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Abstract— This paper is approaching a new technique 

of creating Minimal Spanning Trees based on degree 

constraints of a simple symmetric and connected graph 

G. Here we recommend a new algorithm based on the 

average degree sequence factor of the nodes in the 

graph. The time complexity of the problem is less than 

)log( ENO compared to the other existing time 

complexity algorithms is   CEEO log  of Kruskal, 

which is optimum. The goal is to design an algorithm 

that is simple, graceful, resourceful, easy to understand, 

and applicable in various fields starting from constraint 

based network design, mobile computing to other field 

of science and engineering. 

 

Index Terms— Graph, Tree, Minimal Spanning Tree, 

Algorithm, Average Degree Sequence 

 

I. Introduction 

Combinatorial algorithms concern the problems of 

performing computations on discrete, fin ite 

mathematical structures. The subject of combinatorial 

algorithms often referred as combinatorial computing, 

deals with the problem of computing discrete 

mathematical structures. It is a new field derived from 

systematic body of knowledge about the design, 

implementation, and analysis of algorithms appeared 

from a co llect ion of tricks distinct algorithms. 

Combinatorial computing has an important role for 

representation and solving the graph theory problems 

like generation of all trees and cliques etc. 

Graph theory algorithm can be trace back over one 

hundred years to when Fleury gave a symmetric method 

for tracing an Eulerian graph and G. Tarry showed how 

to escape from a maze. During the 20
th

 century such 

algorithms increasingly  came into their own, with the 

solution of such problems as the shortest and longest 

path problems, the min imum connector problem, and 

the Chinese postman problem. In each of these 

problems we are given a network, or weighted graph, to 

each edge of which has been assigned a number, such as 

its length or the time taken to traverse it. 

Graph theory, an important branch of engineering has 

wide applications in the fields of chemistry, computer 

science, mobile computing, networking, social science, 

cryptography and many  more. Generation of all trees of 

a graph is even fabulous and it is a kind of NP-complete 

problem. So lving this type of problem we generally use 

some heuristics approach and it has application in 

topology design and networking. Lists of some NP-

complete problems are given in the section 4 in this 

paper. There are several algorithms to generate minimal 

spanning tree of a weighted graph like Kruskal, Prim 

algorithms and some new algorithms also discovered 

which is optimal in respect of execution time comparing 

to the existing one. 

Graph theory finds wide influence in  computer 

science and mathemat ics. Graphs, especially  trees and 

binary trees are widely used in the representation of 

data structure [1, 2, 3, 4]. 

A Tree is a connected linear graph without any circuit. 

The concept of a tree is the most important in  the graph 

theory, especially for those interested in applications of 

graphs. A linear graph G=(V, E) consists of a set of 

objects V={v1, v2, v3,…..} called vertices, and another 

set E={e1, e2, e3,……} called edges, such that each edge 

ek is identified with an unordered pair (v i, vj) of vertices. 

A tree is nothing but a simple graph that is, having 

neither a self-loop nor parallel edges. Tree appears in 

numerous instances. The genealogy of a family is often 

represented by means of a t ree. In facts the term t ree 

comes from family tree. In many sorting problems we 

have only two alternatives at each intermediate vertex, 

representing a dichotomy, such as large or small, good 

or bad, 0 or 1. Such a decision tree with two choices at 

each vertex occurs frequently in computer programming 

and switching theory. 

The concept of tree appeared implicitly in the work 

of Gustav Kirchhoff (1824 - 1887), who employed 

graph theoretical ideas in the calculations of currents in 

the electrical networks or circuits. The enumeration 
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techniques involving trees first arose in connection with 

a problem in  the differential calculus, but they soon 

came to the fundamental tools in the counting of 

chemical molecules, as well as providing a fascinating 

topic of interest in their own right. Cayley was led by 

the study of the particular analytical forms arising form 

differential calcu lus to study a particular types of graphs, 

the „tree‟. This study has many implicat ions in 

theoretical chemistry. This involved techniques main ly 

concerned the enumeration of graphs having particular 

properties. Arthur Cayley (1821 - 1895), James J. 

