
I.J. Information Technology and Computer Science, 2014, 02, 1-13
Published Online January 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.02.01

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based

Object Oriented Software

Surbhi Maggo

Jaypee Institute of Information Technology, Noida, India

E-mail: surbhi.maggo@gmail.com

Chetna Gupta

Jaypee Institute of Information Technology, Noida, India

E-mail: chetnagupta04@gmail.com

Abstract— Software reuse refers to the development of

new software systems with the likelihood of completely

or partially using existing components or resources with

or without modification. Reusability is the measure of

the ease with which previously acquired concepts and

objects can be used in new contexts. It is a promising

strategy for improvements in software quality,

productivity and maintainability as it provides for cost

effective, reliable (with the consideration that prior

testing and use has eliminated bugs) and accelerated

(reduced time to market) development of the software

products. In this paper we present an efficient

automation model for the identification and evaluation

of reusable software components to measure the

reusability levels (high, medium or low) of procedure

oriented Java based (object oriented) software systems.

The presented model uses a metric framework for the

functional analysis of the Object oriented software

components that target essential attributes of reusability

analysis also taking into consideration Maintainability

Index to account for partial reuse. Further machine

learning algorithm LMNN is explored to establish

relationships between the functional attributes. The

model works at functional level rather than at structural

level. The system is implemented as a tool in Java and

the performance of the automation tool developed is

recorded using criteria like precision, recall, accuracy

and error rate. The results gathered indicate that the

model can be effectively used as an efficient, accurate,

fast and economic model for the identification of

procedure based reusable components from the existing

inventory of software resources.

Index Terms— LMNN; Machine Learning; Metric;

Procedure Oriented; Reusability

I. Introduction

The role of computer software has changed

significantly over past 50 years. A society that is highly

dependent on software and increasingly intolerant of

software failures has placed immense pressure on

software professionals for the development of more and

more sophisticated and complex software systems. The

growth in the expected sizes of software systems

required is exponential, even with the rise in the number

of computer professionals and the rise in technology

that provides for improved hardware and computing

performance and vast increases in memory and storage

capacity, it has become difficult to keep the rise in

software productivity in pace with the high demands for

even more complex systems and maintenance of the

existing software. Several decades of intensive research

in fields of software engineering left software reuse as

the only realistic and technically feasible approach to

bring about the desired improvements in quality and

productivity required by the software industry.

Software reuse, although simple in concept (creation

of new software systems using the existing software

artifacts), it offers a great deal of potential in terms of

software productivity and software quality [1]. The

formal idea of software reuse instituted the development

of industry of reusable software components and the

industrialization of the production of application

software from off-the-shelf components, as proposed by

Mcllory in [2]. Not only is reuse a promising strategy

for increasing quality and productivity in the software

industry, but a good software reuse process also

provides for increased reliability and dependability,

reduced process risk, decreased cost of implementation

and time to market (accelerated development), effective

use of specialist and standard compliance [3].

Reusability also increases the likelihood that prior

testing and use has eliminated bugs thus delivering error

free software codes. Thus it can be stated that software

reusability is a measure of the ease with which

2 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

previously acquired concepts and objects can be used in

new contexts [4]. The measure of this ease of reuse

depends on certain attributes that make a software

artifact/asset less or more reusable. Certain attributes

that increase the likelihood of reusability of a

component include high cohesion, loose coupling,

modularity, ease of understanding and modification,

separation of concerns and information hiding, proper

documentation and low complexity [5].

For a long time since the introduction of the concept

of reuse, source code was considered the only software

artifact that can be reused. Recently other software

products like algorithms, estimation templates,

requirements, plan and design, documentation, human

interface, user manuals and test suites etc are being

considered for reuse [6]. Software reusability has been

an active area of research in software engineering over

the past 35 years but challenges and open questions still

exists. Even with all the perceived benefits there are a

number of risks and challenges associated with

reusability like increased maintenance costs, lack of

tool support, not-invented-here-syndrome [4], creating

and maintaining a component library and finally finding,

understanding and adapting reusable components.

Reusing a non reusable component may cause severe

loss in terms of time, cost and effort. Many researchers

have worked to reduce the risks associated with reuse

and make it faster, easier, more systematic, and an

integral part of the normal process of programming. At

the time of conception of reuse and its application in

software industry researchers came up with a number of

empirical methods of measuring reusability of

components based on different versions of complexity

and other metrics as mentioned in related work.

Although the focus of current research in the field of

software reuse is to establish meaningful relationships

between these metrics (reusability attributes) in order to

generate reliable functions that can efficiently evaluate

the reusability levels and identify reusable components.

Domains like data mining, machine learning, neural

networks etc. are very useful in generating such

functions. A tabular representation of many such

proposed metrics and measures from literature is

presented in section 2.

The presented work aims to systematize and ease

software reusability process and reduce the risks

associated with it by providing for an efficient

automation model for software reusability prediction.

