
I.J. Information Technology and Computer Science, 2014, 05, 18-27 
Published Online April 2014 in MECS (http://www.mecs-press.org/) 

DOI: 10.5815/ijitcs.2014.05.03 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

Evaluating Web Services Functionality and 

Performance 
 

Tarek S. Sobh 

Information Systems Department, Egyptian Armed Forces, Egypt 

E-mail: tarekbox2000@yahoo.com 

 

Medhat Fakhry 

Chair of Management Information System Department, AAST, Egypt 

 

Abstract —Traditional distributed database transaction 

applications within large organizations often involve a 

large number of resources. In this case, people and 

DDBMSs distributed over a wide geographic area, may 

introduce conflict between heterogeneous systems. Web 

services (WS) provide solution for this problem since 

WS have an independent platform, independent 

language, and independent object model. This work 

presents WS application to access heterogeneous and 

distributed database via horizontal data fragments that is 

designed to be reliable, flexible and scalable. It 

describes the setup of SOAP server and applications 

based on the SOAP for end user client. In addition, it 

allows the publishing of WS descriptions to submit user 

requests (goal) to retrieve the required information. Here 

we evaluate the functional, behavior and performance of 

WS among possible different alternatives with real-time 

and execution parameters. Implementation details and 

case study experiments are presented along with the 

corresponding results. 

 

Index Terms — Web Services, Distributed Database, 

Horizontal Fragmentation, UDDI, WSDL, SOA, XML 

Relaxation 

 

I. Introduction 

The benefit of service-oriented architectures (SOA) is 

their support of loose coupling of software components, 

i.e. providing a high degree of interoperability and reuse 

[1]. WS is an example of a SOA that include three main 

entities: Consumers, Providers, and Registers of services.  

These entities work in concert to provide a loosely 

coupled computing paradigm. Web Services (WS) are 

self-contained, loosely coupled application modules 

with well-described functionality that can be published, 

located and invoked across the web [2].  

The World Wide Web (WWW) is evolving into a 

medium for providing a wide array of e-commerce, 

business-to-business, business-to-consumer and other 

information based services [3]. WS is emerging as the 

enabling technology that bridges decoupled systems 

across various platforms, programming languages and 

applications. Interoperability among these applications 

is ensured using WS framework [4] [5].  

WS provide a ubiquitously supported framework for 

application-to-application interaction, based on existing 

Web protocols and open XML standards. The WS 

framework is divided into three areas: communication 

protocol, service description, and service discovery. 

Several specifications have been developed like Simple 

Object Access Protocol (SOAP) [6] [7] [8], WS 

Description Language (WSDL) [9] [10] and Universal 

Description, Discovery and Integration (UDDI) [11], 

correspondingly.  

The present work deals with problems of request-

response behavior, where the response of a WS is time 

and cost sensitive to the end user. Intuitively, the most 

important factor for the end user has to do with the 

necessary time that a WS takes to produce and deliver 

its results, that is the WS execution period. There are 

situations where WS have to deal with very large data or 

may need ‘‘long’’ execution time period for other 

reasons (low infrastructure availability) before returning 

results back to the customer/user. The WS execution 

duration varies depending on the status of the 

infrastructure supporting it according to the available 

resources executing the WS. As a result the customer 

may asynchronously wait for the WS to respond so 

‘‘long’’ as to even decide to request results from another 

available WS in a different location and with higher 

potential availability.  

Such WS is particularly met in business environments 

where time and data intensive transactions are 

performed between customers and offered 

services/products. A typical example is found in the 

telecommunication carrier’s business network. A 

common telecommunication carrier’s business network 

WS paradigm is the presentation of online analytic 

details for telephone calls. Carriers exist with millions 

of customers and billions of daily telephone call 

transactions. In such case, the WS has to patiently 

search for all the unbilled calls of a whole day’s 

transactions to present analytically a single customer’s 

telephone calls. Imagine now that this long-taking-to-

mailto:tarekbox2000@yahoo.com


 Evaluating Web Services Functionality and Performance 19 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

respond WS may additionally be subject to extra delays. 

These delays depend on the availability and 

performance specifics of the carrier infrastructure 

resources.  

The objective of this work is to develop an 

understanding of SQLXML WS application for 

accessing heterogeneous and distributed database of 

telecommunication carrier’s network. It allows the 

publishing of WS descriptions to submit user requests 

(goal) to retrieve the required information. It measures 

the efficiency of WS among possible different 

alternatives with real-time and execution parameters. 

