
I.J. Information Technology and Computer Science, 2014, 11, 10-20
Published Online October 2014 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2014.11.02

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

Supervision Architecture Design for Programmer

Logical Controller Including Crash Mode

Bennani fatima zohra
Industrial Computing and Networking Laboratory, Computer Science Department, University of Oran, BP 1524 Oran,

Algeria

Email: fatima_ing_inf@yahoo.fr

Sekhri Larbi
Industrial Computing and Networking Laboratory, Computer Science Department, University of Oran, BP 1524 Oran,

Algeria

Email: larbi.sekhri@univ-oran.dz

Haffaf Hafid
Industrial Computing and Networking Laboratory, Computer Science Department, University of Oran, BP 1524 Oran,

Algeria

Email: haffaf.hafid@univ-oran.dz

Abstract— This paper is a contribution for development of a

high level of security for the Programmer Logic Controller

(PLC). Many industrial adopt the redundant PLC architecture

(or Standby PLC) designed to replace the failed (out of order)

PLC without stopping associated automated equipments. We

propose a formal method to choose a Standby PLC based on

probability study, by comparing normal functioning to

misbehavior one leading to residue generation process. Any

generated difference reveals a presence of anomaly. The

proposed method begins by listing all PLC components failures

leading to their stopping according to failures criticalities. Two

models; functional and dysfunctional are obtained by using

formal specifications. Probability’s calculus of dysfunction of

each Standby PLC is obtained by the sum of the probabilities of

dysfunction of its critical components. These probabilities are

allocated each transition which leads to the dysfunction in the

dysfunctional model. The dysfunctional model is obtained by

using the FMECA method (Failure Modes, Effects and

Criticality Analysis). We shall see that this global vision of

functioning of the whole PLC leads to a higher level of security

where the chosen Standby PLC works continuously.

Index terms—Programmer Logic Controller, Supervision, Petri

Nets, UML, STEP7, PLCSim, Protool.

I. INTRODUCTION

The complexity of Automated Production Systems

(APS) and demand from industrial partners for

equipments availability, make functioning surety of

Programmer Logic Controller (PLC) a major

preoccupation of managers in industrial domain [1] and

[2]. In fact, emergency stopping of industrial processes

caused by their failed automaton leads to undesirable

situations. Nowadays, the Standby PLC constitutes the

most adopted solution by industrial companies aiming to

improve their performance. The study of operating PLC

safety has occupied an important place in the industry. It

represents capacity of an entity to realize one or several

required functions in a given conditions [3] and [4]. This

study is based on important parameters like reliability,

availability and maintainability.

The need to develop formal methods enabling to know

nominal and degraded behavior of Standby PLCs in order

to evaluate their abilities to provide services and to

replace the PLC failure without causing damages to

environments, persons, etc. is very important. Many

formal methods using different approaches for

specification and validation systems controlled by PLC

exist in literature. These works represent a current field

which concerns researchers of the automatic control

community and the computer science community [5], [6],

[7], [8] and [9]. Other works on specification languages,

models and tools have been developed for modeling and

analyzing systems controlled by PLC dealing with

concepts as stability, controllability and diagnosability

[10], [11], [12] and [13]. Among existing models in

literature we can give bond graph model [14] and [15],

Petri nets [16] and [17], automaton and timed automaton

[18], [19], [20] and [21] for the supervisory control.

Several solutions were proposed in this context such as

the redundancy. Indeed, the redundancy concept is

defined in the safety standard [22] as the existence of

different ways to fulfill a required function. Among the

physical redundancy, we have the redundancy of some

critical components of the PLC like central unit (CU),

power block, etc. [23] and [24]. Recent trends toward

PLC redundancy solution are called Standby PLC [25]

where the functioning is based on the information

supplied on the functioning state of the PLC, allowing

replacing it once it breaks down. In this paper, we are

interested by the Standby PLC which has proved its

efficiency in the domain of operating safety.

Unfortunately, industrial companies adopting this

mailto:fatima_ing_inf@yahoo.fr
mailto:larbi.sekhri@univ-oran.dz

 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode 11

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

solution are in face to another problem, which is the not

starting up of the Standby PLC. This problem will be

discussed and dealt in this paper.

The paper is organized as follows: Section 2 introduces

the Standby PLC problematic and the associated

architecture. In section 3, our supervision architecture and

proposed approach are given. In section 4, activity

diagrams and correspondent Petri nets of PLC

functioning and dys-functioning are illustrated. Section 5

deals with a case study consisting in six automated

compressors controlled by three PLC where each one is

responsible on both two compressors. In this section our

supervisor PLC system is proposed, the method is applied

and a detailed analysis using STEP7 Package software to

platform design, PLCSIM and PROTOOL for simulation.