The presented approach works for the identification and

evaluation of software components to measure the

software reusability levels (low, medium and high) of

function based object oriented software systems. It uses

a metric framework for the functional analysis of the

object oriented software components that target

essential attributes for reusability prediction also taking

into account Maintainability Index (MI) to account for

partial reuse as well. Further machine learning is

explored to establish relationships between the

functional attributes. The model works at functional

level rather than at structural level. The performance of

the automation tool developed namely, Java based

Reusability Prediction Model using LMNN (JRPML), is

recorded using criteria like precision, recall, accuracy

and error rate. The results gathered indicate that the

model can be effectively used as an efficient, accurate,

fast and economic model for the identification of

procedure based reusable components from the existing

inventory of software resources.

The remaining paper is organized as follows: In the

next section, related work is presented. Problem

formulation and proposed automation model,

methodology is described in section 3 and 4

respectively. In section 5 we present some experimental

results of proposed JRPML tool implemented in Java.

Section 6 presents comparison results of JRPML with

other existing approaches including metrics used,

technique used results of precision, recall, accuracy and

classification error values etc. Section 7 discusses the

application of proposed approach and finally section 8

presents the conclusion.

II. Related Work

Over the years, various attempts have been made in

the field of measuring reusability to help developers

identify reusable software components. The initial era

of research, provided for a number of empirical

approaches in the form of metrics and metric suites for

reusability measurement. Although this trend has

changed over last 5-7 years and concepts like data

mining, machine learning, neural networks etc have

come into picture, that have helped in better and more

efficient identification of reusable components by

generating functions that establish meaningful

relationships among various reusability attributes.

These domains use the earlier proposed metrics as the

basis of reusability prediction and further generate

functions wherein these metrics collectively work

towards the determination of reusability. A

summary/list of the earlier proposed empirical models

approaches and recently researched upon intelligent

approaches has been presented in Table 1 above.

The metrics presented in Table 1 use objective and

quantifiable software attributes as their basis. Prieto-

Diaz and Freeman [7] proposed 4 module-oriented

metrics: program size, structure, documentation and

language and a fifth metric named reuse experience to

modify the first four. Selby [8] in his study identified a

number of reusability characteristics like simple

interface, less input – output etc, using data from a

NASA software environment. Chen and Lee [9]

developed 130 reusable C++ components and

performed a controlled experiment using these to relate

quality and level of reuse. Caldiera and Basili [10]

provided for 4 metrics namely Cyclomatic complexity,

Halstead’s program volume, Regularity metric and

Reuse frequency that help in quantifying reusability

 A Machine Learning based Efficient Software 3

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

attributes. The ESPRIT-2 project [11] REBOOT (Reuse

Based on Object-Oriented Techniques) developed a

taxonomy of reusability attributes. It listed four

reusability factors, a list of criteria for each factor, and a

set of metrics for each criterion. Three approaches;

function, form and similarity were presented by Hislop

[12] for evaluating software.

Table 1: Summary of proposed Approaches

Empirical Metric Based

Approaches

Recent Intelligence Based Approaches

Metric Used Algorithm Used Proposed By

Prieto-Diaz and Freeman[7]
Selby[8]

Chen and Lee[9]

Caldiera and Basili[10]
REBOOT[11]

Hislop[12]
Boetticher and Eichmann[13]

Torres and Samadzadeh[14]

Mayobre[15]
US Army Reuse Centre [16]

CB[10]
CK[17]

CB

CB
CB

S/W Metric[18]
CK

CK

S/W Metric[19]
S/W Metric[20]

Neural Network
Hybrid k-Means & Decision Tree

SVM

k-NN
DBSCAN

Hierarchical
Fuzzy Neuro

k-Means

Expectation Maximization
k-Means

Manhas et al. [21]
Shri et al. [22]

Kumar [23]

Cheema et al. [24]
Saini et al. [25]

Czibula et al. [18]
Sandhu et al. [26]

Sandhu et al. [27]

Goel et al. [19]
Kanellopoulos et al.[20]

Boetticher and Eichmann [13] trained a neural

network to mimic set of human evaluators and

generated 250 code parameters for reusability

assessment. Torres and Samadzadeh [14] examined

effects of information theory metrics: entropy loading

and control structure entropy on software reusability.

Mayobre [15] described Code Reusability Analysis

(CRA) for the identification of reusable work products

in existing code. CRA uses three methods: Caldiera and

Basili [15], Domain Experience Based Component

Identification Process (DEBCIP) and Variant Analysis

Based Component Identification Process (VABCIP) for

reusability assessment. The Army Reuse Center (ARC)

inspects all software submitted to the Defense Software

Repository system (DSRS) [16].

The reusability evaluations [16] under the inspection

include 31 metrics in the initial stage and around 150 in

the final stage. In recent years a number of intelligent

system models have been proposed for reusability

evaluation. Manhas et al. [21] used functional metrics

proposed by Caldiera and Basili (CB) along with a

number of back propagation based neural network

algorithm and provided for their comparative results. A

similar Neuro fuzzy approach was used by Sandhu et al.