The rest of the paper is organized as follows: Section 

2 presents motivation of this work. In Section 3, we 

outline some details about WS and introduce a 

SQLXML WS usage. Section 4 presents the proposed 

system model. Section 5 presents our implementation 

details and results. Section 6 is a conclusion.  

 

II. Motivation 

Our WS application was developed as academic 

example while studying the nation-wide 

telecommunication carrier’s network in Egypt. In 

general, telecommunication carriers utilize gateways to 

provide telephony services that have the capability to 

record call transactions on relational databases. In 

particular, existing web and distributed database 

(horizontal fragmentation) applications and services 

implementations have served in this work. Moreover, 

each area in telecommunication carrier’s network may 

have certain database such as Oracle, SQL Server, My 

SQL...etc. In addition, the carrier utilizes the corporate 

network both for end-user internet service provision as 

well as for the needs of data interchange with its 

thousands of national business partners. As a result, 

business partners as well as other associates have had 

the need to consume several kinds of WS that deliver 

various billing reports and exchange data concerning the 

Customer/call Detailed Records (CDR).  

 

Require

1,n

1,1

Caller

1,n

1,1

Belong to1,n 1,1

Include

1,n

1,1

Contain

1,n

1,1

Own1,n 1,1

Offer

1,n

1,1

Use

0,n

1,1

Has

1,n

1,1

inclod

1,n

1,1

 ComplaintAndFault

ComplaintDate DT

 ComplaintType

ComplaintCode

ComplaintDescription

VMBT3

VMBT500

Bill

FromDate

ToDate

LocalCost

LongDistanceCost

InternetCost

ServicesCost

MonthlyFees

OtherCost

BayDate

DT

DT

F

F

F

F

F

F

DT

Call

CallTime

TerminateTime

PartnerNationalCode

PartnerCityCode

PartnerAreaCode

PartnerTelephonNumber

Direction

DT

DT

VMBT5

VMBT3

VMBT5

VMBT5

VMBT1

City

CityCode

CityName

VMBT3

VMBT15

Service

ServiceID

ServiceDescribtion

Cost

VMBT3

VMBT500

F3

Telephon

TelphonNumber

TelphonAddress

StartWorkingDate

VMBT5

VMBT150

D

Subscriber

SocialSerialNumber

SubsriberName

Sex

ResidenceAddress

BirthDate

VMBT15

VMBT30

VMBT1

VMBT150

D

Area

AreaID

AreaName

VMBT3

VMBT150Telephone Service

ServiceDate DT

Usege type

UsegeID

DescriptionUsege

VMBT3

VMBT50

 

Fig. 1: Conceptual data model represents the needed relations to implement the proposed telecommunication carrier’s network 



20 Evaluating Web Services Functionality and Performance  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

In order to construct a relational data model for 

monitoring the telecommunication of central area, the 

design should consider the relevant information of the 

underlying area. The needed information is gathered 

from the customer, calls, complains,..etc. By analyzing 

the telecommunication data items and determining the 

corresponding function dependencies, several 

telecommunication carriers’ entities can be obtained. 

These entities are submitted to an I-CASE tool to 

provide the required relational data model. Although 

other methods, instead of using I-CASE tool could be 

employed to accomplish the system relations (tables), 

the I-CASE approach is preferable because of its 

flexibility and its ability to generate easily and quickly 

modified versions of the data model [12][13]. These 

methods have enabled developers to deal with problems 

and their solutions at increasingly higher levels of 

abstraction in an increasingly higher-quality conceptual 

framework [12] [14] as shown in Fig. 1. 

Moreover to make the database connectivity with WS 

independent of the database type, SQLXML WS is used 

for better connectivity over the network through the use 

of Active Server technologies [14][15][16]. The value of 

this model lies in its ability to meet the scalability 

requirements necessary to support several central area of 

telecommunication carrier’s network. 

Depending on the available database engine on the 

area server, the I-CASE tool determines the 

corresponding relational design. Once, the tables are 

created, they are filled with data of call gathering 

information system, customer, and customer complain. 

Actually, this procedure is not limited to any particular 

area server since it can be applied to any database 

engine as long as that server act as telecommunication 

area server. 

 

III. Web Services  

Web services are providing developers with suitable 

tools to provide an infrastructure for the development of 

scalable and interoperable systems.  

Information systems are moving towards 

architectures that increase distribution, decoupling and 

collaboration with the aim to support the integration of 

autonomous and heterogeneous components. Autonomy 

and heterogeneity are based on so-called open 

environments. 