Finally, we conclude our work and discuss some

perspectives.

II. STANDBY PLC PROBLEM

The Standby PLC solution brought many solution

elements to the PLC failure problem. The most dangerous

is the no starting up of the Standby PLC after a principal

PLC failure which causes the stopping all the managed

automated equipments. This accident is explained by the

loss of information of the principal PLC functioning’

state, and is due to the breaking connection between the

Standby PLC and the principal PLC, transmission delays

or keeping standby PLC busy by other tasks. Our work

concerns a supervisor PLC design loaded to control the

entire PLC which also encompass Standby PLC by

choosing the best (Standby PLC).

The architecture of Standby PLC belongs generally to

two categories [26]:

-Active redundancy: The Standby PLC operates

simultaneously with the principal PLC while ensuring the

same tasks.

-Passive Redundancy: One PLC ensures the control.

The shift towards the Standby will be made after a

principal PLC failure.

In this work, we consider the first category. This

category is adopted by several companies, where each

PLC working on production site is also configured to

work as Standby PLC. The Standby PLC architecture is

illustrated by the Fig. 1.

Fig. 1. Standby PLC architecture

The main functions of the Standby PLC are to acquire

and record the input RAC (Real Application Clusters:

copy of the input) of the principal PLC and to get back

cyclically the information on the state of the principal

PLC functioning [27].

III. ADOPTED APPROACH

Several methods were proposed to ensure the

supervision task. A method is selected on the dealt

information nature, the system complexity and the

dynamics of the system. Indeed, it is important to

distinguish between different existing supervision

methods developed for the continuous, discrete and

hybrid systems. In this work we consider hybrid systems

needing both models: continuous and discrete. The

controlled system is a PLC representing a hybrid system

treating continuous values and discrete events studied in

both normal and degraded functioning mode. The

approach deals with the functional /dysfunctional

analysis of the PLC. The supervision method aims to

detect a generated residue by comparing the real

functioning of the system to its functional model (model

of normal functioning, see Fig. 2.

Fig. 2. Residue generation

Designing supervision architecture for PLC involves a

supervisor design and a reconfiguration of Standby PLC

architecture. This can be done by data acquisition, failure

detection, and diagnosis and system control. The data

acquisition consists to collect all information about a

controlled system. The failure detection and the collected

information serve to make decision on the controlled

system: it is in normal mode or not. The diagnosis

consists in Fault Detection and Isolation (FDI) so that

corrective actions can be taken to eliminate the effect on

the overall system performance.

The main functions ensured by the proposed approach

are:

1- Supervision of all PLCs.

2- Prevision of PLCs failures.

3- Select the Standby PLC based on probability calculus.

Real system

Measured values

Comparison

&≠0 &=0

Generation of

residue

Normal functioning

of the real system
Detected fault

Model of normal

functioning

Estimated values

12 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

The functional model of the designed PLC describes

its functioning by exposing different existing relations

between captured data and the orders sent by the PLC.

To ensure the control of failure of functioning of the

PLC, a functional state control program of each critical

component is integrated in the supervisor. These

components are represented by variables controlled by

predefined thresholds. The Standby PLC selection uses a

probability study as described by the following phases:

Phase1: Listing all the failures that can arise at the

PLC. This list is given by a dysfunctional analysis of the

PLC based on FMECA method (Failure Modes, Effects

and Criticality Analysis). Fig. 3 depicts the functioning

of FMECA method.

Fig. 3. Principle of the FMECA method

This method begins by system decomposition into

simple components, a defined list of the possible failures

which can arise in the PLC (information given by the

domain experts) and selected failures causing the

stopping of the PLC.

Phase2. In this phase, we compute the failures number

observed in a time interval t called λ (t) rate of the

failed PLC. Indeed, we adopt the exponential law to

compute this parameter.

λ (t)=1/MTBF (1)

MTBF (Mean Time between Failures) is the mean time

before appearance the PLC failure.

Phase 3: For each PLC component, the appearance

probability of a failure p (t) in a time interval is

computed.

p(t)=1-e λ (t) (2)

Phase 4: We affect p (t) parameter to each faulty

component. The probability of PLC dys-functioning is

given by:

P(t)= p(t) i=1…n (3)

i is the faulty component number.

