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Abstract— Wireless Sensor Networks offer a powerful 

combination of distributed sensing, computing and 

communication. They lend themselves to countless 

applications and at the same time constrained by limited 

battery life, processing capability, memory and 

bandwidth which makes it soft target of malicious 

objects such as virus and worms. We study the potential 

threat for worm spread in wireless sensor network using 

epidemic theory. We propose a new model Susceptible-

Exposed-Infectious-Quarantine-Recovered with 

Vaccination (SEIQRS-V), to characterize the dynamics 

of the worm spread in WSN. Threshold, equilibrium 

and their stability are discussed. Numerical methods are 

employed to solve the system of equations and 

MATLAB is used to simulate the system. The 

Quarantine is a method of isolating the most infected 

nodes from the network till they get recovered and the 

Vaccination is the mechanism to immunize the network 

temporarily to reduce the spread worms. 

 

Index Terms— Wireless Sensor Network; Worms; 

Epidemic Model; Stability 

 

I. Introduction 

Wireless sensor networks are the emerging 

technology of this era. The network is composed of 

hundreds or thousands of self-powered tiny sensor 

nodes which gather information or detect special events 

and communicate via radio transmitter or receivers, 

with the end goal of handing their partially processed 

data to the base station [1]. Sensing, processing and 

communication in one tiny device gives rise to a vast 

number of applications such as environmental 

monitoring, target tracking, micro-surgery, home 

applications, virtual keyboards, monitoring disaster area, 

vehicle tracking etc. We focus on security of sensor 

network because it is vital to the acceptance of WSN in 

many applications. Thousands of sensor nodes are 

deployed without any topology overhead it can be 

placed one by one either by human or robot, or can be 

deployed by dropping from a plane. The major concern 

in WSN is that wireless signal cannot be control 

physically [2] and gives easy access to the attackers. 

The virus like CABIR [3] and MABIR [4] has ability to 

spread over the air interface, which make it possible to 

develop a worm for sensor network. Sensor network are 

densely deployed and exchange data via short range 

radio technology which helps worms to propagate 

without internet connection [5]. Thus, we require robust 

security mechanism that can defend sensor network 

against malicious attacks. The sensor nodes are 

distributed over the monitored region called sensor field 

as shown in the fig. 1. These scattered nodes are 

responsible for sensing and transmitting data to the base 

station. The base station communicates with the end 

user via internet or satellite [1].  

 

Fig. 1: Sensor nodes sense and exchange data of the monitored region 

 

The journey so far in the development of 

mathematical worm propagation has been studied using 

the epidemiological modeling [6-8,9,10] in which the 

disease status are divided into different compartments 

which is initiated by Kermack and McKendrick [11] 

and later extended by Bailey ,Anderson and May 

[12,13]. The SIS (Susceptible-Infected-Susceptible) and 

SIR (Susceptible-Infected-Recovered) models are 

highly applicable and suggested model, SIR model 

assumes that once a host recovers from the disease, it 

becomes immune forever while the SIS model has been 

used for diseases where repeat infections are common. 

Richard and Mark [14] have proposed an improved SEI 
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(Susceptible-Exposed-Infected) model to simulate virus 

propagation in peer to peer network. The SEIR model 

proposed by Yan and Liu[15] assume that the recovered 

hosts have a permanent immunization period with a 

certain probability, which is not consistent with real 

situation. Kermack and McKendrick classical SIR 

epidemic model [11] approach was applied to e-mail 

propagation schemes[10] and modification of SIR 

models generated guides for infections prevention by 

using the concept of epidemiological threshold [6-

8][16,17]. To overcome the limitation, Mishra and Saini 

[6] present a SEIRS model with latent and immune 

periods, which can reveal common worm propagation. 

Recently, more research attention has been paid to the 

combination of virus propagation models antivirus 

countermeasures to study the prevalence of virus, for 

example, virus immunization [18] and quarantine[9] 

have been introduced into such model. The classical 

models of Kermack and Mc Kendrick [11] have been 

further applied to specialised networks including sensor 

networks and ad hoc networks. Computer viruses and 

worms, and biological viruses show similarity regarding 

their self-replicating and propagation behaviors. The 

epidemic models are extensively used by researchers [5, 

10] to study the spread of malware in WSN. Some of 

the related applications of epidemic models in wireless 

environments have been discussed in the recent 

literature [20]. 