In particular in the last years the attention has on 

Service-Oriented Architectures (SOA) that enable new 

kinds of flexible business applications of open 

environments in terms of their structure, productivity 

and administration, increasing the diffusion B2B 

(business two business) integration processes[1][8]. Fig. 

2 shows service-oriented architecture. Service requester 

is the potential user of a service. Service provider is the 

entity that implements the service and offers to carry it 

out on behalf of the requester. Service registry is a place 

where all available services are listed. This Service 

registry allows providers to advertise their services and 

requesters to query for services [17] [18] [19].  

 

 

Fig. 2: Service-Oriented Architectures 

 

3.1 Web Services Components 

WS require several related XML-based technologies 

to transport and transform data into and out of programs 

and databases. 

• XML (Extensible Markup Language), the foundation 

on which WS are built provides a base language for 

defining data, and processing it. XML represents a 

family of related specifications published and 

maintained by the World Wide Web Consortium 

(W3C). 

• WSDL is used to provide an XML grammar for 

describing network services as collections of 

communication endpoints capable of exchanging 

messages.  It is an XML-based technology, defines 

WS interfaces, data and message types, interaction 

patterns, and protocol mappings. 



 Evaluating Web Services Functionality and Performance 21 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

• SOAP, is a collection of XML-based technologies, 

defines an envelope for WS communication and 

provides a serialization format for transmitting XML 

documents over a network and a convention for 

representing RPC interactions [6][8][16]. A SOAP 

message represents the information needed to invoke 

a service or reflect the results of a service invocation, 

and contains the information specified in the service 

interface definition.  

• UDDI, a WS registry and discovery mechanism, is 

used for storing and categorizing business 

information and for retrieving pointers to WS 

interfaces. 

 

3.2 SQLXML Application 

XML-based services provide interesting solutions to 

different business problems. It is no surprise that most 

modern DBMSs such as Oracle and SQL Server have 

extensive support for working with XML. DBMSs 

regularly need to work with and store data that may 

have originated in XML. Without this built-in support, 

getting XML to and from DBMS would require the 

application developer to translate XML data before 

sending it to DBMS and again after receiving it back 

[20][21][22]. It is clear this could quickly become very 

tedious given the pervasiveness of the language. 

DBMS that support XML are called an XML-enabled 

DBMS. This means that it can read and write XML data. 

It can return data from databases in XML format, and it 

can read and update data stored in XML documents [20]. 

As Table (1) illustrates, out of the box, SQL Server’s 

XML features can be broken down into eight general 

categories. 

 

 

Table 1: SQL Server’s XML Features [20] 

Feature Purpose 

FOR XML An extension to the SELECT command that allows result sets to be returned as XML 

OPENXML Allows reading and writing of data in XML documents 

XPath queries Allows SQL Server databases to be queried using XPath syntax 

Schemas Supports XSD and XDR mapping schemas and XPath queries against them 

SOAP support Allows clients to access DBMS functionality as a Web service 

Updategrams XML templates through which data modifications can be applied to a database 

Managed classes Classes that expose the functionality of SQLXML inside the .NET Framework 

XML Bulk Load A high-speed facility for loading XML data into a database server 

 

WS technologies promise to deliver a loosely coupled, 

service-oriented architecture capable of integrating 

disparate software systems across proprietary platforms, 

networks and languages [23]. WS-based systems are not 

just technically interesting; they are the foundation for a 

new business paradigm. Businesses that evolve towards 

a loosely coupled nature can adapt to variant market 

conditions more quickly, allowing them to frequently 

add and change business partners with lower startup 

costs. Further, loosely coupled business interactions 

reduce dependence on proprietary protocols and 

methodologies, empowering businesses to reach across 

traditional client and partner boundaries into new 

markets.  

 

 

Fig. 3: Example of Microsoft SQLXML Web Services 

 

One of the main loosely coupled business application 

is a SQLXML WS application using heterogeneous 

databases. SQLXML WS is used to simplify the 

interaction between SQL, multiple platforms, and 

various languages using different database connectivity 

such as Oledb, Active Data Objects (ADO), Open 

Database Connectivity (ODBC), Java Database 

Connectivity (JDBC), and so on [15]. SQLXML WS 



22 Evaluating Web Services Functionality and Performance  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

help to better connect databases over an extranet, an 

intranet, or the Internet using Active Server technologies 

[15]. This enables multiple platforms to access the same 

services and attain the same results. This section 

contains a quick look at the functionality that SQL WS 

can bring to online database applications. One of the 

benefits of SQLXML WS is that they essentially cut out 

all use of ADO [15]. By using a WS to complete our 

data interaction we can remove a level of complexity 

and thus remove a layer of potential errors, for instance, 

ADO recordset object errors. Like all database 

applications, you have to provide the back-end before 

developing the front-end application and GUI. By using 

SQLXML WS, deployment time is reduced 

considerably and resources are increased [15]. 