Sylvester (1806 - 1897), George Polya (1887 - 1995), 

and other use tree to enumerate chemical molecules. 

Recently, a  wide variety of new results in combinatorial 

enumeration have been obtained. Many of these results 

were promted by new problems in computer science, 

while others answered old questions in combinatorics 

and other fields. The aim is to survey on history of tree 

and a subset of the new results, namely those dealing 

with tree enumeration. 

A Spanning Tree is a t ree of a connected graph G, 

which connect all vertices of the graph. If G is a 

connected graph of n vertices, the spanning trees are the 

subsets of n-1 edges that contain no cycles; equivalently 

they are subsets of edges that form a free tree 

connecting all the vertices. Spanning trees are important 

in many applications, especially in the study of 

networks, so the problem of generating all spanning 

trees has been treated by many authors. In fact, 

systematic ways to list them all were developed early in 

the 20
th

 century by Wilhelm Feussner (Annalen der 

Physik, 4, 1902, 1304 - 1329), long before anybody 

thought about generating other kinds of trees. 

Generation of a single spanning tree for a simple, 

symmetric and connected graph G, is a classical, and 

one polynomial time solvable problem [5, 6]. 

The goal of optimization of min imal spanning tree is 

to find an appropriate solution [1, 7].  When studying 

diverse problems, one often makes an assumption of 

general position: for min imal spanning trees, one can 

infinitesimally  perturb the distinct edge weights in this 

way to choose out a unique solution. Several algorithms 

exist for generation of Minimal Spanning Tree [8]. In 

Otakar Boruvka‟s algorithm of finding a Minimal 

Spanning Tree in a graph, all the edge weights are 

distinct. In 1957, Computer Scientist C. Prim 

discovered another algorithm that finds a minimal 

spanning tree for a connected weighted graph [8]. This 

algorithm continuously increases the size of a t ree 

starting with a single vertex until it spans over all the 

vertices. This algorithm was actually discovered in 

1930 by mathematician Vojtech Jarnik. Similarly 

Joseph Kruskal and Edsger Dijkstra in 1959 have given 

different algorithms about finding min imal spanning 

tree. In 1981 coauthor Samar Sen Sarma introduced an 

algorithm in his paper for generation of all spanning 

trees of a simple connected graph. There is no 

possibility of duplicity if the spanning tree is generated 

by this algorithm, and also prohibits generation of all 

the non-tree sub-graphs. 

Again in 2007, authors have discussed an algorithm 

where trees are generated by probing 
1

e

nC 
 sets of 

edges where e is the number of edges and n is the 

number of vert ices of a simple connected graph 

eliminating some set of edges which form circuit  [9]. 

This paper reveals a new algorithm for creating minimal 

weight spanning tree of a graph which  requires less 

execution time and memory  space compared to the 

existing algorithm. The algorithm is based on the degree 

factor of the degree sequence and the weight of edges in 

the graph G. A sequence nddddd ,....,,,, 4321  of 

nonnegative integers is called a degree sequence of 

given graph G, if the vertices of G can be labeled 

n4321  v,, v, v, v,v   so that degree idiv ; for a ll 

i. The sum of the integers nddddd ,....,,,, 4321 is 

equal to 2e, where e  is the number of edges in a graph G 

[10]. For a g iven graph G, a degree sequence of G can 

be easily calculated. Now the problem arises that, given 

a sequence nddddd ,....,,,, 4321 of nonnegative 

integers, under what conditions does there exist a graph 

G? An essential and adequate condition for a sequence 

to be graphical was found by Havel and later 

rediscovered by Hakimi. Based on the above views we 

commence a new method to find out a minimal 

spanning tree of a graph G considering degree sequence 

factor of the nodes as constraint. The time complexity 

and space complexity of the new algorithm are optimal 

in comparison to the algorithms of Kruskal and Prim. 

In section 2, of the paper covers some basic 

terminology used in the paper. The basic technique used 

to generate the MST algorithm has been described in 

section 3. It has been followed by some theorems as 

foundation of the logic development and understanding 

of the paper. Section 4, describes the algorithms of 

degree constraint MST (main  theme of this paper) and 

section 5, describes circuit testing algorithm which is 

used to implement the main algorithm. The complexity 

of the new algorithm has been described in section 6. In 

section 7, we have presented execution time of Kruskal, 

Prim, and new algorithms as part of the comparative 

study and analysis of execution time between 

algorithms. Finally, references have been given at the 

end of the paper which has helped us to get a direction. 