The paper is organized as follows: Section 1 deals 

with Introduction, epidemic model is developed in 

Section 2, Numerical simulations are performed in 

section 3, and finally the conclusion is given in section 

4.  

 

II. Seiqrs-V Epidemic Model 

We propose Susceptible -Exposed – Infectious – 

Quarantine-Recovered-Susceptible with Vaccination 

compartment (SEIQRS-V) to describe the dynamics of 

worm propagation with respect to time in WSN. We 

assume inclusion of new sensor nodes and crashing of 

the nodes due to the infection of worms or 

hardware/software failure. Initially we assume all the 

nodes in the sensor field to be susceptible towards 

worm infection. Before the sensor nodes become fully 

infectious its normal performance is affected like slow 

processing speed etc. such nodes are put into exposed 

compartment. The nodes having infectious behavior are 

address by dynamic quarantine where the most infected 

nodes are isolated from the network till they get 

recovered. Vaccinating the nodes in a group immunized 

them toward the worm infection and enabling guideline 

for typical active worm control. 

Let S(t), E(t), I(t), Q(t), R(t) and V(t) denote the 

number of Susceptible, Exposed, Infectious, Quarantine, 

Recovered , Vaccinated  nodes at time t  respectively. 

Assume N(t) = S(t) + E(t) + I(t) + Q(t) + R(t) + V(t)  

for all t. 

Where  the inclusion of new sensor node in the 

population, d is the mortality rate of the sensor nodes 

due to hardware/software failure,   is the crashing rate 

due to attack of malicious objects,  is the infectivity 

contact rate,  is the rate of transmission from E-class to 

I-class,  is the rate of transmission from I-class to Q-

class,  is the rate of transmission from I-class to R-

class,  is the rate of recovery,  is the rate of transfer 

from R-class to S-class,  is the rate of transmission 

from V-class to S-class,  is the vaccinating rate 

coefficient for the susceptible nodes. 

 

Fig. 2: Schematic diagram for the flow of worm in sensor network 

 

The system of differential equations as per our 

assumptions, which is depicted in fig. 2, is given as: 

 
dS

dt
=  − βSI − (σ + d)S + εR + ρV  

 
𝑑𝐸

𝑑𝑡
= 𝛽𝑆𝐼 − (𝛾 + 𝑑)𝐸  

 
𝑑𝐼

𝑑𝑡
= 𝛾𝐸 − (𝛼 + 𝜑 + 𝑑 + 𝛿)𝐼                                  (1) 

 
𝑑𝑄

𝑑𝑡
= 𝛼𝐼 − ( + d + δ)Q  

 
𝑑𝑅

𝑑𝑡
= 𝜑𝐼 + Q − (ε + d)R  

 
𝑑𝑉

𝑑𝑡
= 𝜎𝑆 − (𝑝 + 𝑑)𝑉  

 

Now, the total population size is,  
𝑑𝑁

𝑑𝑡
= − 𝑑𝑁 − 𝛿𝐼 

In the absence of attack, the population size of the 

node approaches the carrying capacity  𝐴/𝑑 . The 

differential equation for N implies that solution of (1) 

starting in the positive orthan R+
6   approaches, enter or 

remain in the epidemiologically meaningful subset. 

 

𝐷 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝑉)/(𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝑉) ≥ 0, 𝑆 + 𝐸 +
𝐼 + 𝑄 + 𝑅 + 𝑉 ≤ 𝐴/𝑑}  

Thus, it suffices to consider solutions in region D. 

Solution of the initial value problem starting in D and 

defined by (1) exist and are unique on maximal interval 

[21]. Since solution remain bounded in the positively 

invariant region D, the maximal interval is(0,∞). Thus, 
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initial value problem is well posed both mathematically 

and epidemiologically. 

 

2.1 Existence and Stability of Equilibrium 

The system has two possible equilibria in D where, 

𝐷 = {(𝑆, 𝐸, 𝐼, 𝑄, 𝑅, 𝑉) ∈ 𝑅+
6 ∶ 𝑆 + 𝐸 + 𝐼 + 𝑄 + 𝑅 +

𝑉 ≤ 𝑁}.  