[26] on structural Chidamber and Kemerer (CK) metric

suite. Sandhu et al. [27] also proposed the use if basic

clustering algorithm k-Means for faulty module

prediction again using the structural CK metric suite as

the basis. A hybrid of the basic k-Means along with

decision tree for reusability evaluation was presented by

Shri et al. [22] in their research. The presented model

was more efficient in comparison to the basic k-Means

algorithm. A metric framework along with k-Means

was employed by Kanellopoulos et al. [20] for

evaluating the maintainability and hence reusability of

OO software systems. The proposed solution was semi

automated as the parsing engine extracted the data from

the source code and stored them on a database.

Caldiera and Basili metric suite provided for the

functional analysis in numerous works. Cheema et al

[24] and Kumar et al. [23] used the suite along with k-

NN clustering algorithm and support vector machine

(SVM) respectively in their proposed models.

Appreciable accuracy rates were achieved by Cheema et

al. [24], while those with SVM depended upon the

training set. Saini et al. [25] also used the metric suite

along with DBSCAN (Density Based Spatial Clustering

of Applications with Noise). It highlighted the concept

of density of components as important for reuse

evaluation. Although few of the proposed approaches

have presented satisfactory results but none of them

presents a reliable and completely automated solution

for the evaluation and identification of reusable

components as is done by the JRML model presented.

III. Problem Formulation

Software reuse not only improves productivity but

also enhances the quality, reliability and maintainability

of the software products/components. Reuse acts as a

major boon for software development organizations as

it makes the software development process cost and

time efficient, while helping the organizations deliver

almost error free codes to its clients without much effort,

as the code is already tested many times during its

earlier reuse [24] . For the organizations, where the

concept of software reuse has not been realized yet,

there are two possible approaches towards software

reuse: a) to develop codes from scratch that can be

reused at a later stage, b) to identify and further extract

reusable code snippets/components from the already

existing inventory of resources. But there exists an

additional cost required for the development of reusable

software components from scratch that can be used to

build and strengthen their software reservoirs. This

extra cost can be avoided by employing the second

approach towards software reusability, of identifying

reusable components from existing resources. A number

of metrics and measures have been proposed in

4 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

literature for evaluating the reusability levels of a

component as discussed in section (related work). But

the issue of how these metrics and measures

collectively determine the reusability levels is relatively

less explored and is still in need of an efficient and

reliable automated solution.

In this paper we propose an efficient prediction

model for the identification of reusable software

components that is based upon software metrics that

target function oriented components and a statistical

machine learning based clustering approach (LMNN:

Large margin nearest neighbor) to map relationships

among the reusability metrics and attributes. The

learning process followed by the model makes the

prediction far more accurate and efficient, providing for

promising results in predicting reusability levels.

Software engineers can thus use this Java based model

for efficient identification of procedure based reusable

components which works at functional level rather than

at structural level for predicting efficient and precise

reusability levels of function oriented object oriented

software.

IV. Solution Framework

The proposed solution framework for the reusability

evaluation model is presented in Fig. 1 below. The

solution framework presented in the paper constitutes of

three basic modules as follows:

Module1: Analyzer - The process starts with Metric

selection, which provides the analyzer module with the

appropriate metrics that are to be calculated for the

reusability prediction model. The reusability prediction

model presented in the paper attempts to select metrics

that characterize reusability attributes either by directly

providing a measure for them or indirectly through

measures of evidence of an attribute’s existence. These

reusability attributes that are responsible for making a

component reusable in another system is its quality, low

reuse cost and its significant functional usefulness in the

context of the application domain. The prediction model

is based on the automation of the selected metrics in

order to generate values of these metrics for the

software components under test. A set of acceptable

values is defined for each of the metrics. These values

can be either simple ranges of values (measure is

acceptable between al and a) or more sophisticated

relationships among different metrics.

The five metrics selected for our approach are,

Cyclomatic complexity, Halstead Software Science

Indicator, Regularity Metric, Reuse Frequency and

Maintainability Index. All these metrics produce values

that are interpreted by various researchers in different

ways for predicting reusability values [10, 28].

Table 2 below presents the reusability attributes

namely, Usefulness, quality and cost along with the

factors that influence these attributes. In the table below,

with all the factors under each reusability attribute,

there are associated metric measures. These metrics

directly measure the factor or indirectly predicts the

likelihood of its presence at functional level. In this

paper we have taken maintainability index to gather

precise values for reusability.

Fig. 1: Solution Framework

Stores

Precise and Accurate Predicted

Reusability levels (Low, Medium,

High)

Clusters

Reads

Reusability Metrics (CC,

HPV, RM, RF, MI*)

Predicts Reusability Levels

(Low, Medium, High)