SQLXML WS also opens the back-end to multiple 

front-ends that may be built by third parties, with no 

additional development work [15]. 

Most of organizations are now publishing a huge 

amount of data on the internet using XML for various 

purposes such as telecommunication carrier’s business 

network for satisfying customer service needs. Due to 

users need, there is an increasing to query XML data. 

Relative to keyword search, a structured XML query 

allows a user to flexible way to present his/her queries 

needs. However, the structural XML query with large 

number of different XML data source makes it difficult 

to retrieve exact answer. Therefore, our future work will 

go to use relaxed query to the data sources. 

 

IV. The System Model  

As distributed software applications, WS let 

companies exchange data and share services with 

business units, customers, partners, and suppliers. WS 

facilitate machine-to-machine interactions for data 

collection, delivery, display, and processing. Here WS 

include an application that provides the 

telecommunication services that shares telephone 

information between customers and its billing. As a WS 

is something that has no user interface, we cannot 

interact with it without a special tool. That tool should 

allow composing XML requests via its own user 

interface. Commonly such user interfaces are text 

editors where we write our XML requests and controls 

for posting requests to the server. Therefore, this model 

has been designed and implemented as a relational 

database system as shown in Fig. 4, which is 

manipulated by a SQLXML WS application. The 

system interface is independent of the database type. 

One of the objectives of this work is to develop an 

understanding of SQLXML WS application for 

accessing heterogeneous and distributed database of 

telecommunication carrier’s network. The proposed 

model allows the publishing of WS descriptions to 

submit user requests (goal) to retrieve the required 

information. It measures the efficiency of WS among 

possible different alternatives with real-time and 

execution parameters.  

Here, telecommunication carriers utilize gateways to 

provide telephony services that have the capability to 

record call transactions on relational databases. In 

particular, existing web and distributed database 

(horizontal fragmentation) applications and services 

implementations have served in this work as shown in 

Fig. 4. Moreover, each area in telecommunication 

carrier’s network may have certain database such as 

Oracle or SQL Server. In addition, the carrier utilizes 

the corporate network both for end-user as well as for 

the needs of data interchange with its thousands of 

national business partners. As a result, business partners 

as well as other associates have had the need to consume 

several kinds of WS that deliver various billing reports 

and exchange data concerning the Customer/call 

Detailed Records (CDR) as mentioned before.  

Fig. 4 shows the four main players 1) WS provider, 2) 

WS requester, 3) Service registry, and 4) End user using 

thin client. They are working together according specific 

steps. Step 1 provider produces the WS and connects to 

distributed database. Step 2 provider deploys WS by its 

WSDL description, through WS registry (UDDI). Step 3 

is called discovery process where the requester and 

provider, must become known to each other or at least 

one know the other. The discovery process somehow 

obtains both the WS description and an associated 

Functional Description (FD) of the service. FD is a 

machine-processable description of the functionality of 

the service that the provider is offering. Step 4 the 

service requester consumes selected services at his/her 

application. Requester adds appropriate WS to his/her 

application, (according to its contract with WS provider). 

Provider may change some parameters such connection 

string DB according to telephone location (end user of 

thin client) of telecommunication network and all 

changes are done in web.config file.  

In the proposed model, requester can test WS to 

validate its functionality, behavior and performance 

using SoapUI testing tool. In addition, in this work the 

telecommunication carrier network consists of seven 

WS for customer service. These WS are:  1) Get 

subscriber telephones information, this WS like the 

guidebook telephone, the input of this service is the 

subscriber social serial number and the output is table 

contains all telephone in all centrals' telephone. This WS 

obtains the data from distributed and heterogeneous 

databases and retrieves it to appear to the customer 

transparently. 2) Telephone owner information, the 

input of this WS is city code and the telephone number 

and the output is the information about telephone owner. 

