
I.J. Information Technology and Computer Science, 2013, 09, 80-86

Published Online August 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.09.08

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

An Approach of Degree Constraint MST

Algorithm

Sanjay Kumar Pal

Department of Computer Sc. and Applications, NSHM College of Management and Technology, Kolkata, India

E-mail: sarbojay@gmail.com

Samar Sen Sarma

Department of Computer Science and Engineering, University of Calcutta, Kolkata, India

E-mail: sssarma2010@gmail.com

Abstract— This paper is approaching a new technique

of creating Minimal Spanning Trees based on degree

constraints of a simple symmetric and connected graph

G. Here we recommend a new algorithm based on the

average degree sequence factor of the nodes in the

graph. The time complexity of the problem is less than

)log(ENO compared to the other existing time

complexity algorithms is   CEEO log of Kruskal,

which is optimum. The goal is to design an algorithm

that is simple, graceful, resourceful, easy to understand,

and applicable in various fields starting from constraint

based network design, mobile computing to other field

of science and engineering.

Index Terms— Graph, Tree, Minimal Spanning Tree,

Algorithm, Average Degree Sequence

I. Introduction

Combinatorial algorithms concern the problems of

performing computations on discrete, fin ite

mathematical structures. The subject of combinatorial

algorithms often referred as combinatorial computing,

deals with the problem of computing discrete

mathematical structures. It is a new field derived from

systematic body of knowledge about the design,

implementation, and analysis of algorithms appeared

from a co llect ion of tricks distinct algorithms.

Combinatorial computing has an important role for

representation and solving the graph theory problems

like generation of all trees and cliques etc.

Graph theory algorithm can be trace back over one

hundred years to when Fleury gave a symmetric method

for tracing an Eulerian graph and G. Tarry showed how

to escape from a maze. During the 20
th

 century such

algorithms increasingly came into their own, with the

solution of such problems as the shortest and longest

path problems, the min imum connector problem, and

the Chinese postman problem. In each of these

problems we are given a network, or weighted graph, to

each edge of which has been assigned a number, such as

its length or the time taken to traverse it.

Graph theory, an important branch of engineering has

wide applications in the fields of chemistry, computer

science, mobile computing, networking, social science,

cryptography and many more. Generation of all trees of

a graph is even fabulous and it is a kind of NP-complete

problem. So lving this type of problem we generally use

some heuristics approach and it has application in

topology design and networking. Lists of some NP-

complete problems are given in the section 4 in this

paper. There are several algorithms to generate minimal

spanning tree of a weighted graph like Kruskal, Prim

algorithms and some new algorithms also discovered

which is optimal in respect of execution time comparing

to the existing one.

Graph theory finds wide influence in computer

science and mathemat ics. Graphs, especially trees and

binary trees are widely used in the representation of

data structure [1, 2, 3, 4].

A Tree is a connected linear graph without any circuit.

The concept of a tree is the most important in the graph

theory, especially for those interested in applications of

graphs. A linear graph G=(V, E) consists of a set of

objects V={v1, v2, v3,…..} called vertices, and another

set E={e1, e2, e3,……} called edges, such that each edge

ek is identified with an unordered pair (v i, vj) of vertices.

A tree is nothing but a simple graph that is, having

neither a self-loop nor parallel edges. Tree appears in

numerous instances. The genealogy of a family is often

represented by means of a t ree. In facts the term t ree

comes from family tree. In many sorting problems we

have only two alternatives at each intermediate vertex,

representing a dichotomy, such as large or small, good

or bad, 0 or 1. Such a decision tree with two choices at

each vertex occurs frequently in computer programming

and switching theory.

The concept of tree appeared implicitly in the work

of Gustav Kirchhoff (1824 - 1887), who employed

graph theoretical ideas in the calculations of currents in

the electrical networks or circuits. The enumeration

 An Approach of Degree Constraint MST Algorithm 81

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

techniques involving trees first arose in connection with

a problem in the differential calculus, but they soon

came to the fundamental tools in the counting of

chemical molecules, as well as providing a fascinating

topic of interest in their own right. Cayley was led by

the study of the particular analytical forms arising form

differential calcu lus to study a particular types of graphs,

the „tree‟. This study has many implicat ions in

theoretical chemistry. This involved techniques main ly

concerned the enumeration of graphs having particular

properties. Arthur Cayley (1821 - 1895), James J.