 

II. Terminology 

In this section basic terminology has been given 

which is used in the next part of this paper. 

 

2.1 Graph 

An undirected, simple, connected graph G is an 

ordered triple (V(G), E(G ), f) consist of  
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 a non empty set of vertices Vn of the  graph G  

 a set of edges Ee  of graph G and  

 a mapping f from the set of edges E to a set of 

unordered pair of elements of V. 

 

2.2 Tree: 

A tree T of a graph G is a simple, connected and 

acyclic graph having exactly one path between the 

vertices so that we can traverse any vertex to any others 

vertices along the edges. In other words, a  tree is a 

simple connected graph without any self-loops or 

parallel edges.   

 

2.3 Spanning Tree 

A Spanning Tree S is a tree of a connected graph G, 

which touches all vert ices of the g raph. A spanning tree 

has n vertices and exactly (n-1) edges of a graph G. 

 

2.4 Minimal Spanning Tree 

Let G be a connected, edge-weighted graph. A 

minimal spanning tree is a subgraph of G that satisfies 

the following properties:  

 It is a tree, that is, it is connected and has no cycles.  

 It is spanning, that is, it contains all vertices of G.  

 It has minimal total edge-weight among all possible 

trees.  

 

2.5 Adjacency Matrix 

For a graph G of n vert ices and e edges, if, set  of 

vertices, V(G) = {v1, v2, v3,……, vn} and set of edges 

E(G) = {e1, e2, e3,……, en}. The adjacency matrix A , of 

weighted graph G, is nn matrix and it can be 

represent by A = [aij], where  

 

if there is an edge between , ( )

0 if there is no edge

ij i j

ij

w v v E G
a


 


 

 

2.6 Degree of a Vertex 

The degree di of a vertex vi in a graph G is the 

number of edges connected with v i. In other words, 

degree di is the number of vertices adjacent to the vertex 

vi. 

 

2.7 Node Degree Factor 

It is the ratio between summations of degree of nodes 

of graph G to degree of a node / vertex i.e. 

1

deg

( )

n

i

i

i

Node Degree Factor

Sum of Degree of all nodes

ree of a node

d

d n








 

 

2.8 Average Degree 

It is the ratio between summations of degree of all 

nodes of the graph G to number of nodes i.e. 

 

1

var
a

n

i

i

A age Degree

Summetion of Degree of nodes of graph

Total number nodes

d

n

v








 

 

2.9 Realization 

A sequence 
nddddd ,....,,,, 4321  of 

nonnegative integers is said to be graphic sequence if 

there exists a graph G whose vertices have degree id  

and G is called realization of ξ. 

 

III. Minimal Spanning Tree Generation 

A tree having n nodes and n-1 edges is spanning tree 

of a graph. A  preferab le and  efficient algorithm is one 

that generates trees by selecting only the minimal cost 

edges of the graph and also by not producing cycle. The 

present algorithm is still required to  test circuits for 

some cases. This new algorithm is more eff icient in 

terms of the required execution time. In  this algorithm, 

first we calculate average degree of each node and then 

identify a node vk having degree is equal to average 

degree va or more in  the graph. This will identify a node 

in the graph G and an edge having min imum weight 

edge incident on it. This min imum weight edge incident 

to vertex vk,is  to be included in the list of constructing 

minimal spanning tree (S), if the edge does not form 

circuit in S and not selected previously. 

Theorem 1: A spanning tree S of a weighted 

connected graph G is the minimal weight spanning tree 

if and only if there exist no other spanning tree of G at a 

distance of one from S whose weight is s maller than 

that of S. 

Proof:  Let S1 be a spanning tree in graph G 

satisfying the hypothesis of the theorem there is no 
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spanning tree at a  distance of one (of G) from S1 which 

is smaller than S1. If S2 is a s mallest spanning tree in G, 

the weight of S1 will also be is equal to that of S2. The 

spanning tree S2 is smallest if and only if, it satisfies the 

hypothesis of the theorem.  

