Investigating the Effect of Implicit Browsing Behaviour on Students’ Performance in a Task Specific Context

Stephen Akuma
Department of Computing and the Digital Environment, Coventry University, Coventry, UK
E-mail: akumas@uni.coventry.ac.uk

Abstract—This paper focuses on how students access web pages in a task specific information retrieval. An investigation on how students search the web for their current needs was carried out and students’ behavioural characteristics as they surf the internet to answer some given online multiple choice questions was collected. Twenty three students participated in the study and a number of behavioural characteristics were captured. Camtasia studio 7 was used to record their searching activity. The result shows that 328 web pages were visited by the students, and among the parameters captured, the time spent on the search task has a stronger correlation with the students’ performance than any other captured parameter. The time spent on a document can be used as a good implicit indicator to infer learner’s interest in a context based recommender system.

Index Terms—Implicit Browsing Behaviour, Task Specific Context, Information Seeking Behaviour

I. Introduction

Information seeking has become less cumbersome with the rapid growth of World Wide Web (WWW). Users of the internet now search for relevant resources on the web for their current needs. The web is however vast with no one or organization doing the job of filtering relevant contents from irrelevant ones. This leaves the ordinary searcher with a lot of work to do in filtering relevant web resources from irrelevant ones in a minima time [1]. Browsing behaviour like browsing time, mouse clicks, query change, colleting operation, and printing operation etc, can be used to predict user’s interest [2]. Among these browsing operations, time spent performing a task is seen as promising indicator for predicting users’ intention [3]. Information-seeking behaviour is affected by different task [4]; it is also affected by user implicit indicators like dwell time and mouse click [5].

In this paper, we look at the effect of mouse click, time spent on a task, focus change between browser and the online task, query reformulation and website visited on the performance of students. The researcher examined to know which implicit feature has the strongest correlation with a student performance in a given web based task. The researcher found out that there is a weak correlation between the performance (scores) of the participants and the listed implicit features. The time spent on the task however has a stronger correlation of 0.2445 with the students’ performance (scores) as compared to other implicit indicators, thereby strengthening existing research by ([3][4]). The finding offers a possible use of dwell time as a promising indicator for the design of a context based Recommender System.

This paper is organized in the following order: Section 2, reviews literature in this area. Section 3 describes the methodology and tool used for the experiment. The analysis of the results is presented in Section 4. Section 5 is the Discussion. Section 6 states the conclusion, limitation of the research and future work.

II. Related Work

The main source of information for students in an academic environment is the internet ([6][7][8][9]). Some students spend long duration browsing the internet while others search specifically for their needs. A good way of understanding students browsing behaviour is by observing their search activities in a given domain. This can be achieved through assessing them in a task specific context to obtain the variety of their implicit behaviour on the web. Multiple Choice Questions (MCQ) approach is one of the ways by which this assessment can be done. Liu et al. [10] say that such task specific approach can be used to evaluate student’s performance as well as model a feedback that can be used for their current activities. Liu used trained past answers of students in an MCQ test to categorize other student’s responses, providing them with an immediate feedback according to their level of knowledge. Alemán [11] designed an automated MCQ assessment process to show how it can improve students’ programmable ability. Task specific assessment can also be used for experimental purposes to group students according to their performance and behavioural characteristic.
One of the challenges in information retrieval is to understand what an ordinary user expects from an information retrieval system. Most students usually spend long duration of time searching the internet with no relevant information [12]. This might be as a result of general searching of the internet with no defined searching plan. Such general search often leads to massive retrieval of irrelevant resources [13]. Chapman and Ivankovi [9] conducted a study on the use of the internet as search tool. They found out that users of the internet first browse the websites then follow links; most of them end up not getting their desired needs. Different factors affect students’ ability to obtain relevant information for their current activities. George et al. [13] listed these factors as people, convenience, speed of the internet, course requirement, Internet, knowledge of service and sources. Zhu et al. [2] suggested browsing time, saving operation, collecting operation, and printing operation as features that influence browsing behaviour. Since users have different implicit behaviour, researchers are working on the possibility of obtaining the best user implicit behaviour that can be promising enough to predict users’ intention and for the development of a recommender system ([14][15][16][17]).