The formula (3) enables us to compute the probability

of PLC normal functioning.

F (t) =1- P(t) (4)

The formula (4) serves to the supervisor to choice the

Standby PLC by selecting a PLC having a high value of

F(t) and the less occupied (from the variable defining its

CPU). Once the Standby PLC is chosen, the supervisor

orders him to replace the failed PLC.

IV. PLC FUNCTIONING MODEL

Our aim is to propose a solution based on a formal

analysis model which could be translated into supervisor

program. The integrated model must be able to control all

PLCs while ensuring the continuity of functioning of

controllable equipment. The PLCs are complex systems

and their formal modeling is a difficult task. Thus, the

adopted methodology suggest passing through a semi-

formal model like State-chart or UML (Unified Modeling

Language). UML Diagrams are the most used in the

industry and are well adapted to complex systems

specification, unfortunately, their formal analysis requires

translation tools to a formal model [28]. Such

specification tools are more oriented to the Grafcet or

Petri nets. In the sequel, we present two UML based

models: PLC functioning model and PLC dys-functioning

model.

The activity diagrams are chosen to model the PLC

behavior. In the modeling process, an action represents a

single step inside an activity and its execution represents

a transformation or a treatment. “Fig. 4, 5 and 6”

illustrate respectively activity diagrams for PLC

functioning model, PLC dys-functioning model and PLC

model selection.

The dys-functioning of a PLC is caused by errors that

arise during its functioning mode. We distinguish two

categories of errors: Fatal errors generally leading to

stopping the PLC and no fatal errors that don’t stopping

its functioning. When a failure is detected, a

corresponding error message is displayed on the

programming console or another device connected to the

PLC. In this work, we are interested by fatal errors. We

distinguish four fatal errors which interrupt immediately

the PLC:

1- Power bloc failure;

2- Central processing unit (CPU) failure;

3- Data transfer error between the CPU and input/output

cards;

4- Input/output card failure.

These errors are obtained using the FMECA method

allowing c a selection of critical failures leading to

stopping PLC.

FMECA

System

Component 1 Component 3 Component 2 Component n

Estimate the

effects of the

failure

Decomposition

Define failure modes

(Human expertise)

Critical failures

Liste of failures

Failure

classification

Classified failures

 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode 13

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

Fig. 4. Activity diagram of PLC functioning model

Fig. 5. Activity diagram of PLC dys-functioning model

Control of the program

[Lighting of the input/output Indicator of?]

YES

 Control the connection

between CPU and

input/output cards

NO

Anomaly in central

processing

input/output cards

control

[Detected anomaly?]

NO

YES

 P2

p1 p1

 p3

Anomaly in

input/output cards

[Reliable cable?]

YES

Anomaly in

Connection Cable

NO

 p4

Anomaly in the

power bloc

Control the central

processing

P1

[Alight PWR indicator?]

YES

NO

Extinct RUN indicator

[Lighting of the ERR/ALM indicator?]

YES

Control the power bloc No Fatal error

NO

[Detected anomaly?]

YES

Error programming

.

NO

Program meter initialization

Input cards control

Reading data from input cards Emergency PLC stopping

Output cards control

Program execution

Writing results on the

output cards

Emergency PLC stopping

.

YES NO

[Detected anomaly?]

[Programming errors?]

Emergency PLC stopping

NO YES

[Detected anomaly?]

YES NO

14 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

Fig. 6. Activity diagram selection of the standby PLC model

In this model, the probability of PLC dys-functioning

in a time interval t is defined as:

P(t)=p1(t)+p2(t)+p3(t)+p4(t) (5)

Activity diagram selection of PLC replacement

Once the supervisor detects a PLC failure, the choice

program execution of the Standby PLC is launched by

this supervisor. Once the PLC is chosen, the supervisor

orders it to replace the failed PLC by modifying its input

variable to 1 that initially set to 0. The Standby PLC

verifies cyclically this variable, if it is equal to 1, it reads

the input variables of the PLC that is out of order,

executes its program and sends the orders to the

concerned auctioneers. Each PLC’s program takes into

account all automated equipments: sensors (input

variables), auctioneers (output variables).

Integrating these models into supervisor’s program

passes by their formal specification. Two approaches

exist in literature [28]. For the first approach, it is

recommended to remains in UML, the second approach

aims to translate UML model into a formal specification.