Classifies and forms

clusters

Reads

Reads

Reads

GUI Analyzer

Classifier

Predictor

Compiler

DB1

DB2

DB3

Source Code

User

 A Machine Learning based Efficient Software 5

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

Table 2: Factors influencing Reusability

Reusability Attribute Metric Measures

Usefulness

Variety of Functions

Commonality of Functions

 -Within a System
 -Within a Domain

 -Overall

Cyclomatic Complexity,

Regularity Metric

Reuse Frequency

Reuse Frequency

Quality

Ease of Modification
Correctness

Testability
Readability

Performance

 -Time
 -Space

Maintainability Index
Halstead Volume

Cyclomatic Complexity

Maintainability Index

Maintainability Index

Cost

Packaging

Use in New System

 -Retrieval
 -Integration

 -Modification

Extraction

- Identification

- Qualification

Cyclomatic Complexity,

Halstead Volume

Regularity Metric

Halstead Volume, Regularity Metric,

Maintainability Index

Halstead Volume
Halstead Volume

Here in our presented reusability evaluation model

we investigate and use maintainability index as our fifth

metric to account for maintenance efforts in case of

partial reuse. MI is an effective way of assessing

software thereby identifying and quantifying software’s

maintainability as it provides an excellent guide to

direct human investigation and identifies components

with designs closer to problem domain and greater

reliability and readability thus having a positive impact

on reusability of such software components [28]. Using

MI in the presented system helps in the identification of

reusable software components that are not only

applicable for direct reuse but can also be reused

partially or after modifications with ease and in a very

cost and time effective way.

The five selected metrics for the reusability

evaluation model are described in detail in the

following section.

1) Cyclomatic Complexity – It is software metric

that indicates the complexity of a program using its

control flow graph. According to Mc Cabes [29], the

value of Cyclomatic Complexity (CC) can be obtained

using the following equation:

CC=Number of Predicate Nodes+1 (1)

Number of predicate nodes in the equation 1 refer to

the decision nodes in the component code such as if-

else, for, while statements

2) Halstead Software Science Indicator –

According to this metric volume [30] of the source code

of the software component is expressed in the following

equation:

Halstead Volume = N1+N2log2(η1+ η2) (2)

where, η1 is the number of distinct operators that

appear in the program, η2 is number of distinct

operands that appear in the program, N1 is the total

number of operator occurrences and N2 is the total

number of operand occurrences.

3) Regularity Metric [10] - The notion behind

Regularity is to predict length based on some regularity

assumptions. Regularity is the ratio of estimated length

to the actual length. As actual length (N) is sum of N1

and N2. The estimated length is shown in the following

equation:

Estimated Length = N’= η1log2 η1+ η2log2 η2 (3)

The closeness of the estimate is a measure of the

Regularity of Component coding is calculated as:

Regularity = 1 – {(N-N’)/N} = N’/N (4)

4) Reuse Frequency – Reuse frequency is

calculated by comparing number of static calls

addressed to a component with number of calls

addressed to the component whose reusability is to be

measured.

 (5)

5) Maintainability Index – Maintainability Index

is a software metric which measures how maintainable

(easy to support and change) the source code is. The

maintainability index is calculated as a factored formula:

MI = 171-5.2*ln(V)-0.23*(G)-16.2*ln(LOC) (6)

where MI refers to the maintainability index and ln

refers to natural logarithm function. LOC is the lines of

Codes, G is Cyclomatic complexity and V is volume of

code.

The Analyzer modules takes input from the GUI and

generates the values of the metrics for the five selected

metrics for all the software components taken from the

input system provided. For the first two metrics i.e.

Cyclomatic Complexity and Halstead Program Volume,

the values generated do not have any specified range, as

they directly depend on the component size. Hence for

the analysis of these metrics required for the further

processing of the system model, it is required to

normalize these values to bring them to a particular

range. Here we have normalized them to a range of 0-10.

The values for other three metrics - regularity metric,

6 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

reuse frequency and maintainability index, already lie in

a pre defined range i.e. 0-1 for regularity and reuse

frequency and 0-100 for maintainability index.

Module 2: Classifier - We use a statistical machine

learning [31] algorithm named Large Margin Nearest

Neighbor (LMNN)[33] to classify the components into

different reusability levels (low, medium or high) on the

basis of the values of the metrics generated for the

components under the previous module. The algorithm

is a variant of k-NN i.e. k Nearest Neighbors[33] that

provides for better accuracy as compared to the basic k-

NN. The accuracy of the k-NN classification depend

significantly two factors: 1) On the metric used to

compute the distances between two points (here two

software components, with distances being the

differences in their respective reusability metrics), 2)

On the population of the examples of each class present

in the sample space. LMNN is based on pseudo learning

designed for k-Nearest neighbor classification. This

pseudo learning works on the factors affecting k-NN’s

accuracy using the Mahalanobis metric. The

Mahalanobis metric [34] can be viewed as a global

linear transformation of the input space that precedes k-

NN classification using Euclidean distances. In this

approach, the metric is trained with the goal that the k -

nearest neighbors always belong to the same class while

examples from different classes are separated by a large

margin. Fig. 2 from [32] presents a schematic

illustration of LMNN. The Mahalanobis distance metric

is obtained as the solution to a semi-definite program

[35]. On several data sets of varying size and difficulty,

the metrics trained in this way lead to significant

improvements in k-NN classification. Sometimes these

results can be further improved by clustering the

training examples and learning an individual metric

within each cluster.

Fig. 2: LMNN Schematic Illustration [33]

LMNN improves the basic Euclidian Metric and

adjusts the distances of a point with its neighbors

depending on the similarity or dissimilarity of the class

labels, thus improving the efficiency and accuracy of

the reusability prediction results, reducing the risks

associated with incorrect reusability predictions.