Implicit indicators provides cheap source of data for the developing a feedback system. Nichols [18] affirms that implicit indicators are good sources for rating in collaborative filtering. His research was a foundation for the study of various implicit behaviours. Oard and Kim [19] extended Nichols research by focusing their study on three criteria: examination, retention and reference. One of the promising implicit indicators (behaviour) that have been associated with measuring relevant information is the time spent on a document during browsing, also called dwell time [20]. Morita and Shinoda [20] captured implicit data transparently with a focus on reading time. They inferred that the time can be used as a good implicit indicator to measure whether a document is relevant or not. Claypool et al. [3] examined different implicit indicators and found out that time spent on a webpage is the most important among the implicit indicators. This assertion by Claypool et al. [3] was affirmed by Kim & Chan [5]. Keller et al. [21] did not totally assert to [3], they suggest that users spend longer time on a page due to an increase in the complexity of the task. Liu et al. [22] supported Keller et al. [21] by adding that dwell time alone is only good for measuring factual task but it is not good for intellectual task. They also suggested that the concept of dwell time should be developed according to the task a user is working on. Other implicit indicators like mouse click and scroll movement were also found to be promising indicators ([3][5][23]). This paper builds on previous studies but focuses on task specific context and implicit behaviour in relation to students’ performance.

III. Methodology

The goal of the study was to investigate students’ browsing behaviour as well as to find out how their behavioural characteristics affect their performance in a task specific context. The study was carried out in a controlled environment. 23 students of Coventry University which include undergraduate, Masters and PhD students participated in the experiment. They were given an introduction to the experiment by the researcher. This was followed by a brief tutorial.

The experiment was an automated observation of user behaviour using Camtasia Studio 7 screen recording software. The participants were given 11 online MCQ task in the area of Internet security to freely surf the internet and answer them [24]. The researcher allowed the participants to search the internet as they normally do. They were allowed to use any search engine of their choice and input whatever query of their choice. The only restriction was that they were not allowed to get information relating to the search task from anybody. The online MCQ task was designed using Question Writer 4 software. Firefox web browser was used for the search process. The Camtasia Studio 7 screen recording software was run simultaneously with the Question Writer 4 software during the experiment. A time limit of one hour was given to each of participant to complete the task. If a participant finishes the task before the time limit, he was to say it loudly that he has finished. During the experiment, the following parameters were captured in one user session by the Camtasia Studio 7 video clip for each user: the number of mouse click(s), the time spent in answering the online question (dwell time), the number of times a query was reformulated (QR), the number of websites visited (NW), the change of focus between the browser and the working environment (CF). After the experiment, the participants were asked to state their level of satisfaction in finding relevant information and the level of difficulty in finding the relevant information.

IV. Results

This section presents the result obtained from the participant session analysis. Section IV is sub divided into 5 subsections: 4.1 is on dwell time and its correlation with the students’ performance. 4.2 is on mouse click and its correlation with students’ performance, 4.3 is on change focus and students’ performance, 4.4 is on Query Reformulation and students’ performance, 4.5 is on Number of websites visited and students’ performance. Table 1 shows the general performance of all the participants in the study. Table 2 shows the level of the participants (P) satisfaction and how the Observer (O) perceived the participants to be satisfied in the task. Table 2 also shows the participants (P) level of difficult in finding relevant information and what the Observer (O) felt about the participants after watching the video.
Correlation of Coefficient was used in analysing the relationship that exists between the participant’s performance and their captured behavioural characteristics. The Correlation of Coefficient is given by:

\[\rho = \frac{S_{xy}}{\sqrt{S_{xx}S_{yy}}} \]
(1)

\[S_{xx} = \frac{\sum x^2 - (\sum x)^2}{n} \]
(2)

\[S_{yy} = \frac{\sum y^2 - (\sum y)^2}{n} \]
(3)

\[S_{xy} = \frac{\sum xy - (\sum x)(\sum y)}{n} \]
(4)

Where

\(x, y \) in equation (1, 2, 3, and 4) are two given data pairs, the Sigma symbol represents summation and \(n \) is the total number of data points.

4.1 Performance versus Dwell Time

The time spent by each participant during the task was captured by Camtasia studio 7. Table 3 shows the Computation of the correlation coefficient between time and performance (score). Variable \(x \) represents the time spent during the task and variable \(y \) represents the score. The result shows a correlation (though weak) between students’ performance and the time spent on the task. Fig. 1 shows the distribution of the performance against the dwell time.