The translation process exploits a set of rules describing

how a model expressed in a source language can be

transformed into a target language. The graphical

description model offered by UML is saved while

exploiting techniques and tools of formal verification. For

simplicity reasons we adopt the second approach where

the Petri net model is selected as a formal language. Petri

nets are chosen for many reasons since the activity

diagram has a semantic close to the Petri nets. Another

reason is Petri nets allow us to analyze various system

behavioral aspects.

The translation of the activity’s diagrams into Petri

nets holds an important place in the proposed approach.

‘Fig. 7” gives the main translation rules.

We present in the sequel, three Petri nets (Fig. 8, 9 and

10) corresponding respectively to the three previous

activity diagrams depicted in Fig. 4, 5 and 6.

Element of

activity diagram

Graphical

representation

Element of

Petri net

Initial node

Final node

Action

Flow of control

Disconnection

Joint

Decision

Fusion

Fig. 7. Translation rules

V. INDUSTRIAL CASE STUDY

A. Introduction

Simulation experiments have been carried out on

automated production system (APS) within

SONATRACH Company. This company ensures the

treatment of the crude product of LPG (Liquefied

Petroleum Gas). LPG products are forwarded by the

deposits from the south of Algeria (Sahara) through

pipelines for the production of the commercial propane

and butane. These products once treated, are saved in

storage back.

The test bed on which the simulation has been carried

out consists in the compressor equipment. The company

possesses six compressors which are managed by three

PLC. Each PLC is responsible, at the same time, of

functioning of two compressors. These PLC are

programmed to ensure the replacement function if one of

them is stopped. A danger can arrive when crash event

occurs in the system leading to huge economic cost for

the company.

This solution offers several advantages like global

vision of PLC functioning and increases availability and

reliability of PLC. The proposed system provides a data

base which could be used by the specialists of the

company (rate of failure of each PLC, probability of well-

functioning, etc.).

B. System Design

Our approach needs four steps:

- Supervisor PLC design.

a

b
C

a

b
c

a
b

c

a b

c

a

b

c

a
c

b

a

b

c

a
b

c

a b a b

.

.

Execution of the choice

program of Standby PLC

[Standby PLC chosen?]

YES

Sent message to

Standby PLC

Reading input data of

breakdown PLC

Execution of the program of
breakdown PLC

Sent results to the output

cards of the breakdown PLC

NO

.

http://en.wikipedia.org/wiki/Liquefied_petroleum_gas
http://en.wikipedia.org/wiki/Liquefied_petroleum_gas

 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode 15

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

- PLC program modifications.

- Defining the control information to be sent to the

supervisor.

- Connection supervisor- PLC and reconfiguration of

the PLC architecture.

Fig. 8. Petri net of PLC functioning

Fig. 9. Petri net of PLC dys-functioning

Connection Problem

Control the connection between the CPU

and the input/output cards

Extinct input/output

indicator

Anomaly in the CPU

Detected anomaly

Anomaly in the power

bloc

Alight PWR indicator

Control of power bloc
no fatal error

Extinct RUN indicator

Extinct ERR/ALM

Indicator

Extinct PWR indicator

 Control the CPU

No detected anomaly

Control of the

input/output cards

Alight input/output

indicator

Detected anomaly
No anomaly detected

Anomaly detected in

input/output cards

 p1

 p2

p4 p3

Emergency PLC stopping

No anomaly detected

Meter initialized to zero

No anomaly detected

Recovered data

Transfer the results to the

output cards

No anomaly detected

Checking of the input cards

Detected anomaly

Reading of the data of the

input cards
Emergency PLC stopping

Execution of program

Detected anomaly

Checking of the output

cards

Detected anomaly

Emergency PLC stopping

End of treatment

16 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

Fig. 10. Petri net of the standby PLC selection

Remark. The designed system represents a virtual

station. This means that the three PLC and a supervisor

form a virtual PLCs running on simulation platform, i.e. a

virtual station CPS (Console of Programming and

Simulation) in order to show the simultaneous

functioning of the APS parts.

The CPS station solution was already proposed in our

previous work to ensure the PLC functioning without

program errors. This solution was used to simulate the

functioning of the supervision system. The PLC project

(program and its configuration) is transferred from the

real PLC to the virtual station by connecting it to the PLC.

The final configuration consists in a supervisor project

and three PLC projects, all transferred from the real PLC.

C. Modelling and Simulation

In our approach we have used STEP7 Package software

(from Siemens) to platform design and, PLCSIM and

PROTOOL for simulation [27]. STEP7 is very adapted for

supervisor PLC programming; it is a part of SIMATIC

software [27]. STEP7 is formed by two parts: Software

part represents the user executive PLC program and the

hardware part describes the physical configuration of the

process.

