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Abstract— The Monte Carlo simulation method uses 

random sampling to study properties of systems with 

components that behave in a random state. More 

precisely, the idea is to simulate on the computer the 

behavior of these systems by randomly generating the 

variables describing the behavior of their components. 

In this paper, we propose an efficient and reliable 

simulation scheme based on Monte Carlo algorithm and 

combining two variance reduction procedures. We 

simulate a European option price numerically using the 

proposed simulation scheme. 

 

Index Terms— Monte Carlo Simulation, Option 

Pricing, Variance Reduction, European Option 

 

I. Introduction 

Monte Carlo simulation dominates many areas of 

science and engineering, largely because of their ability 

to treat complex problems that previously could be 

approximated only by simplified deterministic methods. 

Various Monte Carlo methods now are used routinely 

by scientists, engineers, mathematicians, statisticians, 

economists, and others who work in a wide range of 

quantitative disciplines. Recent years have seen a lot of 

improvements in Monte Carlo simulation with high 

potential for success in applications. Today, Monte 

Carlo simulation is natural and essential tools in 

computational finance [1-8].   

The basic idea of the Monte Carlo simulation is to 

approximate an expected value [ ]E X  by an 

arithmetic average of the large number of independent 

realizations which all have the same distribution as .X  

As the Monte Carlo estimator is a random variable, 

each run of it produces new values. Therefore, the 

variance of the estimator is a measure for its accuracy 

and reducing this variance by efficient algorithm is the 

usual way of speeding up the Monte Carlo simulation.   

In this paper, we introduce the naïve Monte Carlo 

simulation for European call or put options pricing, and 

then concentrate on two variance reduction procedures, 

antithetic variates and control variates for variance 

reduction. Finally, by combining two variance reduction 

procedures, we propose an efficient Monte Carlo 

simulation schema to reduce the variance of estimated 

option prices financial engineering.  The paper is 

organized as follows: Section 2 describes European 

option pricing. Section 3 discusses the main point of 

Monte Carlo simulation and variance reduction 

techniques. In sections 4, we propose a new simulation 

scheme for European option pricing under Black-

Scholes model. Section 5 summarizes the most 

important results. Finally, we conclude. 

 

II. European Options  

A call option (put option) gives the right, but not the 

obligation, to buy (sell) an underlying asset at a fixed 

price (exercise price or strike price) at or before a 

specified date (maturity date or expiry date). Gain or 

loss on the option is called payoff. The simplest option 

is the European option that can be exercised only on the 

maturity. Let S(T) denote the underlying asset price at 

maturity and K be the exercise price. For a call option, 

if ( )S T K then the older of the option exercise it for 

a profit of ( )S T K . On the other hand, if ( )S T K

the option expires worthless. Thus the payoff function 

of the European call option at maturity data is as 

follows [6] 

+( ( ) ) max{ ( ) ,0}.  S T K S T K                 (1) 
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Based on the risk-neutral valuation method the price 

of the call option is equal to expectation of the 

discounted payoff with risk-free interest rate, i.e. as 

[max{0, ( ) }]rTC e E S T K  .                    (2) 

One of the most important models for describing 

underlying asset price is the Black-Scholes model [1]. 

Based on this model, the price of the underlying asset is 

assumed to follow the Geometric Brownian Motion and 

thus satisfy in the following stochastic differential 

equation 

( ) ( ) ( ) ( ),

, 0

dS t S t dt S t dW t 

 

 

                    
(3) 

where ( )W t  is a Brownian motion. The parameter 

, 
 
is called drift and volatility parameter, 

respectively. By using Ito’s lemma, the unique solve of 

the above stochastic differential equation at maturity T 

is given by [6] 

2

0( ) exp ( )
2


 

   
    

   
S T S T W T      (4) 

with 0S
 
is the initial price of the underlying asset, 

assumed to be known. If Z be a standard normal 

random variable, then based on the characteristics of the 

Brownian motion increments the random variables 

T Z and ( )dW T have identical distributions. 

Therefore, Eq. (4) can be rewritten as follows: 

2

0( ) exp
2


 

   
    

   
S T S T T Z        (5) 

According to the risk neutral valuation principle, drift 

parameter  is equal to the risk-free interest rate r. 

Using the relationship between normal and log-normal 

distributions and based on the above equation, it can be 

shown that  S T has a log-normal distribution with 

mean 
2

0

1
( ) ln

2
T S  

 

and variance
2T . 