Sylvester (1806 - 1897), George Polya (1887 - 1995),

and other use tree to enumerate chemical molecules.

Recently, a wide variety of new results in combinatorial

enumeration have been obtained. Many of these results

were promted by new problems in computer science,

while others answered old questions in combinatorics

and other fields. The aim is to survey on history of tree

and a subset of the new results, namely those dealing

with tree enumeration.

A Spanning Tree is a t ree of a connected graph G,

which connect all vertices of the graph. If G is a

connected graph of n vertices, the spanning trees are the

subsets of n-1 edges that contain no cycles; equivalently

they are subsets of edges that form a free tree

connecting all the vertices. Spanning trees are important

in many applications, especially in the study of

networks, so the problem of generating all spanning

trees has been treated by many authors. In fact,

systematic ways to list them all were developed early in

the 20
th

 century by Wilhelm Feussner (Annalen der

Physik, 4, 1902, 1304 - 1329), long before anybody

thought about generating other kinds of trees.

Generation of a single spanning tree for a simple,

symmetric and connected graph G, is a classical, and

one polynomial time solvable problem [5, 6].

The goal of optimization of min imal spanning tree is

to find an appropriate solution [1, 7]. When studying

diverse problems, one often makes an assumption of

general position: for min imal spanning trees, one can

infinitesimally perturb the distinct edge weights in this

way to choose out a unique solution. Several algorithms

exist for generation of Minimal Spanning Tree [8]. In

Otakar Boruvka‟s algorithm of finding a Minimal

Spanning Tree in a graph, all the edge weights are

distinct. In 1957, Computer Scientist C. Prim

discovered another algorithm that finds a minimal

spanning tree for a connected weighted graph [8]. This

algorithm continuously increases the size of a t ree

starting with a single vertex until it spans over all the

vertices. This algorithm was actually discovered in

1930 by mathematician Vojtech Jarnik. Similarly

Joseph Kruskal and Edsger Dijkstra in 1959 have given

different algorithms about finding min imal spanning

tree. In 1981 coauthor Samar Sen Sarma introduced an

algorithm in his paper for generation of all spanning

trees of a simple connected graph. There is no

possibility of duplicity if the spanning tree is generated

by this algorithm, and also prohibits generation of all

the non-tree sub-graphs.

Again in 2007, authors have discussed an algorithm

where trees are generated by probing
1

e

nC 
 sets of

edges where e is the number of edges and n is the

number of vert ices of a simple connected graph

eliminating some set of edges which form circuit [9].

This paper reveals a new algorithm for creating minimal

weight spanning tree of a graph which requires less

execution time and memory space compared to the

existing algorithm. The algorithm is based on the degree

factor of the degree sequence and the weight of edges in

the graph G. A sequence nddddd ,....,,,, 4321 of

nonnegative integers is called a degree sequence of

given graph G, if the vertices of G can be labeled

n4321 v,, v, v, v,v  so that degree idiv ; for a ll

i. The sum of the integers nddddd ,....,,,, 4321 is

equal to 2e, where e is the number of edges in a graph G

[10]. For a g iven graph G, a degree sequence of G can

be easily calculated. Now the problem arises that, given

a sequence nddddd ,....,,,, 4321 of nonnegative

integers, under what conditions does there exist a graph

G? An essential and adequate condition for a sequence

to be graphical was found by Havel and later

rediscovered by Hakimi. Based on the above views we

commence a new method to find out a minimal

spanning tree of a graph G considering degree sequence

factor of the nodes as constraint. The time complexity

and space complexity of the new algorithm are optimal

in comparison to the algorithms of Kruskal and Prim.

In section 2, of the paper covers some basic

terminology used in the paper. The basic technique used

to generate the MST algorithm has been described in

section 3. It has been followed by some theorems as

foundation of the logic development and understanding

of the paper. Section 4, describes the algorithms of

degree constraint MST (main theme of this paper) and

section 5, describes circuit testing algorithm which is

used to implement the main algorithm. The complexity

of the new algorithm has been described in section 6. In

section 7, we have presented execution time of Kruskal,

Prim, and new algorithms as part of the comparative

study and analysis of execution time between

algorithms. Finally, references have been given at the

end of the paper which has helped us to get a direction.