The disease free equilibrium for worm free state 

E0 = (
(ρ+d)

d(ρ+σ+d)
, 0 , 0 , 0 , 0 ,

σ

  (ρ+d)(σ+d)
− σρ)   

If   𝑅0 > 1 , then D contains a unique positive, 

endemic equilibrium E∗= (S∗, E∗, I*, Q* 
, R*

, V*)   

Where,  

S∗ =
θ(γ + d)

βγ
 

 

𝐸∗ =
(𝛼 + 𝜑 + 𝑑 + 𝛿)( + d + δ)(ε + d)

γ{φ(( + d + δ) + α}γε − 𝜃(𝛾 + 𝑑)( + d + δ)(ε + d)
 [
𝜃(𝛾 + 𝑑)

β
{(σ + d) −

ρσ

ρ + d
} − γA] 

 

𝐼 ∗=
( + 𝑑 + 𝛿)(𝜀 + 𝑑)

φ( + d + δ) + α}γε − 𝜃(𝛾 + 𝑑)( + d + δ)(ε + d)
[
𝜃(𝛾 + 𝑑)

β
{(σ + d) −

ρσ

ρ + d
} − γA] 

 

𝑄 ∗=
𝛼( + 𝑑 + 𝛿)(𝜀 + 𝑑)

( + d + δ){φ( + d + δ) + α}γε – 𝜃(𝛾 + 𝑑)( + d + δ)(ε + d)
[
θ(𝛾 + 𝑑)

β
{(σ + d) −

ρσ

ρ + d
} − γA] 

 

𝑉∗ =
𝜎

𝜌 + 𝑑
∗

𝜃(𝛾 + 𝑑)

𝛽𝛾
 

Where θ=(𝛼 + 𝜑 + 𝑑 + 𝛿) 

Thus, we have:    𝑁∗=𝑆∗+𝐸∗+𝐼∗ + 𝑄 ∗ +𝑅∗ +𝑉∗ 

 

2.2 The Basic Reproduction Number (R0) 

It is defined as the expected number of new cases of 

infection caused by a typical infected individual. It can 

be obtained by calculating V and F, where V is the rate 

of transfer of nodes inside and outside of the infectious 

compartment and F be the rate of new infection in 

compartment. Hence, by the equations we obtain, 

V=[

−(γ + d) 0 0

γ −(α + φ + d + δ) 0

0 α −( + d + δ)
] 

F=  [
0 𝛽 0
0 0 0
0 0 0

] 

The basic reproduction number is defined as the 

dominant Eigen value of F𝑉−1 that is,  

R0 =  
βγ

(γ+d)(α+φ+d+δ)
 

 

2.3 Stability of the Worm Free Equilibrium State 

To get the stability of the worm free equilibrium state, 

the Jacobian matrix, of the system (1) that is: 

 

J= 

[
 
 
 
 
 
 
 −(σ + d) 0 −

β(+d)

d(++d)
0 ε ρ

0 −(γ + d)
β(+d)

d(++d)
0 0 0

0 γ −(α +  + d + δ) 0 0 0

0 0 α −( + d + δ) 0 0

0 0 φ  −(ε + d) 0

σ 0 0 0 0 −(ρ + d)]
 
 
 
 
 
 
 

                                (2) 

 

The Eigen values of (2) are: 

−(σ + d) , −(γ + d) , −(α +  + d + δ) ,  −( + d +
δ), −(ε + d),  −(ρ + d)  

Which all are negative hence the system is locally 

asymptotically stable at worm free equilibrium point E0. 

Lemma 1: If R0 1, the worm free equilibrium point 

E0 is locally asymptotically stable. If R0=1, E0 is stable. 

If R0>1, E0 is unstable. 

Let,  

∞=limt→∞  inf𝜃≥t  (𝜃), 

∞=limt→∞sup𝜃≥t (𝜃) 
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Lemma 2: Assume that a bounded real valued 

function :[0,∞]→R be twice differentiable with 

bounded second derivative. Let k→∞ and (tk) 

converges to ∞ to ∞  then, limk→∞ `(tk) =0 

 

Theorem 1: if R0<1 then worm free equilibrium E0 is 

globally asymptotically stable. 

Proof: From the system (1) we have, 

dS

dt
≤ −

d(p + σ + d)

p + d
S 

A solution of the equation   
dX

dt
≤  −

d(p+σ+d)

p+d
X  is a 

super solution of S(t). 