SIMATIC is a hierarchy of objects similar to

directories tree structure and files in Widows system. Fig.

12 below illustrates this hierarchy.

Fig. 12. Tree structure

A project enables grouping data set and programs

necessary to automated solution. A station is a hardware

configuration containing many programmable modules.

Three programming languages are part of the base

software.

 Contact scheme ‘CONT’ is a graphical programming

language. The syntax is very closer to circuit scheme.

The scheme elements like closing and opening contact

are put in a network.

 Instructions list ‘LIST’ is dedicated to coding critical

applications; it is a textual programming language

close to the machine

 Logogram ‘LOG’ is a graphical programming

language using graphical functional boxes of Boolean

algebra to represent logical operations.

Two simulators are used:

- S7-PLCSIM simulator enables the execution and

testing user program in PLC. It gives a simple

interface with user program to display different

objects like input/output and program tracing.

- PROTOOL Simulator enables online simulation.

The control panel represents a communication

medium between automaton and operator. It is relies

on interfaces visualizing state process. The system

architecture is illustrated by the Fig. 13.

Fig. 13. General architecture of the supervision system

D. Simulation and Results

 Simulated system description

The functioning of the simulated system is a PLC, which

is a computer dedicated to control the industrial

process by a sequential treatment. It receives the

information on the state of process functioning from

the sensors and sends orders to the actuators. The main

functions of the PLC are acquisition of input data and

their processing, and emission of the orders.

 Creation of the new project of the supervisor PLC

The project is a root grouping hierarchical objects:

Station, CPU, program, etc. At this level we create

project and station. By Hardware tool we configured the

PLC hardware part: CPU, alimentation block,

S7-PLCSIM/PROTOOL to

simulate the functioning of

supervisor

STEP7 to create the

program of supervisor

Supervisor’s

system

Breakdown of the

PLC

Execution of the

program of the
supervisor to choice the

Standby PLC Standby PLC

not chosen

Sent message to

Standby PLC

Received order
Read the data of the

breakdown PLC

Recovered data Execution of the program

the breakdown PLC

End of execution
Sent the results to output

cards

End of treatment

Standby PLC

chosen

 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode 17

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

communication network, input /output cards and

control/command panel [28].

Each PLC has three panels. A new display is created

for Supervisor PLC (SPLC) to control other PLCs. Fig.

14 illustrates a hardware configuration of our system.

Fig. 14. Hardware configuration

- CPU and alimentation block are the same that used

by PLCs

- MODBUS network is used to connect the

supervisor to PLCs.

- Input variables created in the supervisor to

communicate with the PLC1 are :

1- State’s variable of alimentation block of PLC1.

2- State’s variable of PLC1 processor.

3- State’s variable of functioning I/O cards of PLC1.

4- Link state’s variable between CPU and I/O cards

In the same manner other variables are created

enabling the supervisor (SPLC) to communicate with

PLC2 and PLC3.

- Three output variables for PLC initialized to 0 and

set to 1 when SPLC gives a replacement command.

SPLC program is based on functioning/dys-

functioning model to control PLC functioning by his

input variables. When a fatal error occurs in a PLC,

SPLC asks another PLC to replace it by using his output

variable set to 1. Contact schema CONT is used to

program development.

These variables are used by the supervisor to predict

the PLC failure. They are also used to compute the

probability of PLC dysfunction to choose the standby

PLC.

 Development of the supervisor's program

The program of the supervisor contains three data

blocks (DB1, DB2 and DB3) with I/O variables of each

PLC. Three functional blocks (FB1, FB2 and FB3) are

created to PLC functioning verification. Each data block

contains many nets dealing with a program part.

The system’s variable represents the state of the PLC at

the moment T. We configured five state’s variable of the

system:

- Normal (normal state), the system allocates the

value 0 to the state’s variable of the system.

- LOLO (low low), represents a very low measure.

The system allocates the value 1 state’s variable of

the system.

- LO (low), represents a low measure. The system

allocates the value 2 to the state’s variable of the

system.

- HI (high), Represent a high measure. The system

allocates the value 3 to the state’s variable of the

system.

- HIHI (high high), represents a very high measure.

The system allocates the value 4 to the state’s

variable of the system.

The same principle is adopted for the other program

bloc who controls the appearance of these predefined

fatal errors.