II. Terminology

In this section basic terminology has been given

which is used in the next part of this paper.

2.1 Graph

An undirected, simple, connected graph G is an

ordered triple (V(G), E(G), f) consist of

82 An Approach of Degree Constraint MST Algorithm

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

 a non empty set of vertices Vn of the graph G

 a set of edges Ee of graph G and

 a mapping f from the set of edges E to a set of

unordered pair of elements of V.

2.2 Tree:

A tree T of a graph G is a simple, connected and

acyclic graph having exactly one path between the

vertices so that we can traverse any vertex to any others

vertices along the edges. In other words, a tree is a

simple connected graph without any self-loops or

parallel edges.

2.3 Spanning Tree

A Spanning Tree S is a tree of a connected graph G,

which touches all vert ices of the g raph. A spanning tree

has n vertices and exactly (n-1) edges of a graph G.

2.4 Minimal Spanning Tree

Let G be a connected, edge-weighted graph. A

minimal spanning tree is a subgraph of G that satisfies

the following properties:

 It is a tree, that is, it is connected and has no cycles.

 It is spanning, that is, it contains all vertices of G.

 It has minimal total edge-weight among all possible

trees.

2.5 Adjacency Matrix

For a graph G of n vert ices and e edges, if, set of

vertices, V(G) = {v1, v2, v3,……, vn} and set of edges

E(G) = {e1, e2, e3,……, en}. The adjacency matrix A , of

weighted graph G, is nn matrix and it can be

represent by A = [aij], where

if there is an edge between , ()

0 if there is no edge

ij i j

ij

w v v E G
a


 


2.6 Degree of a Vertex

The degree di of a vertex vi in a graph G is the

number of edges connected with v i. In other words,

degree di is the number of vertices adjacent to the vertex

vi.

2.7 Node Degree Factor

It is the ratio between summations of degree of nodes

of graph G to degree of a node / vertex i.e.

1

deg

()

n

i

i

i

Node Degree Factor

Sum of Degree of all nodes

ree of a node

d

d n








2.8 Average Degree

It is the ratio between summations of degree of all

nodes of the graph G to number of nodes i.e.

 

1

var
a

n

i

i

A age Degree

Summetion of Degree of nodes of graph

Total number nodes

d

n

v








2.9 Realization

A sequence
nddddd ,....,,,, 4321 of

nonnegative integers is said to be graphic sequence if

there exists a graph G whose vertices have degree id

and G is called realization of ξ.

III. Minimal Spanning Tree Generation

A tree having n nodes and n-1 edges is spanning tree

of a graph. A preferab le and efficient algorithm is one

that generates trees by selecting only the minimal cost

edges of the graph and also by not producing cycle. The

present algorithm is still required to test circuits for

some cases. This new algorithm is more eff icient in

terms of the required execution time. In this algorithm,

first we calculate average degree of each node and then

identify a node vk having degree is equal to average

degree va or more in the graph. This will identify a node

in the graph G and an edge having min imum weight

edge incident on it. This min imum weight edge incident

to vertex vk,is to be included in the list of constructing

minimal spanning tree (S), if the edge does not form

circuit in S and not selected previously.

Theorem 1: A spanning tree S of a weighted

connected graph G is the minimal weight spanning tree

if and only if there exist no other spanning tree of G at a

distance of one from S whose weight is s maller than

that of S.

Proof: Let S1 be a spanning tree in graph G

satisfying the hypothesis of the theorem there is no

 An Approach of Degree Constraint MST Algorithm 83

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

spanning tree at a distance of one (of G) from S1 which

is smaller than S1. If S2 is a s mallest spanning tree in G,

the weight of S1 will also be is equal to that of S2. The

spanning tree S2 is smallest if and only if, it satisfies the

hypothesis of the theorem.

Suppose, an edge e in S2 is selected based on the

least weight of the vertex of the graph G but it is not in

S1. Adding e to S1 forms a fundamental circuit with

branches of S1. Some of the branches in S1 that form

fundamental circuit with e in S2; each of the branches

of S1 has weight either s maller than or equal to e

because S1 is min imal weight. Amongst all these edges

of circuit but not in S2, at least one, say b, must form

fundamental circuit in S2 containing e. So, b must have

same weight as e. Therefore, spanning

tree))((11 beSS  , obtained from S1, though

one cycle exchange, has sane weight as S1. S1 has one

more edge common with S2 and it satisfies the

condition of theorem.