Since X(t)→
(p+d)

d(p+σ+d)
  as t→∞, then for given ∈>0,  

such that 

S(t) ≤ X(t)≤ 
(p+d)

d(p+σ+d)
 +∈ , for t ≥ t0 

Thus, S∞ ≤  
(p+d)

d(p+σ+d)
+∈ 

Let ∈→0 then S∞ ≤ (p+d)

d(p+σ+d)
 

Similarly the second equation of the system (1) can 

be expressed as 

 
dE

dt
= βI (

(p+d)

d(p+σ+d)
) − (γ + d)E                       (3) 

 

Using this the 3rd and 4th equation of the system(1) 

we have, 

[
Ė
İ
Q̇

] ≤ P [
E
I
Q
]         , where 

 

ρ =  [

−(γ + d) β (
(p+d)

d(p+σ+d)
) 0

γ −(α + φ + d + δ) 0

0 α −(+ d + δ)

]                                                   (4) 

 

let M ∈ R+, such that  

M > max{(γ + d), (α + φ + d + δ), ( + d + δ)} . 

Thus, ρ+MI3×3 is a strictly positive matrix where I3x3 

is an identity matrix. If ω1, ω2, ω 3 are the Eigen value 

of ρ, then ω1+M, ω2+M, ω3+M are the Eigen value of 

ρ+MI3×3. Thus, from the Perron-Frobenius theorem[22], 

ρ+MI3 has a simple positive Eigen value equal to 

dominant Eigen value and corresponding Eigen vector 

e>0, which implies that, ω1, ω2 and ω3  are real. If ω1+M 

is the dominant Eigen value of ρ+MI3x3, then ω1> ω2 

and ω1> 3, and eρ=eω1. Obviously ω1, ω2 and ω3 are the 

roots of equation. 

 

ω2 + (2d + + +  + +)ω + (+ d)(α +φ + d + ) − (
γβ[(p+d)]

d(p++d)
) = 0                      (5) 

 

Since R0<1 for ∈>0, sufficiently small, we have,  

(γ + d)( +  + d + ) − (
γβ[(p+d)]

d(p++d)
) > 0 

Therefore coefficients of the quadratic equation (5) 

are positive. 

Thus ω1, ω2 and ω3 are negative. So from equation (4) 

for t≥t0 

d

dt
(e. [E(t), I(t), Q(t)]) ≤ ω1. e[E(t), I(t), Q(t)] 

Integrating the above inequality, we get, 

0≤ e. [E(t), I(t), Q(t)] ≤
e. [E(t1), I(t1), Q(t1) ]e

ω1(t−t1)   , for t ≥ t1 ≥ t0. 

Since ω1<0, .[E(t1),I(t1),Q(t1)]→0 as t→∞ 

Using e>0, we have, 

[E(t), I(t), Q(t)]→(0,0,0) as t→∞ 

 

By Lemma 2, we choose a sequence 

tn→∞ , Sn→∞(n→∞),  such that 

S(Sn)→S∞, S(tn)→S∞ , S(Sn)→0, S(tn)→0 

Since E(t),I(t)→Q(t)→0 as t→∞, thus from the first 

equation of system (1) ,We have, 

limn→∞S(t)= 
A(p+d)

d(p+σ+d)
 

Hence by incorporating lemma 1, the worm free 

equilibrium E0 is globally asymptotically stable, if R0<1. 

 

III. Numerical Results 

We present the numerical result using Runge-Kutta 

Fehlberg method of order 4 and 5. The network is 

assumed to have initial values: S=100; E=3; I=1; R=0; 

Q=0; V=0. Fig. 3 shows the behavior of susceptible, 

exposed, infectious, recovered, quarantine and 
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vaccination class with respect to time. From Fig. 3 we 

observed that the system is asymptotically stable. 

 

Fig. 3: Dynamical behavior of the system for different classes when 

 =.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4 

 

Fig. 3 shows a powerful impact of vaccination class 

over exposed, infectious and quarantine class. As 

expected, over time I(t) first increases gradually as the 

R(t) capacity increases the infection become smaller. 

Fig. 4 shows V(t) class, if parameters are well taken 

into account, we observe the impact of vaccination will 

be strong. Fig. 5 shows the analysis of R(t) class we 

observe the recovery rate is very high under different 

setting of parameter. 

