 

phase difference signal between the time domain pilot 

and the received signal, and counts the number of 

humps in the saw tooth signal that corresponds to the 

number of subcarriers in the coarse offset component. 

However, the use of the phase difference signal limits 

the algorithm’s capabilities to combat fading as it will 

suffer from the same susceptibilities of the previous 

methods, and the ability to eliminate fading (which is 

the source of attractiveness for this algorithm) vanishes.  

Estimation of negative frequency offsets is 

straightforward, we can either detect the fine offsets 

from [0,1] subcarrier spacing, or shift the phase 

ambiguity to be an even function of the frequency offset; 

if the detected offset is more than 0.5 of a spacing, we 

subtract 1 from it. 

 

3.4 Sample Level Based Algorithm 

This algorithm only modifies the previous algorithm 

trying to extend its span of detectable frequency offsets. 

Recall that the maximum detectable frequency offset in 

the Cyclic-prefix based algorithm was given by ∆ω =  

 , thus, we can increase ∆ω by decreasing the period 

between the chips that we compare their phases. The 

largest achievable value for ∆ω is when replacing Tu by 

Tc (chip duration). Assume we have the received time 

domain pilot as S͡[n] and the actual time domain pilot as 

S[n], then algorithm tries to get the phase difference 

between neighboring samples and compares them with 

phase difference in neighboring samples in the actual 

correct time domain pilot symbol, the usage of 

neighboring samples makes the phase condition harder 

to satisfy by many offsets and increases the span of ∆ω. 

 

Fig. 6: Ideal channel estimation error, note that we can detect offsets 

in the range [-0.5. 0.5] 

 

 

Fig. 7: The vector of estimates affected by fading and noise. 
Averaging obtains a precise estimate for the frequency offset 

 

The Algorithm is formulated as follows: 

∆ k1  =  ,  

n = 2, 4, 6, ….Ncp and m = 1, 3, 5, …., Ncp – 1    (15) 

 

∆ k2  =  ,  

n = 2, 4, 6, ….Ncp and m = 1, 3, 5, …., Ncp – 1    (16) 
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∆ k3 =   (17) 

 

∆ k4 =    (18) 

  

X = (∆ k1 -  ∆ k2 ) mod 2𝜋                               (19) 

 

Y = (∆ k3 -  ∆ k4 ) mod 2𝜋                                 (20) 

 

∆  =              (21) 

 

The algorithm works perfectly on the ideal channel, 

however, it is extremely numerically sensitive, because 

the phase calculates is very small valued the 

approximation we made in equation (11) is not valid 

anymore and the difference between the channel gain 

phases averages dominates. Thus, this method is not 

suitable either for AWGN or fading channels. 

 

3.5 Phase Spectral Decomposition Algorithm 

Recall the saw tooth phase difference signal obtained 

for the linear phase smoothening algorithm, this signal 

appears (for a large frequency offset) to be a quasi 

periodic signal. Thus, its Fourier transform (DFT) will 

result perfect impulses with the largest harmonic being 

the fundamental period of the saw tooth signal. Note 

that if the slope of a tooth is 2𝜋∆f, and the height is 2𝜋 

(phase wrapping), then the period has to be . By 

calculating the DFT of the phase difference saw tooth 

signal after removing its DC power, the largest spectral 

component is located at the fundamental frequency bin 

which is the same as the frequency offset. This method, 

like other frequency domain methods, is resilient to 

noise but fails for frequency selective fading. 

This algorithm has three main drawbacks: 

 The frequency selective fading distorts the phase 

spectral components 

 The fact that the signal is short-term periodic means 

that its spectrum will be spread due to spectral 

leakage, and identifying the point for maximum is 

difficult 

 Can’t work for negative offsets as we only observe 

the signals periodicity 

 

3.6 Iterative Cyclic Prefix Based Algorithm 

We conclude that the Cyclic-prefix based algorithm 

is the most resistant to fading effects but is limited to 

fine estimates only. The last proposed algorithm is an 

iterative algorithm that obtains the fine estimate, divides 

by a complex exponential with the fine offset as its 

argument, and then it estimates the channel and 

equalizes the OFDM symbol. Every iteration, we check 

the retrieved bits, if a certain threshold of Bit errors is 

attained we exit, else, we divide by a complex 

exponential whose argument is the complete subcarrier 

spacing (coarse part). 

Assume a generic fine and coarse offset error defined 

as: 

∆ω = ωo + m                                                      (22) 

where ωo is the fine part and m   is the coarse part. 

We first estimate ωo using the cyclic prefix algorithm 

and eliminate it, the residual offset becomes m , we 

iteratively eliminate   offset error per iteration until 

correctly decoding the time domain pilot bits. 

 

 

Fig. 8: Block diagram for the iterative cyclic prefix based algorithm 
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This algorithm offers reasonable performance across 

fading channels; however its performance is highly 

determined by the quality of the channel estimator and 

equalizer. If channel estimation is quite accurate, the 

algorithm is reliable. The overall performance 

comparison between all the proposed algorithms is 

shown in fig. 9. 

 

Fig. 9: Residual error versus frequency offset for various algorithms 

 

IV. Conclusions 

The effect of frequency offsets on the OFDM system 

was presented, and was found to have obvious impact 

on the system performance. Six Algorithms for 

estimating the frequency offset were proposed. The 

Spectral Correlation Algorithm was presented, 

exploiting the frequency domain correlation properties 

of the received OFDM symbol pilot, but found to be 

inefficient in frequency selective fading. The Linear 

phase smoothening algorithm was proposed to exploit 

the pilots in the time domain, but not robust for fading 

channels. The Blind Cyclic prefix algorithm utilizes the 

cyclic nature of the OFDM symbol to eliminate the 

effect of fading and provides the most reliable results. 
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