 Starting up of the simulator S7-PLCSIM

Once the simulator is in execution, the three PLC’s

programs and the supervisor in the station CPS are

loaded. At this step, the simulation system gives us the

possibility of tracing the progress of the program by

18 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

visualizing the parts of the code concerned by the

modified variables (shown in green color) in Fig. 15.

We can simulate abnormal situations of the various

critical variables by modifying the value of these

variables, and see if the supervisor predicts these states

by activating the right Standby PLC choice program. We

can make sure also if the function f (t) is correctly

computed. Fig. 15 represents the main window of

simulator S7-PLCSIM.

The CPU window has three indicators: RUN-p

(Execution in simulation mode), RUN (Execution on

line), STOP (Stop of execution) and MRES (Reset). To

detect any anomaly, we allocated for each measured

variable a set point to verify any deviation of the normal

value.

We simulated the appearance of a failure at the power

block of the PLC1 represented by an input variable of the

tension of this component. The configured set points for

this variable are:

1- Alarm’s set point for a tension between 21V and 24V

(LO ALARM). The value is equal in 2400 (decimal

value). The activated event is the alarm message

displayed on panel of supervisor to warn the operator.

2- Set point of triggering for a tension less than 20V

represents a fatal error leading to the stop of the PLC.

Case 1 (Critical state): The tension measured value

(input variable) of the power block exceeds the alarm’s

set point. We noticed that the supervisor program

activates an alarm to warn the operator.

Case 2 (Dangerous state): The measured variable

(equal to 16V) is less than the set point of triggering. In

this situation the Standby PLC is programmed to replace

the PLC failure.

At this state, we modified the PLC architecture so that

the supervisor PLC predict the appearance of the failure

at the PLC and starts Standby PLC choice program after

computing the parameter f(t) (probability of well-

functioning).

Case 3 (Normal state): Simulate a normal value. We

mark that no event was activated.

It is noteworthy that in the real system, these states are

expressed and visualized to the operator directely from

the panel. With the PROTOOL simulator, we are able to

see the configuration of supervisor’s panel as well as the

three simulated PLC varying states.

For the first simulated state, we configured on the

supervisor’s panel, the display of alarm message with a

flashing object (in circle) which indicates the number of

alarm messages, and the display of weakening object with

its measured variable. The same alarm message is shown

on the PLC1’s panel. By simulating the second state we

configured on supervisor's panel the display of the PLC1

state «in stop» and the information «PLC2 replaces

PLC1». On the PLC1’s panel shown state «started»

which means stopped. For the third state which indicates

a normal functioning of the PLC: “PLC1 runs, PLC2

runs, PLC3 runs".

Fig. 15. Simulator S7-PLCSIMn

VI. CONCLUSION

The availability of the APS and the service continuity

are major elements for the industrial performance

evaluation. The designed system contains a supervisor

which controls three PLC tested on a simulation station.

This study was done in a petrochemical central (GP2Z)

with collaboration with engineers and operators working

at this central.

The program development of this system has required

three Petri nets models. We have encountered a difficulty

to obtain these formal models directly from the study of

PLC functioning. For this reason we have firstly used a

semi-formal UML model where translation rules are

applied. We simulated the detection and the prevention of

crash fatal error at the PLC, represented by the dys-

functioning of the power block. With these tests, we

noted that the supervisor predicts this error and reacts by

ordering the PLC2 to replace the PLC1. The PLC2

 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode 19

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

selection is based on a probabilistic study undertaken by

the supervisor after computing the probability of well-

functioning of each PLC. This experimentation can be

generalized to other measured variables connected with

each PLC components, to make sure that the supervisor

can predict any anomaly and reacting to all situations

(normal, degraded, failed) in replacing failed PLC by

other to ensure continuity of installations.

The advantage of the designed supervision system is in

offering a global vision of functioning of all system by

predicting the occurrence of stop functioning. This

solution also takes into account the not starting up

problem of the Standby PLC for various reasons. In

future work, we can include other performance

parameters, and then improve the computed probability

formula.

ACKNOWLEDGMENT

This research is supported by GP2Z-SONATRACH

Company, Oran, Algeria. Thanks to the collaboration of

automatic team and instrumentalists who give us ideal

environment to carry out our research.

REFERENCES

[1] V. Carré-Ménétrier and A. Tajer, ‘Elaboration of

Distributed Optimal Controller for Manufacturing Systems

through Synthesis Approach’, International Conference on

Communication, Computing and Control Applications

(CCCA'11), IEEE, Hammamet, Tunisia, mars 2011.