Suppose, an edge e in S2 is selected based on the 

least weight of the vertex of the graph G but it is not in 

S1. Adding e to S1 forms  a fundamental circuit  with 

branches of S1. Some of the branches in S1 that form 

fundamental circuit with e in S2; each of the branches 

of S1 has weight either s maller than or equal to e 

because S1 is min imal weight. Amongst all these edges 

of circuit  but not in  S2, at  least one, say b, must form 

fundamental circuit in S2 containing e. So, b must have 

same weight as e. Therefore, spanning 

tree ))(( 11 beSS  , obtained from S1, though 

one cycle exchange, has sane weight as S1. S1 has one 

more edge common with S2 and it satisfies the 

condition of theorem.  

 

Theorem 2: An edge e corresponding to the vertex of 

minimal weight in the graph G is form a spanning tree, 

if it has minimal weight. 

Proof: A spanning tree S of a graph G contains all 

the vertices (exactly once) and n-1 edges, where n  is the 

number of vert ices. An edge e to be selected based on 

the weight of the vertex. The weight of a node shows 

the average weight of the edges incident to it. The 

minimal weight of the vertex indicates that there must 

have at least one edge whose weight is minimal and it 

could include in the spanning tree S, if and only if, at 

least one end vertex is not yet colored (included in S). 

To avoid the generation of fundamental circu it in the 

minimal spanning tree S, we select only those edges 

whose, at least one vertex is not yet colored. If edge e 

form fundamental circu it in min imal spanning tree S 

then we will select another edge corresponding to the 

same vertex whose weight is either equal to or just 

higher than edge e. 

 

Theorem 3: The combination of n-1 distinct edges is 

formed spanning tree according to theorem 1, if it is 

circuit less. 

Proof: The n -1 edges combinations of a graph must 

contain all the vertices of the graph. This combination 

either contains a circuit or a spanning tree of the graph. 

Thus to ascertain its calm as spanning tree circuit 

testing is necessary. 

 

Theorem 4: An edge e corresponding to the node of 

highest degree factor in the graph G forms a spanning 

tree, if it has minimal weight. 

Proof: A spanning tree S of a graph G contains all 

the vertices (exactly once) and n-1 edges, where n  is the 

number of vertices. An edge e is to be selected based on 

the degree factor of the node. The degree factor of the 

node shows how many edges are incident to a part icular 

node. The highest degree factor of a node, the number 

of edges incident to which  is minimum with at least one 

edge whose weight is min imal, is to be included in the 

minimum spanning tree S. 

 

Theorem 5: A Sequence 

ndddddD ,....,,,, 4321  of nonnegative integers 

with
nddddd  ....4321

, n  ≥ 2, 11 d is 

graphical if and only if the sequence 

n2d1d432 d,....,d,1d,....,1d,1d,1d D
11  

 is graphical [11]. 

Proof: Let D  is a  graphical sequence. There exists 

a graph G  of order n−1, such that D  is the degree 

sequence ofG . Therefore, the vertices of G  can be 

labeled as n32 V.,,V,V  ; such that 

12;

12;1
)deg(

1

1






idd

did
V

i

i

i  

A new graph G can be constructed by adding a new 

vertex 
1V  and the 

1d  edges 12; 11  diVV i . 

Then in G, nifor  1d  )deg(V ii
and so 

nD d,,d,d,d,d 4321   is graphical.  

Conversely, let  D be a graphical sequence. Hence 

there exist graphs of order n with degree sequence D. 

Among all such graphs let G be one, such 

that  n4321 V,,V,V,V,VV(G)  ; 

n.,1,2,3,ifor  d)deg(V ii  and the  id  

even number, the sum of degrees of the vertices 

adjacent with 1V  is maximum. We show first that 1V  

is adjacent to vertices having 

degrees 1d432 1
d,,d,d,d  .  