Literature presents a number of metrics [36] for

reusability prediction and evaluation that reckon

different reusability attributes, but for more precise and

exact evaluation of reusability we need to take all

reusability attributes into consideration. Hence it is

highly required to establish functions that provide for

meaningful relationships among these attributes for

reusability prediction. The presented classification

algorithm helps us develop these relationships, and with

its pseudo learning based training approach it makes the

analysis and relation establishment easier. It not only

makes the evaluation process easy and fast but also very

efficient.

Module 3: Reusability Predictor – The output

reusability levels for the software components identified

are evaluated on the basis of the classification done

using LMNN in the module 2. Now we use confusion

matrix [37] in order to assess the results generated by

the statistical machine learning algorithm implemented.

Confusion matrix (summarized in Table 3 below) is an

important tool for evaluating the prediction results as it

presents the results in an easy to understand way and

make it account for the effects of wrong predictions. To

evaluate the efficiency and accuracy of our presented

model we have generated the confusion matrix and

following four parameters have been calculated for the

generated confusion matrix:

Table 3: Reusability Prediction [37]

Parameter Remarks Formula

Precision

It is the fraction of

components identified by
the system that are

relevant.

Precision = True

Positive/ (True
Positive + False

Positive)

Recall

It is the fraction of

relevant components that

the system could identify.

Recall = True

Positive/ (True
Positive + False

Negative)

Accuracy

The percentage of the

predicted values that
match with the expected

values of the reusability

for the given data.

Accuracy = (Correctly
Classified/ Total

Classified)*100

Classification

Error

The percentage of the
predicted values that does

not match with the

expected values of the
reusability for the given

data.

Classification Error =

(Incorrectly

Classified/ Total
Classified)*100

High accuracy, high precision, high recall and low

classification error value represents the best system.

V. Result Observation and Discussion

Following steps were followed for collection of

relevant data in this study. The implementation of the

tool is done in Java using NetBeans IDE 7.0.1. For the

proposed model (reusability evaluation tool) data

 A Machine Learning based Efficient Software 7

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

collection is done for over 175 object oriented code

fragments. The tool provides GUI based interface for

interaction with the user. User is required to provide the

codes as an object oriented system to the tool JRPML,

from which the different components are identified for

reusability level prediction. The evaluation process

includes meta data generation using metrics presented

in the Analyzer Module in Section 4. The generated

dataset is further analyzed using a pseudo learning

based statistical machine learning algorithm LMNN and

reusability classes are predicted for all the identified

components. Computed results are evaluated in terms of

precision, recall, accuracy and classification error.

Following section discusses the results of step by step

data collection and processing at functional level using

JRPML followed by a comparison of results obtained

by our technique with already existing techniques.

Step 1: The tool requires the user to provide an

object oriented system as input. The individual

components (classes or individual code segments) are

identified and extracted from the given set of input by

the tool. The same is presented in Fig. 3 below.

Fig 3: Snapshot view of user interface

Step 2: Next step is to generate meta-data for the five

selected metrics (discussed in analyzer module of

section 4) corresponding to all components identified.

Meta data view generated for each metric as dataset

shown in Fig. 4.

Fig. 4: Snapshot of Meta Data view of Metrics as dataset

Step 3: Next step is to normalize meta-data obtained

from step 2. It can be seen clearly in Fig. 4 that the

values of metric 3, 4 and 5 are in the range of 0-1 and 0-

100 respectively. The values of metric 1 and 2 donot

have a predefined range as the values of Cyclomatic

complexity and Halstead Volume vary according to the

size of the component. Hence we normalize these

values and set them in a range of 0-10. The normalized

view is presented in Fig. 5.

Step 4: In the next step the values of metrics from

step 3 are raised in a hierarchical level of interpretation

to categorical text using [10] and [38]. The numeric

metric values are interpreted as low, medium or high

using [10] and [38].This interpretation is shown in Fig.

6. The reusability class labels are defined as high, low

or medium based on the categorical metric data of the

respective components.

8 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

Fig. 5: Snapshot of normalized meta-data obtained from step 2

Fig. 6: Snapshot Categorical view of Meta data

Step 5: In order to establish meaningful relationships

between software metrics calculated in the previous

steps for reusability prediction our tool uses a statistical

machine learning approach [31] on the generated

metadata. The goal is to create a model that predicts the

reusability values of a target variable (component)

based on several input variables (metrics). We use

LMNN [32] algorithm in our model. For the

implementation of the algorithm the user is asked to

input percentage for train and test data as shown in Fig.

7. The training set is classified using three class labels

namely, high, medium and low level of reusability

depending upon the combination of metric values for

the components. The snapshot of the extended

reusability dataset along with the generated class labels

is illustrated in Fig. 8. The model is trained using the

dataset presented in Fig. 8 and Mahalanobis metric [34].

Fig. 9 presents the test data for which the reusability

levels are to be predicted using LMNN. Fig. 10 shows

the snapshot of JRPML tool for test data result with

actual and predicted classes.