3) New telephone service subscription, this WS allows 

customer to subscribe with available service. The inputs 

of this WS are city code, telephone number and service 

type while the output is just “OK” string if subscription 

done successfully or Null if subscription fail. 4) 

Customer complaint and telephone fault, this WS allows 

customer to take advice about specific fault or record 

complain about something. Input of this service is city 

code, telephone number and fault or complain type 

http://www.zimbio.com/go/http:/en.wikipedia.org/wiki/Web_service


 Evaluating Web Services Functionality and Performance 23 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

while the output just “OK” string for successful 

submission of fault or complain. 5) Call detail record, in 

this WS the CDR record represents the footprint of a 

telecommunication carrier’s service. It includes 

customer call transaction, and communication 

information (caller, destination, duration, etc.). This WS 

allows customer to browse telephone traffic, at specific 

time interval period for both directions call and colleen. 

Inputs of this WS are city code, telephone number, time 

interval, and direction of call (i.e. customer calls another 

member or customer receives call from another 

member).  Output of this WS is a table contains all 

telephone traffic at predefined time interval. 6) 

Telephone bill details, our objective from this WS is to 

allow associates and business partners to consume 

‘‘online’’ updated information of a customers bill even 

for the unbilled CDR transactions not yet compiled. 

This WS allows service customer to browse telephone 

bills. Inputs of this WS are city code and telephone 

number while the output is a table contains all bill 

details. 7) Payment bills, WS payment bill provided to 

allow service customers to pay their telephone bills from 

any internet browser. In this WS, service consumer has 

been consuming WS to deal with banks. First, customer 

queries the telephone bills. Second, customer chooses 

which bill wants to bay, by its month. Third, customer 

chooses the bank would to pay through it (i.e. 

customers' bank) and enter his/her name and account 

number. All the above WS cooperate to observe 

telephone calls information such as billing and 

customers complains.  

 

 

Fig. 4: The Proposed System Model 

 

V. Implementation Details and Results 

In this work, we will measure some significant 

parameter of WS. Also, we will validate its input and 

output, and assertion that it not broken under continually 

executing at specific period and implement several test 

strategy. It is very important to know WS behavior, 

before it has become available to end user (thin client). 

In addition, we used SoapUI as a testing tool to 

validate functionality, analyze performance behavior 

under varying execute condition, find maximal 

performance available using thread strategies, define 

performance requirements and continuously validate 

using, maintain functional validations to see that they 

don't 'break" under continually execution (repeat  

request). At first we construct project and then add the 

WSDL for WS we want to test it by its URL.  

There are many advantages when we use test tools 

before publishing WS through web site: 1) If the WS 

contains too many methods with too many input and 

output parameters it may take several days to complete 

test of this WS, tools supports Groovy Script – a 

scripting language that is very similar to Java. 2) We 

can write scripts to access the database, which is used 

and / or influenced by the WS. 3) We can automate 

validation of the WS response against input. 4) We can 

automate the output of validation results into a file 

(which could be just a text file of HTML depending on 

our choice). 5) We can run an entire test suite. 

 

5.1 SOA Testing 

SOA tests are used for helping and realizing the full 

agility benefits of SOA with quality.  Today's 

enterprises are leveraging SOA to provide greater 

flexibility and agility in meeting business needs [24]. 

This is enabled by exposing existing IT assets as 

reusable services and assembling them into composite 

solutions, with an appropriate governance infrastructure 

in place. However, SOA's distributed architecture 

http://www.itko.com/solutions/soagovernance.jsp


24 Evaluating Web Services Functionality and Performance  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

increases interdependencies and the underlying rate of 

change in the resulting application. This has exposed 

serious inadequacies with traditional software testing 

methods, requiring new approaches to maintain SOA 

application quality and agility in an environment of 

constant change.  

Both web services (WS) and service-oriented 

architecture (SOA) presents a set of unique testing 

challenges. As services are distributed, it is necessary to 

test them using a distributed architecture [24].  Common 

SOA testing challenges as listed in 

www.itko.com/solutions/soatesting.jsp include: 

• No visibility or traceability below the User Interface 

to isolate errors and problems  

• Inability to test "headless" web services and 

components that do not have an available User 

Interface  

• No ability to continuously validate application 

functionality, even as underlying components are 

being changed on their own lifecycles  

• Inability to test composite solutions due to limited 

access or availability of dependent services and data 

needed for testing  

• Inadequate or incomplete testing, resulting in costly 

problem identification and debugging once released 

into production  

• Poor collaboration between development and quality 

assurance (QA), with minimal to no reuse of test 

assets between unit, functional, regression and 

performance testing 

In this work, we use a testing framework called 

SoapUI, which allows different test cases to be selected 

based on built-in test strategies. The framework also has 

a windowing mechanism to evaluate and select test 

cases for both load testing and performance testing. 