Theorem 2: An edge e corresponding to the vertex of

minimal weight in the graph G is form a spanning tree,

if it has minimal weight.

Proof: A spanning tree S of a graph G contains all

the vertices (exactly once) and n-1 edges, where n is the

number of vert ices. An edge e to be selected based on

the weight of the vertex. The weight of a node shows

the average weight of the edges incident to it. The

minimal weight of the vertex indicates that there must

have at least one edge whose weight is minimal and it

could include in the spanning tree S, if and only if, at

least one end vertex is not yet colored (included in S).

To avoid the generation of fundamental circu it in the

minimal spanning tree S, we select only those edges

whose, at least one vertex is not yet colored. If edge e

form fundamental circu it in min imal spanning tree S

then we will select another edge corresponding to the

same vertex whose weight is either equal to or just

higher than edge e.

Theorem 3: The combination of n-1 distinct edges is

formed spanning tree according to theorem 1, if it is

circuit less.

Proof: The n -1 edges combinations of a graph must

contain all the vertices of the graph. This combination

either contains a circuit or a spanning tree of the graph.

Thus to ascertain its calm as spanning tree circuit

testing is necessary.

Theorem 4: An edge e corresponding to the node of

highest degree factor in the graph G forms a spanning

tree, if it has minimal weight.

Proof: A spanning tree S of a graph G contains all

the vertices (exactly once) and n-1 edges, where n is the

number of vertices. An edge e is to be selected based on

the degree factor of the node. The degree factor of the

node shows how many edges are incident to a part icular

node. The highest degree factor of a node, the number

of edges incident to which is minimum with at least one

edge whose weight is min imal, is to be included in the

minimum spanning tree S.

Theorem 5: A Sequence

ndddddD ,....,,,, 4321 of nonnegative integers

with
nddddd 4321

, n ≥ 2, 11 d is

graphical if and only if the sequence

n2d1d432 d,....,d,1d,....,1d,1d,1d D
11  

 is graphical [11].

Proof: Let D is a graphical sequence. There exists

a graph G of order n−1, such that D is the degree

sequence ofG . Therefore, the vertices of G can be

labeled as n32 V.,,V,V  ; such that

12;

12;1
)deg(

1

1






idd

did
V

i

i

i

A new graph G can be constructed by adding a new

vertex
1V and the

1d edges 12; 11  diVV i .

Then in G, nifor  1d)deg(V ii
and so

nD d,,d,d,d,d 4321  is graphical.

Conversely, let D be a graphical sequence. Hence

there exist graphs of order n with degree sequence D.

Among all such graphs let G be one, such

that  n4321 V,,V,V,V,VV(G)  ;

n.,1,2,3,ifor d)deg(V ii  and the  id

even number, the sum of degrees of the vertices

adjacent with 1V is maximum. We show first that 1V

is adjacent to vertices having

degrees 1d432 1
d,,d,d,d  .

Suppose, to the contrary, that 1V is not adjacent to

vertices having degrees 1d432 1
d,,d,d,d  . Then

there exist vertices rV and sV with sr d d  such that

1V is adjacent to sV , but not to rV . Since, the degree of

rV exceeds that sV , there exists a vertex tV , such that

tV is adjacent to rV but not to sV . Removing the

degrees sV1V and trVV and adding the edges rV1V

and tsVV results in a graph G having the same degree

sequence as G. However, in G the sum of the degrees

of the vertices adjacent to 1V is larger than that in G,

contradicting the choice of G. Thus, 1V is adjacent

84 An Approach of Degree Constraint MST Algorithm

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

with vert ices having degrees 1d432 1
d,,d,d,d  , and

the graph)V-(G 1
 has degree sequence D , so D is

graphical.

Theorem 6: If a subgraph of n-1 edges contains more

than three nodes of degree more than one and if there is

no pendent edge in the graph, the subgraph contains a

circuit.

Proof: For simplicity and to explain the theorem

easily, we take into consideration a simple connected

graph as shown in the figure given below.