Suppose, to the contrary, that 1V  is not adjacent to 

vertices having degrees 1d432 1
d,,d,d,d  . Then 

there exist vertices rV  and sV  with sr d  d  such that 

1V  is adjacent to sV , but not to rV . Since, the degree of 

rV  exceeds that sV , there exists a vertex tV , such that 

tV  is adjacent to rV  but not to sV . Removing the 

degrees sV1V  and trVV  and adding the edges rV1V  

and tsVV  results in a graph G  having the same degree 

sequence as G. However, in G  the sum of the degrees 

of the vertices adjacent to 1V  is larger than that in G, 

contradicting the choice of G. Thus, 1V  is adjacent 
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with vert ices having degrees 1d432 1
d,,d,d,d  , and 

the graph )V-(G 1
 has degree sequence D , so D  is 

graphical. 

 

Theorem 6: If a  subgraph of n-1 edges contains more 

than three nodes of degree more than one and if there is 

no pendent edge in the graph, the subgraph contains a 

circuit. 

Proof: For simplicity and to explain the theorem 

easily, we take into consideration a simple connected 

graph as shown in the figure given below. 

 

Fig. 1: A Simple Connected undirected Graph 

 

From the g iven graph in figure 1, if we consider the 

edge combination, 1 4 5 6 2, the degree of each vertices 

corresponding to the given edge combination are, 

 

Since there are three vert ices of degree one and only 

two vertices of degree more than one, hence this n-1 

edges combination will not produce a tree of the graph 

G. The pictorial form of this tree is shown in the figure 

given below. 

 

Fig 2: An Illustrative Tree of Graph shown in fig.1  

 

Considering another example, if edge combination is, 

0 3 5 6 2, of the graph shown in figure 1, the degree of 

each vertices corresponding to the given edges 

combination are, 

 

In the above combination, there are two vert ices of 

degree one and three vertices of degree more than one, 

hence this combination may g ive the circuit. Deleting 

pendent edges incidence on vertex a and b, the modified 

degree of all the vertices are, 

 

Since, the degree of all the three vertices are more 

than one, this is confirmed that the edge co mbination 

will produce a circuit. The pictorial form of this 

combination is shown in figure 3. 

 

Fig 3: An Illustrative Circuit of Graph shown in Fig. 1  

 

IV. Algorithm of Constraints based Minimal 

Spanning Tree Generation 

Initially we generate random weighted graph 

according to the given number of nodes and edge 

density. The weight matrix of the randomly generated 

graph is used as input for generation of minimal 

spanning tree of the graph. The output of the algorithm 

is minimal weight spanning tree (S) where each node of 

the graph is represented by the edge number from 

0,1,2,……..,n. The weight, w of the edge is stored in the 

adjacency matrix if there is an edge between the nodes. 

Step 4.1: Generate random weighted graph and 

corresponding weight matrix according to the 

given number of nodes and edge density. 

Step 4.2: Calculate average degree (va) of nodes using 

the formula shown in section 2.8. Since 

average degree of node is va therefore, 

maximum degree of a node in constructing 

minimal spanning tree will be consider is 

lower value of va i.e. . 

Step 4.3: Select any node vk having average degree va 

or more in graph G, for construction of 

minimal spanning tree.  

Step 4.4: Select a minimum weight edge ie  which is 

adjacent to node vk, put this edge into 

constructing MST, so that the edge do not 

form circu it and degree of vk could not be 

more than average degree va. 
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Step 4.5: Construct new graph G  removing the edge 

already selected in constructing minimal 

spanning tree and assign G  into G. 

Step 4.6: Apply iteratively step 3 to step 5, till (n-1) 

edges are not selected into constructing 

Minimal Spanning Tree. 

Step 4.7: Calculate sum of the weight of the edges in 

the constructing MST, S. 

Step 4.8: Display/store output. 

Step 4.9: Stop. 

 

V. Circuits Testing Algorithm 

The circuit testing algorithm is used to find out the 

circuit in the constructing spanning tree is given below. 

Step 5.1: From n-1 edges and incidence matrix degree 

of each node is obtained which is contributed 

by n-1 edges under consideration. 

Step 5.2: Testing is done whether at least two nodes of 

degree one exits or not. If not, step 6 is 

executed. Otherwise the process is continued. 

Step 5.3: It is tested whether at least three nodes of 

degree or more than one is present or not. If 

not, then step 5 is followed. 