<table>
<thead>
<tr>
<th>Participants</th>
<th>Time(min)</th>
<th>NW</th>
<th>FC</th>
<th>QR</th>
<th>Score</th>
</tr>
</thead>
<tbody>
<tr>
<td>Participant 1</td>
<td>30.0</td>
<td>28</td>
<td>70</td>
<td>11</td>
<td>80</td>
</tr>
<tr>
<td>Participant 2</td>
<td>40</td>
<td>26</td>
<td>72</td>
<td>12</td>
<td>50</td>
</tr>
<tr>
<td>Participant 3</td>
<td>25.5</td>
<td>10</td>
<td>76</td>
<td>6</td>
<td>30</td>
</tr>
<tr>
<td>Participant 4</td>
<td>22.4</td>
<td>10</td>
<td>30</td>
<td>0</td>
<td>90</td>
</tr>
<tr>
<td>Participant 5</td>
<td>16</td>
<td>7</td>
<td>38</td>
<td>4</td>
<td>20</td>
</tr>
<tr>
<td>Participant 6</td>
<td>30.3</td>
<td>18</td>
<td>108</td>
<td>7</td>
<td>70</td>
</tr>
<tr>
<td>Participant 7</td>
<td>16.1</td>
<td>9</td>
<td>28</td>
<td>1</td>
<td>90</td>
</tr>
<tr>
<td>Participant 8</td>
<td>51.7</td>
<td>16</td>
<td>56</td>
<td>5</td>
<td>30</td>
</tr>
<tr>
<td>Participant 9</td>
<td>15.65</td>
<td>9</td>
<td>40</td>
<td>2</td>
<td>40</td>
</tr>
<tr>
<td>Participant 10</td>
<td>32.37</td>
<td>10</td>
<td>81</td>
<td>1</td>
<td>40</td>
</tr>
<tr>
<td>Participant 11</td>
<td>20.52</td>
<td>12</td>
<td>64</td>
<td>4</td>
<td>40</td>
</tr>
<tr>
<td>Participant 12</td>
<td>5.14</td>
<td>1</td>
<td>20</td>
<td>0</td>
<td>30</td>
</tr>
<tr>
<td>Participant 13</td>
<td>37.34</td>
<td>20</td>
<td>193</td>
<td>20</td>
<td>30</td>
</tr>
<tr>
<td>Participant 14</td>
<td>31.49</td>
<td>18</td>
<td>80</td>
<td>2</td>
<td>70</td>
</tr>
<tr>
<td>Participant 15</td>
<td>28.09</td>
<td>10</td>
<td>78</td>
<td>5</td>
<td>40</td>
</tr>
<tr>
<td>Participant 16</td>
<td>11.68</td>
<td>5</td>
<td>20</td>
<td>1</td>
<td>30</td>
</tr>
<tr>
<td>Participant 17</td>
<td>43.85</td>
<td>15</td>
<td>112</td>
<td>12</td>
<td>80</td>
</tr>
<tr>
<td>Participant 18</td>
<td>37.79</td>
<td>12</td>
<td>32</td>
<td>7</td>
<td>50</td>
</tr>
<tr>
<td>Participant 19</td>
<td>2.37</td>
<td>1</td>
<td>8</td>
<td>0</td>
<td>40</td>
</tr>
<tr>
<td>Participant 20</td>
<td>28.23</td>
<td>17</td>
<td>78</td>
<td>11</td>
<td>30</td>
</tr>
<tr>
<td>Participant 21</td>
<td>29.78</td>
<td>21</td>
<td>54</td>
<td>9</td>
<td>80</td>
</tr>
<tr>
<td>Participant 22</td>
<td>23.37</td>
<td>11</td>
<td>82</td>
<td>12</td>
<td>60</td>
</tr>
<tr>
<td>Participant 23</td>
<td>48.76</td>
<td>13</td>
<td>98</td>
<td>10</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 1: The general performance of all the participants in the study
4.3 **Performance versus Focus change**

The focus change or change focus is the number of time the participant switches his view between the online quiz and the browser. The researcher hypothesized that users who change focus quickly do so because of the complexity of the task or questions. It has a weak correlation of 0.0618 with the performance. Fig. 3 shows its distribution against the performance. The conclusion is that focus change does not really affect the students’ performance.

![Fig. 3: Distribution of the focus change, plotted against the students’ performance (score)](image)

4.4 Performance versus Query Reformulation

The query reformulation is the number of times a query is retyped in an attempt to answer each of the given questions in the online quiz. It has the weakest correlation with the students’ performance. The correlation coefficient between the query reformulation and the performance is 0.0122. A conclusion can be made that the number of times a query is reformulated has no effect on the students’ performance. Fig. 4 shows the number of query reformulation distribution against the performance.

![Fig. 4: Distribution of the number times queries were reformulated during the task, plotted against the students’ performance (score)](image)

\[Sxx = 67000 - (1140 \times 1140)/23 = 10495.65 \]
\[Syy = 21628.39 - (644.51 \times 644.51)/23 = 3567.82 \]
\[Sxy = 33441.5 - (1140 \times 644.51)/23 = 1496.22 \]

The correlation coefficient
\[
= 1496.22/\sqrt{((10495.65 \times 3567.82))} = 0.24451
\]
4.5 Performance versus Number of websites visited

The websites visited by each of the participants were extracted from the log history of Firefox browser. The log was cleared immediately a participant finishes his/her task. Students searching for information for their needs mostly visit Wikipedia online free-content encyclopaedia and they do not go beyond the first page of search engine result page [24]. This affects the quality of their result. In such a case, it is normally better for the user to input the best query. The correlation coefficient between the number of websites visited and the students’ performance is 0.1635. This is obviously very weak. Fig. 5 shows a distribution of number of websites visited against the performance.