Fig. 1: A Simple Connected undirected Graph

From the g iven graph in figure 1, if we consider the

edge combination, 1 4 5 6 2, the degree of each vertices

corresponding to the given edge combination are,

Since there are three vert ices of degree one and only

two vertices of degree more than one, hence this n-1

edges combination will not produce a tree of the graph

G. The pictorial form of this tree is shown in the figure

given below.

Fig 2: An Illustrative Tree of Graph shown in fig.1

Considering another example, if edge combination is,

0 3 5 6 2, of the graph shown in figure 1, the degree of

each vertices corresponding to the given edges

combination are,

In the above combination, there are two vert ices of

degree one and three vertices of degree more than one,

hence this combination may g ive the circuit. Deleting

pendent edges incidence on vertex a and b, the modified

degree of all the vertices are,

Since, the degree of all the three vertices are more

than one, this is confirmed that the edge co mbination

will produce a circuit. The pictorial form of this

combination is shown in figure 3.

Fig 3: An Illustrative Circuit of Graph shown in Fig. 1

IV. Algorithm of Constraints based Minimal

Spanning Tree Generation

Initially we generate random weighted graph

according to the given number of nodes and edge

density. The weight matrix of the randomly generated

graph is used as input for generation of minimal

spanning tree of the graph. The output of the algorithm

is minimal weight spanning tree (S) where each node of

the graph is represented by the edge number from

0,1,2,……..,n. The weight, w of the edge is stored in the

adjacency matrix if there is an edge between the nodes.

Step 4.1: Generate random weighted graph and

corresponding weight matrix according to the

given number of nodes and edge density.

Step 4.2: Calculate average degree (va) of nodes using

the formula shown in section 2.8. Since

average degree of node is va therefore,

maximum degree of a node in constructing

minimal spanning tree will be consider is

lower value of va i.e. .

Step 4.3: Select any node vk having average degree va

or more in graph G, for construction of

minimal spanning tree.

Step 4.4: Select a minimum weight edge ie which is

adjacent to node vk, put this edge into

constructing MST, so that the edge do not

form circu it and degree of vk could not be

more than average degree va.

 An Approach of Degree Constraint MST Algorithm 85

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

Step 4.5: Construct new graph G removing the edge

already selected in constructing minimal

spanning tree and assign G into G.

Step 4.6: Apply iteratively step 3 to step 5, till (n-1)

edges are not selected into constructing

Minimal Spanning Tree.

Step 4.7: Calculate sum of the weight of the edges in

the constructing MST, S.

Step 4.8: Display/store output.

Step 4.9: Stop.

V. Circuits Testing Algorithm

The circuit testing algorithm is used to find out the

circuit in the constructing spanning tree is given below.

Step 5.1: From n-1 edges and incidence matrix degree

of each node is obtained which is contributed

by n-1 edges under consideration.

Step 5.2: Testing is done whether at least two nodes of

degree one exits or not. If not, step 6 is

executed. Otherwise the process is continued.

Step 5.3: It is tested whether at least three nodes of

degree or more than one is present or not. If

not, then step 5 is followed.

Step 5.4: Pendant edges are deleted, if there is

existence of n-1 edges and the degree of the

nodes are modified accordingly and is carried

on to step 2. Otherwise step 6 is executed.

Step 5.5: Edge combinations are tree.

Step 5.6: Stop.

VI. Complexity of the Algorithm

The Circuit testing is not required in the min imum

spanning tree generation algorithm because we have

always chosen a node v in the graph G exactly once for

the MST, S. The sorting of edges and finding the

minimum weight edges neighbors of the constructed

tree is not required. The t ime complexity of new

algorithm is)log(ENO and it is reduced due to non

requirement of checking of circuit in generation of tree.

The memory space required to execute the program of

new algorithm is
2n where n is the number of vertices

of the graph G.

VII. Results Analysis and Conclusion

Hardware used to perform this experiment is Pentium

IV computer and 2 GB DDR2 RAM. The program is

written in „C‟ programming language and Turbo „C‟

compiler is used for compilation

and execution purpose. The experiment has been

performed on several graphs of different types.

The storage requirement of this algorithm is

proportional to (
2n). The experimental result of the

algorithms is given in Table 1 as comparative study.