Fig. 7: Snapshot view of selecting training data by user

Fig. 8: Snapshot of extended reusability dataset with reusability classes

 A Machine Learning based Efficient Software 9

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

Fig. 9: Snapshot of Test Data for prediction

Fig. 10: Snapshot of Test data result with actual and predicted classes

Step 6: For assessing the performance of the

presented approach the results generated for the test

data are evaluated using the confusion matrix. The

confusion matrix corresponding to the machine learning

functions used is presented in Table 4(a). Based on this

matrix the prediction model is assessed by generating

its accuracy and classification error values along with

precision and recall values for each reusability class.

Table 4(b) presents the values for these evaluation

parameters. The accuracy and classification error values

obtained using our approach is 94.2% and 5.8%

respectively. Fig. 11 shows number of components

(used in this study, details are provided in section 4)

classified in three categories namely low reusability,

medium reusability and high reusability. With the

obtained values of accuracy (around 94%) and

classification error (around 6%) the tool JRPML seems

to possess great potential of detecting the components

according to reusability levels with a very high

probability of the levels being correct. This helps

greatly in reducing the probability of false alarms

minimizing the risks associated with identifying a

negligibly reusable component as reusable thus

preventing the wastage of time, effort and cost required

in its reuse. Hence the developed tool is a safe, reliable

and effective way of assessing and identifying reusable

components from existing reservoirs.

Table 4(a): Predicted Reusability Classes using confusion matrix [37]

 Predicted Reusability Classes

Actual Reusability

Classes

 Low Medium High

Low 16 1 0

Medium 0 10 2

High 0 1 40

Table 4(b): Results of precision, recall, accuracy, classification error using JRPML

Reusability Classes Precision Recall Accuracy Classification Error

Low 1 .94

94.2% 5.8% Medium 0.83 .83

High 0.95 .98

10 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

0

20

40

60

80

100

120

140

Low Reusability Medium
Reusability

High Reusability

Number of Components Classified Under different Classes

Number of Components
Classified Under different

Classes

Fig. 11: Number of Components Classified Under Different Classes

Thus it can be seen that the presented system can be

used effectively and efficiently for reusability

identification and evaluation of function based object

oriented software systems using Mahalanobis metric

based pseudo learning algorithm which makes the

accuracy of predictions independent of population of

classes in the training sample space. The presented tool

not only estimates effective reuse of a component for

direct or complete reuse but also provides effective

estimates of partial reuse or reuse after modification.

Thus the presented model (JRPML) developed can be

of great use to software practitioners for assessing

reusability levels.

VI. Result Comparison with other Approaches

Table 5 below shows results of comparison

conducted for JRPML with other existing approaches

based on precision, recall (each class), accuracy and

classification error values. Comparison results based on

accuracy and classification error are shown in Fig. 12 (a)

and (b) below.

Table 5: Comparison results with other existing approaches

Attributes Technique1[22] Technique2 [39] Technique3 [25] JRPML

Tool Support No No No Yes

Metrics Used
Structural
(CK Metric Suite [17])

Functional
(CB Metric Suite [10])

Functional

(CB Metric Suite

[10])

Functional

(CB Metric Suite [10]
along with

Maintainability Index)

Data Mining Approach k-Means Hybrid Hierarchical DBSCAN LMNN

Support for Estimating

efforts of Partial Reuse /

Reuse after modification

No

No

No

Yes (Using

Maintainability Index)

RESULTS:
Accuracy

Classification Error

Precision Recall

Fig. 12 (a)

Fig. 12 (b)

Fig. 12 (a)

NA

Fig. 12 (a)

Fig. 12 (b)

Fig. 12 (a)

Fig. 12 (b)

0

20

40

60

80

100

Technique1 Technique2 Technique3 JRPML

Comaprison of Results with other approaches (Accuracy &

Classification Error)

Accuracy (%)

Classification Error (%)

Fig. 12 (a): Comparison of Results with other approaches

 A Machine Learning based Efficient Software 11

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

0

0.2

0.4

0.6

0.8

1

1.2

Technique1 Technique3 JRPML

Comaprison of Results with other approaches (Precision & Recall for

Max & Min Reusablity levels

Precision (Max Reusability

Class)

Recall (Max Reusability Class)

Precision (Min Reusability

Class)

Recall (Min Reusability Class)

Fig. 12 (b): Comparison of Results with other approaches

From Fig. 12 (a) and (b) it is evident that that results

generated by JRPML are much more promising than the

results of other existing approaches. JRPML has higher

accuracy levels and lower levels of classification error

as compared to technique 1, 2 and 3. Unlike JRPML,

technique 1 focuses on structural analysis for reusability

prediction rather than functional, while techniques 2

and 3 focus on functional aspect but have no metric to

assess maintainability of the reusable component. From

Fig. 12 (b) it can be seen that the precision recall results

for JRPML are better in comparison to technique 1 and

almost similar to those of technique 3 for high

reusability class. But for low reusability class precision

and recall values are 0 for technique 3, thus technique 3

increases the risk of identifying non reusable

components as reusable. Hence it can be conclude that

JRPML provides better results than other existing

approaches.