Therefore, we will get 

0( ) . TS T S e                                                      (6) 

We can easily seen that if Z be a standard normal 

random variable and , ,a b and c be positive constants, 

then we have  

2

2

[ max{ , 0}]

1 1
( log ) ( log )

b

bZE ae c

a a
a e b c

b c b c

 

   
               (7) 

where the function (.)
 
is the cumulative 

distribution function of the standard normal distribution. 

Thus, by substituting 

2

2
0 ,






 
T

a S e b T and 

c K in the above equation and by Eq. (2) we 

conclude that 
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The values 1d  and 2d
 
are given by 
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III. Monte Carlo Simulation and Variance 

Reduction Procedures 

Suppose that a simulation analyst wishes to compute 

a quantity   that can be expressed as the expectation of 

a real-valued random variable ,X so that 

[ ( )].  E g X The conventional sampling-based 

algorithm for computing   involves simulating n 

independent, identically distributed copies of the 

sequence of independent, identically distributed X
denoted

1 2 nX ,X , ,X . The corresponding estimator 

for   is then just the following sample mean 

1

1
ˆ ( ).



 
n

n i

i

g X
n

                                              (8) 

Since ˆ
n  is the sample mean of independent, 

identically distributed random variables 
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1 2( ),..., ( )g X g X  
having expectation  , the strong 

law of large numbers  says ˆ
n  

converges almost surely 

to   as the number of simulations goes to infinity [5]  

. .ˆ , .a s

n n                                         (9) 

The statistical error of the Monte Carlo error is

2

,n

n



which is independent of the problem dimension. Also, 

the confidence interval by formula (8) is as follows 

2 2

ˆ ˆ( 1.96 , .96 ).N N
n n

N N

 
    

The basic idea for increasing the accuracy of the 

Monte Carlo methods is to use the variance reduction 

techniques to reduce the variance of the samples 
iX

directly. A number of techniques have been developed 

and that help to reduce the number of simulations 

required for a given accuracy [1-5, 8].  

 

3.1 Antithetic Variates Procedures (AV) 

Consider the parameter [ ( )]E g X  . Let 1Y  and 

2Y  are two Monte Carlo estimators for parameter . A 

new estimator can be defined by
1 2

ˆ ( ) 2Y Y   . The 

variance of this estimator is as follows 

1 2

1 2

Var( ) Var( )1ˆVar( )
2Cov( , )4

Y Y

Y Y


 
  

   

If 1 2Cov( , ) 0Y Y   then the new estimator ̂  has 

smaller variance than 1 2,Y Y [6]. It is well known that if 

U be a uniform random variable on [0,1]  then 1 U

also will be uniformly distributed on this interval. As a 

result ( )g U and (1 )g U will be unbiased estimators 

for . It is shown that [3] if ( )g U be a non-decreasing 

or non-increasing function of U, then

 Cov ( ), (1 ) 0g U g U  . Thus, for random 

numbers 1, , NU U
 
from [0,1]  two Monte Carlo 

estimators 
1

1

( )
̂ 


N

ii
g u

N  
and 

1
2

(1 )
̂ 





N

ii
g u

N  
can be combined to get 

antithetic Monte Carlo estimator as follows  

 1 2

1

ˆ ˆ 1ˆ ( ) (1 )
2 2

N

AV i i

i

g u g u
N

 





     

where U and 1 U is called antithetic variates. 

 

3.2 Control Variates Procedure (CV) 

Consider the parameter [ ]E Y  and suppose X be 

a random variable with known expectation. We know 

that X  and Y  are unbiased estimators for their 

expectations. With these estimators a general class of 

unbiased estimators for   can be constructed as follows 

ˆ ( [ ])CV Y c X E X     

where c is a real number. We want to choose c such 

that to minimize ˆVar( )CV that has the following form 

2ˆVar( ) Var( ) Var( )

2 Cov( , )

CV Y c X

c X Y

  

                   
(10) 

With differentiating from Eq. (10) and equal to zero 

we obtain the optimal c  

* Cov(Y,Y)

Var(X)
 c  

By substituting 
*c  in Eq. (10), we will obtain 

2

Cov( , )ˆVar( ) Var( )
Var( )

Cov ( , )ˆVar( )
Var( )





 

 

CV

Y X
Y

X

Y X

X

 

Thus, to achieve variance reduction we must have

Cov( , ) 0Y X  .
  