Table1: Execution time of Kruskal, Prim and New algorithms:

No.

of
Node

No.

of
Edge

Execution Time of
Algorithm * 100 (in Second)

Kruskal Prim New Algorithm

3 3 1.70 1.95 1.71

4 4 4.56 4.46 4.52

4 5 4.67 4.72 4.51

5 8 7.36 7.42 7.32

6 12 8.84 8.90 8.62

7 13 18.78 16.75 16.22

7 17 19.12 20.59 18.68

8 25 18.89 18.89 18.40

9 21 24.44 21.75 21.24

9 32 37.35 31.69 30.79

10 18 33.28 32.76 32.04

10 42 38.66 36.80 35.58

11 27 36.80 36.74 35.53

11 50 40.18 37.56 36.37

12 20 36.68 37.14 35.62

12 53 51.30 40.32 39.02

13 31 73.60 51.74 50.78

13 70 79.94 55.03 53.14

14 55 71.94 67.87 65.73

14 82 124.68 120.20 117.12

15 32 87.60 73.68 72.69

15 72 121.65 101.85 99.01

16 48 98.25 74.35 72.47

16 108 123.70 118.65 114.01

17 41 121.40 109.30 106.08

17 55 144.75 124.55 120.27

18 76 146.35 125.85 120.02

19 68 177.95 156.80 150.11

20 95 317.60 231.81 222.73

21 74 343.80 312.60 292.49

22 69 530.6 292.2 270.11

23 126 596.40 336.63 311.32

24 82 561.22 441.02 420.79

25 78 540.34 434.77 408.31

30 30 662.32 616.43 590.33

86 An Approach of Degree Constraint MST Algorithm

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 80-86

References

[1] N. Deo, “Graph Theory with Application to

Engineering and Computer Sciences,” PHI,

Englewood Cliffs, N. J., 2007

[2] Thomas H. Coremen, Charles E. Leiserson, Ronald

L. Rivest, Clifford Stein, “Introduction

to Algorithms”, PHI, Second Edition, 2008

[3] Harowitz Sahnai & Rajsekaran, “Fundamentals of

Computer Algorithms”,Galgotia Publications Pvt.

Ltd., 2000

[4] J. A. Bondy and U. S. R. Murty, “Graph Theory

with Applications”, The Macmillan Press, Great

Britain, 1976

[5] http://en.wikipedia.org/wiki/Boruvka‟s_algorithm,

28 November 2012

[6] http://en.wikipedia.org/wiki/Degree_(graph_theory

), 24 September 2012

[7] anjoy Dasgupta, Christos Papadimitriou, Umesh

Vazirani, “Algorithms”, Tata McGraw-Hill, First

Edition, 2008

[8] A. Rakshit, A. K. Choudhury, S. S. Sarma and

R.K. Sen, “An Efficient Tree Generat ion Algorith

m,” IETE, vol. 27, pp. 105-109, 1981

[9] Sanjay Kumar Pal and Samar Sen Sarma, “An

Efficient All Spanning Tree Generat ion Algorithm

”, IJCS, vol. 2, No. 1, pp. 48 – 59, January 2008

[10] F. A. Muntaner-Batle and M. Rius Font, “A Note

on degree Sequence of Graphs with restrictions”,

http://upcommons.upc.edu/eprints/bitstream/2117/

1490/1/sequences.pdf, 02 January 2013

[11] Arumugam S. and Ramachandran S., Invitation to

Graph Theory, Scitech Publications(INDIA) Pvt.

Ltd., Chennai, 2002

Authors’ Profiles

Sanjay Kumar Pal: Assistant

Professor of Department of

Computer Science and Applicat ions

under West Bengal University of

Technology, Kolkata. Published one

book named „Allurement of Some

Graph Algorithms‟, and having forty

research publications in different

international/national journals, more than 9 years

academic and twelve years industrial experience.

Samar Sen Sarma: Professor of

Department of Computer Science and

Engineering in University of Calcutta,

Kolkata. Author has published two

books, and having eighty publications

in different international /national journals, and more

than forty years of academic and research experience.

How to cite this paper: Sanjay Kumar Pal, Samar Sen

Sarma,"An Approach of Degree Constraint MST Algorithm",

International Journal of Information Technology and

Computer Science(IJITCS), vol.5, no.9, pp.80-86, 2013. DOI:

10.5815/ijitcs.2013.09.08