VII. Application of Proposed Work

The proposed approach supports software

practitioners, increasing their throughput by promoting

reuse of components via the knowledge of predicted

levels of reusability of the newly developed or already

available components. The adoption of the presented

approach may help industries in strengthening their

software reservoirs using the existing inventories while

saving greatly on cost and time. Organizations can

realize time to market benefits for a new product with

this approach. The application of the work may also

provide for much better customer satisfaction, helping

software developers improve the quality, reliability,

maintainability and effectiveness of the software codes.

VIII. Conclusion

In the paper a functional metric and machine learning

based model for identifying and evaluating levels of

reusability of the components of procedure based object

oriented software systems is presented. The model has

been implemented as a tool support namely JRPML in

Java. The Meta data generated by the functional metrics

using maintainability index are analyzed by the

proposed algorithm LMNN, where pseudo learning

based training is done before prediction for more

efficient results. The model used for evaluating

reusability levels provides for 100% precision in

identifying low reusable components thus reducing

risks associated with wrong reuse. For medium and high

reusable components the precision values are 83% and

95% respectively. The recall values are 98%, 83% and

94% respectively for high, medium and low reusability

levels, thus providing for easy identification of highly

reusable components as 98% of them are recognizable

by the developed automation tool with 95% precision.

From the results generated by our tool JRPML we can

see that the tool is able to clearly differentiate between

components with ‘HIGH’ and ‘LOW’ reusability values

at functional level. The overall accuracy levels provided

by the system are 94.2%, and a classification error rate

of 5.8%. Hence with the performance results of our tool

JRPML, it can be efficiently used by software

developers and practitioners as an accurate automated

solution for identification and evaluation of reusable

components of procedure based object oriented systems.

In future we plan to extend the tool further for

reusability analysis and evaluation of other Object

Oriented languages like C++ and Python. We will also

try to investigate the uses of proposed tool JRPML for

extending towards providing more precise classification

of components by further increasing the number of

classification levels of reusability evaluation.

References

[1] Mili H., Mili F., Mili A. Reusing Software: Issues

and Research Directions [J].IEEE Transactions on

Software Engineering, 1995, 21(6):528-562.

12 A Machine Learning based Efficient Software

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

[2] Mcllroy D. Mass Produced Software Components

[C]. Software Engineering Concepts and

Techniques NATO Conference on Software

Engineering 1968, pp. 88-98.

[3] Singh S., Singh S., Singh G. Reusability of the

Software [J]. International Journal of Computer

Applications, 2010, 7(14):38-41.

[4] Peters J. F., Pedrycz W. Software Engineering: An

Engineering Approach [M]. John Wiley & Sons,

NewYork, N Y, 2000

[5] Jalender B., Govardhan A., Premchand P. A

Pragmatic Approach to Software Reuse [J]. Journal

of Theoretical and Applied Information

Technology, 2011, 13(6): 87-96

[6] Cybulski J L. Introduction to Software Reuse [R].

Technical Report TR 96/4 The University of

Melbourne Australia, 1996.

[7] Prieto-Diaz R., Freeman P. Classifying software

for Reusability [J]. IEEE Software, 1987, 4(1): 6-

16

[8] Selby, Richard W. Quantitative Studies of

Software Reuse in Software Reusabilty [M].

Addison-Wesley, Reading, MA, 1989.

[9] Chen, Deng-Jyi, Lee P. J. On the Study of

Software Reuse Using Reusable C++ Components

[J]. Journal of Systems Software, 1993, 20(1):19-

36.

[10] Caldiera, Gianluigi, Basili V. R. Identifying and

Qualifying Reusable Software Components [J].

IEEE Software, 1991, 24(2):61-70.

[11] Karlsson, Even-Andre, Sindre G., Stalhane T.

Techniques for Making More Reusable

Components [R]. REBOOT Technical Report,

1992.

[12] Hislop, Gregory W. Using Existing Software in a

Software Reuse Initiative [A].In: Proceedings of

The Sixth Annual Workshop on Software Reuse,

Owego, New York, 1993.

[13] Boetticher G., Srinivas K., Eichmann D. A Neural

Net-based Approach to Software Metrics [C]. In:

Proceedings of the 5th International Conference on

Software Engineering and Knowledge Engineering

(SEKE’93) June 1993, San Francisco, CA, pp.271-

274.

[14] Torres, William R., Mansur H., Samadzadeh.

Software Reuse and Information Theory Based

Metrics [C]. In: Proceedings of Symposium on

Applied Computing, Kansas City, MO, April 1991,

437-46.

[15] Mayobre, Guillermo. Using Code Reusability

Analysis to Identify Reusable Components from

the Software Related to an Application Domain

[A]. In: Proceedings of Fourth Annual Workshop

on Software Reuse, Reston, VA, 1991.

[16] RAPID. RAPID Center Standards for Reusable

Software [R]. U.S. Army Information Systems

Engineering Command, 1990.

[17] Chidamber S. R., Kemereer C. F. A metrics suite

for object oriented design [J]. IEEE Transactions

on Software Engineering, 1994, 20(6):476-493

[18] Czibula I. G., Serban G. Heirarchial clustering for

Software System Reconstructing [R]. Babes bolyai

University, Romania, 2007.