Performance testing can help you identify bottlenecks in 

your application code and eliminate them proactively. 

After performance testing is completed, Load Testing 

can help identify inventory requirements and help you 

decide whether it is best for you to scale vertically 

(adding high-end servers) or horizontally (adding more 

web servers, databases etc).  

 

5.2 Experimental Setup  

The experimental setup and technological 

environment used for implementing and testing the 

proposed system model as the follows: 

The Oracle Database 9i installed with operating 

system MS Windows XP, CPU 2 GHz and 2G RAM. 

The SQL Server 2005 installed with operating system 

MS Windows XP, CPU 2 GHz and 2G RAM. MS 

Visual Studio installed at Laptop with operating system 

MS Windows XP, CPU 2 GHz and 2 G RAM. The 

testing result has been obtained by standard testing 

software for validating WS performance, behavior and 

functionality called SoapUI version .2.0.2. We used IIS 

5.1 as a web server. XML version 1.0, HTTP 1.1 and 

SOAP 1.2 are used as WS platform. 

 

5.3 Measurement and Statistics 

During execution, of WS the following measurement 

parameters in Table (2) are periodically collected and 

displayed in the statistical tables associated with web 

services. These parameters represent WS execution time, 

number of transferred bytes, Transaction per Second 

(TPS) ...etc as listed in Table (2) and rest of figures. 

 
Table 2: Performance analysis of executing the proposed telecom WS 

WS Provided by 

Egypt Telecom 

Provider 

Execution  

time(ms) 

of  

First Invocation 

Response (byte) 

or byte 

processed 

Execute WSs 1000 

Count continuously 

Min 

(ms) 

Max 

(ms) 

Avg. 

(ms) 
TPS 

K. byte 

per second 

SubscriberTelephones -Information 15443 4524 12 83 13 72~75 320~333.4 

TelephoneOwner 15141 2050 9 68 9 93~104 206~211 

NewTelephoneService 15707 440 8 35 12 212~103 44~2169 

ComplaintTelephone 10208 402 8 77 8 108~120 43~215 

CallDetailRecord 15174 2181 9 31 9 607~92 1293~197 

TelephoneBillDetails 15106 2015 8 77 9 101~111 220~199 

PaymentBills 15460 350 365 704 388 2 0.889~0.922 

UpdatePaymentDate 15163 404 7 40 8 120~123 47.5~48 

 

In addition, minimum, maximum and average is 

execution time of web service depending. Each one 

depends on three main parameters: 1) complexity of 

web service internal functions, 2) web service response, 

and 3) available system resources 

Fig. 5 shows WS performance (average execution 

time in ms) for different number of threads where each 

thread acts as virtual user with 500ms delay between 

each invocation. 



 Evaluating Web Services Functionality and Performance 25 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

 

Fig. 5: Average execution time of WS with 500ms delay 

 

Fig. 6 shows WS performance (average execution 

time in ms) for different number of threads immediately 

between each invocation. 

 

Fig. 6: Average execution time of WS immediately 

 

Fig. 7 shows WS performance (count of executed WS) 

for different number of threads with 500ms delay 

between each invocation. 

 

Fig. 7: Count of executed WS and number of threads 

 

Fig. 8 shows WS performance (count of executed WS) 

for different number of threads immediately between 

each invocation. 

 

Fig. 8: Count of executed WS immediately 

 

Fig. 9 shows WS performance (number of 

transactions per second) for different number of threads 

with 500ms delay between each invocation. 

 

Fig. 9: Number of transactions per second of executed WS and 

number of threads 

 

Fig. 10 shows WS performance (number of 

transactions per second) for different database 

operations such as insert, update and retrieve or select 

 

Fig. 10: Number of transactions per second of executed WS during 

database operations 

 

Fig. 11 shows WS performance (average execution 

time in ms) for different database operations such as 

insert, update and retrieve 

 

Fig. 11: Average execution time of WS during database operations 



26 Evaluating Web Services Functionality and Performance  

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

We analyzed the above results according to database 

type, database operation (transaction type), and number 

of threads at the same time where each thread acts as 

virtual user. In general execution time of web service is 

unpredictable (i.e. each invoke of web service mean 

different execution time), but averages execution time of 

web service can be used as a fingerprint of web service. 

At the beginning of invocating web service takes long 

time comparing with second or third web services 

invocation due to most of the time is consumed for 

network handshaking and host loading. Minimum, 

maximum and average execution time of web service is 

depending on three main parameters:  1) web service 

internal functions, 2) web service response time and 3) 

available resources. 