![Performance vs Number of website visited](image)

Fig. 5: Distribution of the number of websites visited, plotted against the students’ performance (score)

V. Discussion

With the volume of documents increasing day by day on the internet, users of the internet can easily get ‘lost in hyperspace’. Hearst [25] used three theoretical models of standard, Cognitive and Dynamic ways to explain the reason for the differences in user’s information seeking behaviour. Most users search dynamically; they start with a particular goal in mind then switch to another goal as the intensity of the search process increases. In most cases, they forget their initial goal. A possible way of keeping the user on track towards his/her initial goal is by understanding his/her implicit interest in a specific context and suggesting appropriate recommendations. The sharp differences in some of the participants’ scores as shown in result can be attributed to the difference in cognitive ability and knowledge base of the participants with regards to the current context.

To offer help to users via recommendation, we must understand how the user seek for information and how to represent the user’s interest. The system should also be able to remember and learn from previous interaction to improve its recommending strength.

Most analysis of user web data have been server-side based. Commercial websites use the server side approach because relevant information can easily be obtained without installing any software at the client side. The server side data usually extracted include: user login/log out time, page reference (URL), I.P address, date and time stamp. Its disadvantage is that a restriction is placed on users without login details. Another disadvantage is that user navigation of web pages is limited.

An alternative to server side data collection is browser side approach. In this approach, data is collected implicitly from users as they browse the web in a natural way. The challenge in this approach is that there are no standard methods to determine how user’s activities on the web relate to their interest. It is important to determine those good implicit features that will indicate that a particular user activity is relevant to the user. In this paper, the researcher studied how some of the chosen implicit indicators correlate with students’ performance in a context specific task. The result shows that the time spent while performing a task is a key factor that can determine students’ performance and an indication of their interest in a web document.

The finding of this study implies that time spent (dwell time) on a document can be used as a good indicator of relevance to develop a recommender system based on implicit rating. Since the correlation of dwell time alone with students’ performance is not very strong, a new approach will be employed by combining dwell time and other implicit indicators of interest.

VI. Conclusions

This paper evaluates user implicit behavioural features in a task specific context and how they can affect students’ academic performance. Data was collected form 23 participants. The students’ behavioural characteristic examined in relation to the their performance were the number of mouse click(s), the time spent in answering the online question (Time), the number of times a query was reformulated (QR), the number of websites visited (NW), the change of focus between the browser and the working environment (CF). Among these features, the time spent on the task has a stronger correlation with students’ performance (score). It has the highest correlation coefficient of 0.24451 with the students’ scores. Next to the dwell times in terms of correlation is the mouse clicks, with a correlation coefficient of 0.2399. Though these correlations are not very strong, it however shows that the dwell time and mouse clicks are important factors in determining the performance of online searchers.

Future work will look at some limitations in this research. For instance, the capturing software used was not fully automated. Some of the parameters like Query reformulation, mouse clicks and focus change were manually extracted from the Camtasia studio 7 recorder. This possibly added noise to the data. The next phase of this research is the development of a framework for a
context based recommender system which will use intelligent techniques to obtain homogenous group patterns based on the correlation of multiple implicit indicators. Feedback will be based on user profile and the ‘weight of interest’ assigned to the web pages they visit. Other implicit behavioural features like scroll movements, keystroke, printing, saving, bookmarking and eye gaze will also be captured and analysed.

Acknowledgement

I wish to thank my supervisor Dr. Rahat Iqbal for his direction and encouragement.

References

Investigating the Effect of Implicit Browsing Behaviour on Students’ Performance in a Task Specific Context

Author’s Profile

Stephen Akuma: is presently a PhD student in Computing in the Department of Computing and the Digital Environment at Coventry University. He holds a Bachelor’s degree in Computer Science (2.1) from Benue State University. He also obtained a Master’s degree in Software Development (Distinction) at Coventry University, United Kingdom. He has 4 years teaching experience. His research focus is on Attention-Based Prediction of Relevant Web Documents and Implicit Feedback System.

How to cite this paper: Stephen Akuma. "Investigating the Effect of Implicit Browsing Behaviour on Students’ Performance in a Task Specific Context", International Journal of Information Technology and Computer Science(IJITCS), vol.6, no.5, pp.11-17, 2014. DOI: 10.5815/ijitcs.2014.05.02