[19] Goel H., Singh G. Evaluation of Expectation

Maximization based Clustering Approach for

Reusability Prediction of Function based Software

Systems [J]. International Journal of Computer

Applications, 2010, 8(13):13-20

[20] Kanellopoulos Y., Dimopulos T., Tjortjis C.,

Makris C. Mining source code Elements for

Comprehending Object-Oriented systems and

Evaluating Their Maintainability [C]. In:

Proceesing of ACM SIGKDD Explorations

Newsletter, 8(1), 2006 : 33-40

[21] Manhas S., Sandhu P.S., Chopra V., Neeru N.

Identification of Reusable software Modules in

Function Oriented Software System using Neural

Network Based Technique [J]. World Academy of

Science, Engineering and Technology, 2010,

67:823-827

[22] Shri A., Sandhu P. S., Gupta V., Anand S.

Prediction of Reusability of Object Oriented

Software System using clustering Approach [J].

World Academy of Science, Engineering and

Technology, 2010, 67:853-856.

[23] Kumar A. Measuring Software reusability using

SVM based classifier approach [J]. International

Journal of Information Technology and

Knowledge Management, 2012, 5(1): 205-209

[24] Kaur A., Singh R., Cheema, Sandhu P. S.

Identification of Reusable Procedure Based

Modules using k-NN Approach [C]. In:

Proceedings of International Conference on Latest

Computational Technologies (ICLCT’12), March

2012, pp.90-93.

[25] Saini J. K., Sharma A., Sandhu P. S. Software

Reusability Prediction using Density Based

Clustering. 2006, psrcentre.org.

[26] Sandhu P. S., Singh H. A Reusability Evaluation

Model for OO-Based software Components [J].

International Journal of Electrical and Computer

Engineering, 2006,1(4):259-264

[27] Sandhu P. S., Singh J., Gupta V., Kaur M., Manhas

S., Sidhu R. A K-Means Based Clustering

Approach for finding Faulty Modules in Open

Source software Systems [J]. World Academy of

Science, Engineering and Technology, 2010,

72:654-658

 A Machine Learning based Efficient Software 13

Reusability Prediction Model for Java Based Object Oriented Software

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 02, 1-13

[28] Welker K. D. The Software Maintainability Index

Revisited [J]. The Journal of Defense Software

Engineering, 2001:18-21

[29] McCabe T. J. A Complexity Measure [J]. IEEE

Transaction on Software Engineering, 1976, 2(4):

308-320

[30] Halstead, M. H. Elements of Software Science [M].

Elsevier North-Holland, New York, 1977

[31] Mitchell, T. Machine Learning [M]. McGraw Hill.

1997.

[32] Weinberger, K. Q., Blitzer J. C., Saul L. K.

Distance Metric Learning for Large Margin

Nearest Neighbor Classification [C]. In:

Proceedings of Advances in Neural Information

Processing Systems (NIPS’06), 2006.1473–1480.

[33] Wikipedia – k-Nearest Neighbour Algorithm.

http://en.wikipedia.org/wiki/K-

nearest_neighbor_algorithm

[34] Mahalanobis P. C. On the generalised distance in

statistics [C]. In: Proceedings of the National

Institute of Sciences of India, 1936, 49–55.

[35] Wikipedia – Semidefinite Programming.

http://en.wikipedia.org/wiki/Semidefinite_program

ming

[36] Dimitrov E., Wipprechet M., Schmietendorf A.

Conception and Experience of Metric-Based

Software Reuse in Practice [A]. In: proceedings of

International Workshop on Software

Measurements, Canada, 1999.

[37] Wikipedia-Confusionmatrix.

http://en.wikipedia.org/wiki/Confusion_matrix#cit

e_note-0

[38] Code Metric Values.

http://msdn.microsoft.com/en-

us/library/bb385914.aspx

[39] Verma P., Mahajan M., Gupta M. Hierarchical

Clustering Approach for Modeling of Reusability

of Function Oriented Software Component.

ISEMS, http://isems.org.

Authors’ Profiles

Surbhi Maggo: has done Masters of

Technology and Bachelor of

Technology from Jaypee Institute of

Information Technology, India in

Computer Science & Engineering

and her area of interest is Software

Engineering, Software Testing, Data

Mining and Machine Learning.

Currently she is working in a research and development

company in India.

Chetna Gupta: She is Assistant

Professor at Jaypee Institute of

Information Technology, India. She

obtained her Doctorate in the area

of Software Testing. She also holds

a Masters of Technology and a

Bachelor of Engineering degree in

Computer Science and Engineering.

Her areas of interest are Software Engineering,

Requirement Engineering, Software Testing, Software

Project Management, Data Structures, Data Mining and

Web Applications. She has many publications in

international journals and conferences to her credit.

How to cite this paper: Surbhi Maggo, Chetna Gupta,"A

Machine Learning based Efficient Software Reusability

Prediction Model for Java Based Object Oriented Software",

International Journal of Information Technology and

Computer Science(IJITCS), vol.6, no.2, pp.1-13, 2014. DOI:

10.5815/ijitcs.2014.02.01