[2] R. Roussel and J. J. Lessage. ‘Algebraic Synthesis of

Controllers despite Inconsistencies in Specifications’. In

Proceedings of 11th International Workshop on Discrete

Event Systems (WODES’2012), Guadalajara, Mexico, 2012.

[3] F. Z. Bennani, L. Sekhri and H. Haffaf. ‘Conception d’une

Architecture de Supervision des Automates

Programmables Industriels. 9éme Journées Scientifiques

et Techniques (JST9), Sonatrach. April 8-10, 2013, Oran,

Algeria.

[4] A. Tajer and A. Philippot. ‘Decentralized Implementation

Approach of Control Synthesis of Manufacturing Systems’,

2nd International Conference on Multimedia Computing

and Systems (ICMCS'11), IEEE, Ouarzazate, Morocco,

April 2011.

[5] R. Alur and D. L. Dill. ‘A Theory of Timed Automata’,

Theoretical Computer Science, Vol. 126, 2, pp. 183-235,

1994.

[6] L. Fray and Y Litz. ‘Formal Methods in PLC

Programming’. IEEE International Conference on Systems,

Man and Cybernetics, vol. 4, pages 2431-2436, 2000.

[7] O. Gourcuf, De Smet and J.M. Faure. ‘Efficient

Representation for Formal Verification of PLC Program’.

In Proceedings of 8th International Workshop on Discrete

Event Systems (WODES’06), pages 182-187, Ann Arbor,

USA, July 2006.

[8] H. Laroux and M. Roussel. ‘Algebraic Synthesis of

Logical Controllers with Optimization Criteria’. 6th

International Workshop on Verification and Evaluation of

Computer and Communication Systems (VECoS 2012),

CNAM, Paris, France, August 27-28, 2012.

[9] U. Sanne and S. Gonzalez. ’UML Modeling and Formal

Verification of Secure Group Communication Protocols’.

2nd IEEE International workshop UML and Formal

Methods (UMF & FM'09), Rio de Janeiro (Brazil).

December 2009.

[10] V. Carré-Ménétrier,, N. Hagebell and J. Zaytoon. ‘Methods

and Tools for the Synthesis of an Optimal Control

Implementation for Grafcet’. Journal Européen des

Systèmes Automatisés, vol. 33, No. 8-9, November 1999.

[11] A. Philippot, ‘Survey on Diagnosis of a Pick and Place

Benchmark - Special Session on Diagnosis of Discrete

Event Systems: Application on a Benchmark’, 3rd

International Workshop on Dependable Control of

Discrete Systems (DCDS'11), pp. 27-30, IEEE,

Saarbrücken, Germany, june 2011.

[12] L. Sekhri, A.K.A. Toguyeni and E. Craye. Surveillabilité

d’un Système Automatisé de Production Modélisé par un

Graphe Fonctionnel (2004), Journal Européen des

Systèmes Automatisés (JESA), vol. 38, N° 3-4, pp. 243-

268, October, ISSN 1269-6935.

[13] A.K.A. Toguyéni, E. Craye, and Sekhri, L. ‘Study of the

Diagnosability of Automated Production Systems Based on

Functional Graphs. Mathematics and Computers in

Simulation, vol. 70, issues 5-6, 24, pp. 377-393, Elsevier,

February, 2006.

[14] M. Daigle, Roychoudhury, I., Biswas, G. and Koutsoukos,

X. ‘Efficient simulation of component-based hybrid

models represented as hybrid bond graphs’. Technical

Report ISIS-06-712, Institute for software integrated

Systems, Vanderbi University, Nashville, USA, 2006.

[15] P. Gawthrop and B. Geraint, ‘Bond Graph Modeling’,

IEEE Control Systems Magazine, vol. 27, 2007.

[16] R. David and H. Alla. ‘Discrete, Continuous and Hybrid

Petri Nets’, Springer, 2005.

[17] R. Hakiki and L. Sekhri. ‘Hybrid Petri Nets Based

Approach For Analyzing Complex Dynamic Systems’.

First IEEE International Conference on Machine and Web

Intelligence (ICMWI’2010). 3-5 October, Algiers, Algeria,

2010.

[18] B. Brandin and W. M. Wonham. ‘Supervisory Control of

Timed Discrete Event Systems’, IEEE Transactions on

Automatic Control, vol.39, 2, pp. 329-341, February, 1994.

[19] A. Gouin and J.L. Ferier,. ‘Modeling and Supervisory

Control of Timed Automata’, Journal Européen des

Systèmes automatisés, vol. 33, No. 8-9, November,

MSR’99, pp-1093-1110, 1999.