 

IV. The Proposed Simulation Scheme 

Here, by combining AV and CV procedures, we 

achieve an efficient simulation scheme, namely AVCV 

scheme to solve an option pricing problem. This 

simulation scheme is as follows: 

1. Input  S0,K,r,T,sigma,NRepl. 

2. Set nuT =(r-0.5*sigma^2)*T. 

3. Set  siT =sigma*sqrt(T). 

4. For i=1 to NRepl do 
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     Simulate a standard normally     

     distributed random variable Z.  

     Set StVals=S0*exp(nuT+siT*Z)         

     Set OptVals=exp(-r*T)*max(0,StVals-K) 

     Set MatCov =cov(StVals,OptVals)  

     Set  

       VarY=S0^2*exp(2*r*T)*(exp(T*sigma^2)-1 

     Set c = - MatCov(1,2)/VarY.  

     Set ExpY = S0 * exp(r*T).  

     Set NewStVals=S0*exp(nuT+siT*Z). 

     Set NewStVals1=S0*exp(nuT+siT*-Z).  

        NewOptionVals= exp(-r*T)*0.5* 

           (max(0,NewStVals-  K)+max(0,NewStVals1-

K)). 

    Set NewStVals=(NewStVals+NewStVals1)*0.5. 

    Set ControlVars= NewOptVals+c*(NewStVals-

ExpY). 

5. End for  

6. Set Price= ControlVars/NRepl. 

7. End of Algorithm 

 

In Fig. 1 a sample trajectory of three estimators is 

shown. The simulation is done using Naïve estimator, 

antithetic variates estimator (AV), and antithetic control 

variates estimator (AVCV) with the following 

parameters: 

50, 50, 0.4, 0.1, 1 ( ).0S K r T one year      

 

Fig. 1: Comparison of three estimators 

 

V. Simulation Results 

In this section, we present the simulation results for 

the accuracy and the convergence of the proposed 

simulation scheme (i.e., AVCV) for European option 

pricing. We have used rand function of Matlab software 

for generating random numbers. In Table 1 the 

simulation error by the naïve Monte Carlo simulation 

(NMC), the antithetic Monte Carlo simulation (AV), the 

control variates Monte Carlo simulation (CV), and the 

proposed simulation (AVCV) are outlined. The purpose 

of Figures 2-5 is to understand the asset volatility factor 

that influence and move asset prices. 

Also, in Figures 6-9 we see the performance of 

AVCV simulation in comparison to the other methods. 

For all calculations we used the following parameters: 

50, 50, 0.4, 0.1, 1 ( ).0S K r T one year    
 

 
Table 1: Comparison of simulation error 

Number 
of 

Simulation 

NMC 
simulation 

error 

AV 
simulation 

error 

CV 
simulation 

error 

AVCV 
simulation 

error 

1000 0.5879 0.3291 0.2526 0.2281 

2000 0.4126 0.2301 0.1793 0.1623 

4000 0.2862 0.1591 0.1346 0.1155 

8000 0.1962 0.1121 0.0984 0.0814 

16000 0.1379 0.0790 0.0724 0.0573 

32000 0.0974 0.0555 0.0544 0.0406 

 

Table 2: The option value by AVCV simulation, NRepl=10000 

Maturity 
 Time 

Strike price 
(K=30) 

Strike price 
(K=40) 

Strike price 
(K=45) 

Strike price 
(K=50) 

3/12 20.7501 11.4485 7.5714 4.6013 

6/12 21.5618 13.0515 9.5968 6.8172 

9/12 22.4137 14.5013 11.2846 8.6182 

12/12 23.2632 15.8197 12.7719 10.1942 

 

 

Fig. 2: 5000 discrete asset paths and final time histogram 
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Fig. 3: 5000 discrete asset paths and final timehistogram 

 

 

Fig. 4: 5000 discrete asset paths and final time histogram 

 

 

Fig. 5: 5000 discrete asset paths and final time histogram 

 

 

 

Fig. 6: Comparison of simulation schemes. 

 

 

Fig. 7: Comparison of simulation error by NMC, AV, CV, AVCV. 

 

 

Fig.8: Price of the European call option by AVCV simulation scheme. 
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Fig. 9: Price of the European call option by AVCV simulation scheme. 

 

VI. Conclusion 

In this paper, a new and efficient simulation scheme 

for European call or put option pricing based on the 

Monte Carlo algorithm and two variance reduction 

procedures is proposed. The simulation results show 

that AVCV algorithm is always a good candidate for 

variance reduction in the Monte Carlo simulation for 

European options pricing problem. 
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