In addition, type of database transaction (e.g. retrieve, 

insert, update...) affects the web service execution time 

and response time. The average execution time of the 

WS when it performs retrieve transaction is less than the 

average execution time of inserts and update 

transactions. 

We find that, the WS average execution time depends 

on the number of threads and the average executing time 

of WS unpredictable when several threads immediately 

between these threads invoke WS. In addition, we notice 

the hardware limitations are common problem when we 

implement huge number of threads. Finally, 

recommending suitable hardware is an important task 

before publishing web services. 

 

VI. Conclusion 

This work shows the benefit of WS as an interface of 

the database and manipulating horizontal fragmentation 

transparently. Also, appear WS as a global middleware 

capable to deal with heterogeneous databases. 

The architecture was tested in a multiplatform 

environment within a network and was proven to 

operate easily by employing SOAP and Web services. 

We have introduced WS application for retrieval 

information system over distributed and horizontal 

fragmentations. In addition to, the introduced 

application retrieved the telecommunication information 

from different heterogeneous databases (different 

databases platform such as Oracle, SQL Server, My 

SQL…etc). Also, we use testing tools for testing and 

validate a WS performance under different executing 

strategy, validations WS functionality to see that they do 

not 'break" under continuously executing, run several 

executing tests simultaneously to see how they affect 

each other. Using WS testing tools is very important to 

facility using such this WS when we purchase it from 

remotely vendor.  

Testing is an essential part of the software 

development process, and an important area that is often 

misunderstood or overlooked is that of stress testing. 

Coverage of web service is benefit for analysis 

WSDL/interface functionality, particularly when web 

service contains several web methods (functions). By 

following the testing principles, we implement effective 

testing that aim to find some of the more devious 

problems associated with our WS development. Pre-

written tool "SoapUI" is used, for testing. We used 

SoapUI for testing and validating a WS performance 

under different executing strategy and validating WS 

functionality to see that they do not 'break" under 

continuously executing. 

 

References 

[1] Laura Bocchi and Paolo Ciancarini, “On the Impact 

of Formal Methods in the SOA”, Electronic Notes 

in Theoretical Computer Science, 160 (2006): 113–

126, 2006 

[2] Christos Makris, Yannis Panagis, Evangelos 

Sakkopoulos and Athanasios Tsakalidis, “Efficient 

and adaptive discovery techniques of Web Services 

handling large data sets”, The Journal of Systems 

and Software, 79 (2006): 480–495, 2006 

[3] Ouzzani, M., Bouguettaya, A., “Efficient access to 

Web Services”, IEEE Internet Computing. 8 (2): 

34–44, 2004 

[4] Makris, C., Sakkopoulos, E., Sioutas, S., 

Triantafillou, P., Tsakalidis, A., Vassiliadis, B., 

2005. “Nippers: Network of interpolated peers for 

Web Service Discovery”. In: 2005 IEEE 

International Conference on Information 

Technology: Coding and Computing (ITCC_05), 

vol. II, Las Vegas, Nevada. pp. 193–198. 

[5] Yu, T., and Lin, K.-J., “A broker-based framework 

for qos-aware Web Service composition”, In: 2005 

IEEE International Conference on e-Technology, e-

Commerce, and e-Services, 29 March–1 April 2005, 

Hong Kong, China. pp. 22–29. 

[6] Gerhard Smiatek, “SOAP-based web services in 

GIS/RDBMS environment”, Environmental 

Modelling & Software, 20 (2005): 775-782, 2005 

[7] W3C, 2003, “SOAP W3C Recommendation 

Documents”, http://www.w3.org/TR/SOAP 

[8] XTRADYNE, “Protecting Web Services with the 

XML/SOAP Security Gateway”, XTRADYNE 

White Paper: 2004-2007 PrismTech, 

www.xtradyne.com 

[9] W3C, 2004, “Web Service Description Language”, 

http://www.w3.org/TR/wsdl. 

[10] W3C, 2004, “Web Services Architecture”. 

http://www.w3.org/TR/2004/NOTE-ws-arch-

20040211. 

[11] UDDI, 2004, “UDDI Version 3.0.2”, 

http://uddi.org/pubs/uddi-v3.0.2-20041019.htm. 



 Evaluating Web Services Functionality and Performance 27 

Copyright © 2014 MECS                                          I.J. Information Technology and Computer Science, 2014, 05, 18-27 

[12] M. Zaki and Tarek S. Sobh, “NCDS: Data Mining 

for Discovering Interesting Network 

Characteristics”, Journal of Information and 

Software Technology (JIST), Volume 47, Issue 3, 

March 2005, PP. 189-198.  