[20] L. Guan-Chun, ‘Control and Automation’, Universal

Journal, September 2013.

[21] A.T. Sava, A.T. and H. Alla, ‘A Control Synthesis

Approach for Time Discrete Event Systems’. Mathematics

and Computers in Simulation, vol. 70, issues 5-6, 24, pp.

250-265, Elsevier, February, 2006.

[22] M. El Najjar, C. Smaili, F. Charpillet and D. Pomorski.

“Supervision and Safety of Complex Systems”. ISTE Ltd

and John Wiley & Sons. August 2012.

[23] A. Philippot and A. Tajer, and V. Carré-Ménétrier. ‘From

Centralized to Decentralized Approach for Optimal

Controller of Discrete Manufacturing Systems’. ARPN

Journal of Science and Technology. November 2012.

[24] Technical Manual. ‘Premium Warm Standby’ . Schneider-

Electric.

[25] Technical Review. ‘PLC Siemens S7 high availability’.

[26] Benani, F. Z. ‘Design of Virtual PLC’. Magister Thesis.

University of Oran, Algeria, 2011.

http://crestic.univ-reims.fr/membre/252-veronique-carre-menetrier
javascript:nospam('abdelouahed%20[dot]%20tajer%20[at]%20univ-reims%20[dot]%20fr');
javascript:nospam('abdelouahed%20[dot]%20tajer%20[at]%20univ-reims%20[dot]%20fr');
http://crestic.univ-reims.fr/membre/290-alexandre-philippot
http://crestic.univ-reims.fr/membre/290-alexandre-philippot
http://crestic.univ-reims.fr/membre/290-alexandre-philippot
javascript:nospam('abdelouahed%20[dot]%20tajer%20[at]%20univ-reims%20[dot]%20fr');
http://crestic.univ-reims.fr/membre/252-veronique-carre-menetrier

20 Supervision Architecture Design for Programmer Logical Controller Including Crash Mode

Copyright © 2014 MECS I.J. Information Technology and Computer Science, 2014, 11, 10-20

[27] A. Philippot, M. Sayed Mouchaweh and V. Carré-

Ménétrier. ‘Generation of candidates tree for the fault

diagnosis of discrete event systems’, 2nd IFAC Workshop

on Dependable Control of Discrete System, Elsevier,

Control Engineering Practice. September 2011.

[28] W. Hettab, ‘ From UML to Petri Nets’, Journal of object

technology, Zurich, Suizerland, ETH Zurich, Chair of

Software Engineering, 2010.

Authors’ Profiles
Benani Fatima Zohra is a Post-graduate student for doctor

degree for computer science in University of Oran Algeria.

Sekhri Larbi is an Associate Professor at

the Computer Science Department of Oran

University. His current research area of

interests include formal modeling in

distributed and mobile systems, wireless

ad-hoc and sensor networks, systems

modeling using Petri nets, diagnosability

and monitoring of automated production

systems. He is member of the Industrial Computing and

Networking Laboratory at Oran University. He has been a

visiting professor at Cedric-CNAM research laboratory, in Paris,

France, and Ecole Centrale de Lille (LAGIS) where he worked

in Diagnosis of Industrial systems; and LIUPA Laboratory at

the University of Pau, France

Haffaf Hafid Obtained Doctor

degree in computer Science in 2000;

is a senior lecturer at the University

of Oran Es-Senia (Algeria). He

actually heads the L.I.I.R Laboratory

at Computer science department –

Oran University. His researchers concern different domain as

Automatic control and diagnosis, optimisation, reconfiguration

using matroid theory, system of system approaches and their

applications in Bond graph and monitoring. He has many

collaborations projects with European laboratory: Polytech lille

where he worked in Intelligent transport systems

infrastructures- and LIUPA, Pau (France) in the domain of

Wireless sensor Network

How to cite this paper: Bennani fatima zohra, Sekhri Larbi,

Haffaf Hafid,"Supervision Architecture Design for Programmer

Logical Controller Including Crash Mode", International

Journal of Information Technology and Computer

Science(IJITCS), vol.6, no.11, pp.10-20, 2014. DOI:

10.5815/ijitcs.2014.11.02

http://crestic.univ-reims.fr/membre/290-alexandre-philippot
http://crestic.univ-reims.fr/membre/250-moamar-sayed-mouchaweh
http://crestic.univ-reims.fr/membre/252-veronique-carre-menetrier
http://crestic.univ-reims.fr/membre/252-veronique-carre-menetrier