 

Fig. 4: Dynamical behavior of vaccination class with respect to time 

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4; 

(2)=.1; β=.1; σ=0.2;d=0.003;φ=.4; ε=0.3; 

ρ=0.04;γ=0.3;α=.1;δ=0.2;=0.4; 

(3)=.1; β=.1; σ=0.1;d=0.003;φ=.4; ε=0.3; 

ρ=0.02;γ=0.3;α=.1;δ=0.2;=0.4; 

 

Fig. 5: Dynamical behavior of recovered class with respect to time 

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(2)=.1; β=.1; σ=0.3;d=0.003;φ=.43; ε=0.33; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(3)=.1; β=.1; σ=0.3;d=0.003;φ=.46; ε=0.39; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

 

Fig. 6 shows the relationship between of I(t) and R(t) 

class under different setting of parameters, we observe 

from the fig. 6 that the recovery is very high. The effect 

of Q(t) is observed on different classes as depicted in 

fig. 7. Quarantine plays an important role in the 

recovery of the nodes. The quarantine nodes are treated 

with anti-malicious software and kept under constant 

observation 

 

Fig. 6: Dynamical behavior of recovered class versus infectious class 

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4,  

(2)=.1; β=.1; σ=0.3;d=0.003;φ=.42; ε=0.33; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4,   
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(3)=.1; β=.1; σ=0.3;d=0.003;φ=.44; ε=0.35; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4,   

(4)=.1; β=.1; σ=0.3;d=0.003;φ=.46; ε=0.37; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4,   

(5)=.1; β=.1; σ=0.3;d=0.003;φ=.48; ε=0.39; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4, 

 

 

Fig. 7: Effect of Qarantine class on  different classes when 

=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4 

 

Fig. 8 shows the effect of Q(t) and R(t) class under 

different setting of parameter. As the quarantine rate 

increases R(t) rate increases quickly. Fig. 9: shows the 

relation between Q(t) over I(t) class. When the nodes 

are highly infected by different malicious objects, 

quarantine is one of the remedy. 

 

Fig. 8: Dynamical behavior of quarantine vs recovered class   

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4 

(2)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.5; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.6 

(3)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.7; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.8 

 (4)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.9; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=1  

(5)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=1.1.; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=1.2 

 

 

Fig. 9: Dynamical behavior of Infectious vs quarantine class  

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(2)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.5;α=.3;δ=0.2;=0.4  

(3)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.7;α=.5;δ=0.2;=0.4  

(4)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.9;α=.7;δ=0.2;=0.4  

(5)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=1.1;α=.9;δ=0.2;=0.4 
 

 

Fig. 10: Dynamical behavior of the recovered vs susceptible classes 
when  

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4,   
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(2)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(3)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(4)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4 

 

Fig. 10 shows the transfer of nodes from R(t) to S(t) 

class. As time passes, S(t) decreases gradually to zero. 

Which does not imply network failure; it implies that as 

the recovery rate increases the susceptibility towards 

infection decreases. The dynamical behavior of 

vaccinated class of nodes versus susceptible class of 

nodes is depicted in figure 11. As the rate of vaccination 

increase the susceptibility towards the attack of worm 

decreases.  

 

Fig. 11: Dynamical behavior of vaccinated class vs susceptible class 

when  

(1)=.1; β=.1; σ=0.3;d=0.003;φ=.4; ε=0.3; 

ρ=0.06;γ=0.3;α=.1;δ=0.2;=0.4  

(2)=.1; β=.1; σ=0.6;d=0.003;φ=.4; ε=0.3; 

ρ=0.09;γ=0.3;α=.1;δ=0.2;=0.4  

(3)=.1; β=.1; σ=0.9;d=0.003;φ=.4; ε=0.3; 

ρ=0.12;γ=0.3;α=.1;δ=0.2;=0.4  

(4)=.1; β=.1; σ=0.12;d=0.003;φ=.4; ε=0.3; 

ρ=0.15;γ=0.3;α=.1;δ=0.2;=0.4 

 

IV. Conclusion 

The proposed SEIQRS-V model captures both the 

spatial and temporal dynamics of worms spread process. 

Reproduction number (R0), equilibria, and their stability 

are also found. If R0<1 the worm free equilibrium (E0) 

is globally stable in the feasible region and the disease 

always dies out. If R0>1, a unique endemic equilibrium 

E* exists and is locally asymptotically stable. 

Verification and validation of our model parameter has 

been analyzed by simulating the system. The model 

addresses the worm containment based on the dynamic 

quarantine on the node in a group that has exhibited 

highly infectious behavior. By Quarantine we achieve 

fast recovery and end the susceptibility of spread of 

infection to benign nodes. By vaccinating the nodes in a 

group immunized them toward the infection and 

enabling guideline for typical active worm control. The 

study will be helpful to the software organization in 

developing efficient antivirus for sensor network.  
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