[13] Tarek S. Sobh, “Explanation-based Learning to 

Recognize Network Malfunctions”, Information, 

Knowledge, System Management (IKSM), Volume 

5, Issue 1, 2005/2006, PP. 1-21 

[14] Boris Motik, Ian Horrocks and Ulrike Sattler, 

“Bridging the gap between OWL and relational 

databases”, Web Semantics: Science, Services and 

Agents on the World Wide Web, 7 (2009): 74–89, 

2009 

[15] D. Jorgensen, “Building a SQLXML WS 

Application”, Developing .Net WS with XML, 

2002, pp 299-336, Elsevier Inc. 

[16] S. Sioutas, E. Sakkopoulos, Ch. Makris, B. 

Vassiliadis, A. Tsakalidis and P. Triantafillou, 

“Dynamic Web Service discovery architecture 

based on a novel peer based overlay network”, The 

Journal of Systems and Software, 82 (2009): 809–

824, 2009 

[17] Marco Crasso, Alejandro Zunino, and Marcelo 

Campo, “Easy web service discovery: A query-by-

example approach”, Science of Computer 

Programming, 71 (2008): 144–164, 2008 

[18] Maria Cavalcanti, Rafael Targino, Fernanda Baia˜o, 

Shaila Rossle, Paulo Bisch, Paulo Pires, Maria 

Campos and Marta Mattoso, “Managing structural 

genomic workflows using Web services”, Data & 

Knowledge Engineering, 53 (2005): 45–74, 2005 

[19] Yih-Ling Hedley, Muhammad Younas, Anne 

James and Mark Sanderson, “Sampling, 

information extraction and summarization of 

Hidden Web databases”, Data & Knowledge 

Engineering, 59 (2006): 213–230, 2006 

[20] H. W. Kenton SQLXML, Chapter 18, 

Henderson_book.fm, pp 675-790 Thursday, 

September 25, 2003 5:23 AM 

[21] Microsoft, 2004, “Performance monitoring, 

browsing counters”. http://msdn.microsoft.com/ 

library/en-us/perfmon/base/getting_counter_ 

information.asp 

[22] Microsoft, 2005, “C Sharp Programming Language 

Specification”. http://msdn.microsoft.com/library/ 

en-us/csspec/html/CSharpSpecStart.asp. 

[23] Vikas Agarwal, Girish Chafle, Koustuv Dasgupta, 

Neeran Karnik, Arun Kumar, Sumit Mittal and 

Biplav Srivastava, “Synthy: A system for end to 

end composition of web services”, Web Semantics: 

Science, Services and Agents on the World Wide 

Web, 3 (2005): 311–339, 2005 

[24] Xiaoying Bai; Yinong Chen; Zhongkui Shao, 

"Adaptive Web Services Testing", Proceeding of 

Computer Software and Applications Adaptive 

(COMPSAC), 24-27 July 2007 Page(s):233 – 236, 

2007 

 

Authors’ Profiles 

Tarek Salah Sobh received his B.Sc. degree in 

computer engineering from Military Technical College, 

Cairo, Egypt in 1987. Both M.Sc. and Ph.D. degrees 

from Computer and System Engineering Department, 

Faculty of Engineering, Al-Azhar University, Cairo, 

Egypt. He has managed, designed and developed several 

package for business applications and security systems. 

He has authored/co-authored of many refereed 

journal/conference papers and booklet. Some of the 

articles are available in the ScienceDirect Top 25 hottest 

articles. His research of interest includes computer 

networks, security systems, distributed systems, 

knowledge discovery, data mining, and software 

engineering. 

 

Late professor Medhat Fakhry received his B.Sc. 

degree in computer engineering from Military Technical 

College, Cairo, Egypt. He worked as Deputy Director of 

Information Systems Department, Egyptian Armed 

Forces. In addition, he worked as a teaching staff in 

Military Technical College. He finished his career as 

Chairman of Management Information System 

Department AAST, Egypt. My professor Medhat 

Fakhry died to the mercy of God in beginning of 2012. 

 

 

 

How to cite this paper: Tarek S. Sobh, Medhat 

Fakhry,"Evaluating Web Services Functionality and 

Performance", International Journal of Information 

Technology and Computer Science(IJITCS), vol.6, no.5, 

pp.18-27, 2014. DOI: 10.5815/ijitcs.2014.05.03 