Step 5.4: Pendant edges are deleted, if there is 

existence of n-1 edges and the degree of the 

nodes are modified accordingly and is carried  

on to step 2. Otherwise step 6 is executed. 

Step 5.5: Edge combinations are tree. 

Step 5.6: Stop. 

 

VI. Complexity of the Algorithm 

The Circuit testing is not required in the min imum 

spanning tree generation algorithm because we have 

always chosen a node v  in the graph G exactly once for 

the MST, S. The sorting of edges and finding the 

minimum weight edges neighbors of the constructed 

tree is not required. The t ime complexity of new 

algorithm is )log( ENO and it is reduced due to non 

requirement of checking of circuit in generation of tree. 

The memory  space required to  execute the program of 

new algorithm is 
2n  where n is the number of vertices 

of the graph G. 

 

VII. Results Analysis and Conclusion 

Hardware used to perform this experiment is Pentium 

IV computer and 2 GB DDR2 RAM. The program is 

written in „C‟ programming language and Turbo „C‟ 

compiler is used for compilation 

and execution purpose. The experiment  has been 

performed on several graphs of different types. 

The storage requirement of this algorithm is 

proportional to (
2n ). The experimental result of the 

algorithms is given in Table 1 as comparative study. 

 
Table1: Execution time of Kruskal, Prim and New algorithms: 

No.  

of 
Node 

No.  

of 
Edge 

Execution Time of 
Algorithm * 100 (in Second) 

Kruskal Prim New Algorithm 

3 3 1.70 1.95 1.71 

4 4 4.56 4.46 4.52 

4 5 4.67 4.72 4.51 

5 8 7.36 7.42 7.32 

6 12 8.84 8.90 8.62 

7 13 18.78 16.75 16.22 

7 17 19.12 20.59 18.68 

8 25 18.89 18.89 18.40 

9 21 24.44 21.75 21.24 

9 32 37.35 31.69 30.79 

10 18 33.28 32.76 32.04 

10 42 38.66 36.80 35.58 

11 27 36.80 36.74 35.53 

11 50 40.18 37.56 36.37 

12 20 36.68 37.14 35.62 

12 53 51.30 40.32 39.02 

13 31 73.60 51.74 50.78 

13 70 79.94 55.03 53.14 

14 55 71.94 67.87 65.73 

14 82 124.68 120.20 117.12 

15 32 87.60 73.68 72.69 

15 72 121.65 101.85 99.01 

16 48 98.25 74.35 72.47 

16 108 123.70 118.65 114.01 

17 41 121.40 109.30 106.08 

17 55 144.75 124.55 120.27 

18 76 146.35 125.85 120.02 

19 68 177.95 156.80 150.11 

20 95 317.60 231.81 222.73 

21 74 343.80 312.60 292.49 

22 69 530.6 292.2 270.11 

23 126 596.40 336.63 311.32 

24 82 561.22 441.02 420.79 

25 78 540.34 434.77 408.31 

30 30 662.32 616.43 590.33 

 



86 An Approach of Degree Constraint MST Algorithm  

Copyright © 2013 MECS                                          I.J. Information Technology and Computer Science, 2013, 09, 80-86 

References 

[1] N. Deo, “Graph Theory with Application to 

Engineering and Computer Sciences,” PHI, 

Englewood Cliffs, N. J., 2007 

[2] Thomas H. Coremen, Charles E. Leiserson, Ronald 

L. Rivest, Clifford  Stein, “Introduction 

to Algorithms”, PHI, Second Edition, 2008  

[3] Harowitz Sahnai & Rajsekaran, “Fundamentals of 

Computer Algorithms”,Galgotia  Publications Pvt. 

Ltd., 2000 

[4] J. A. Bondy and U. S. R. Murty, “Graph Theory 

with  Applications”, The Macmillan  Press, Great 

Britain, 1976 

[5] http://en.wikipedia.org/wiki/Boruvka‟s_algorithm, 

28 November 2012 

[6] http://en.wikipedia.org/wiki/Degree_(graph_theory

), 24 September 2012 

[7] anjoy Dasgupta, Christos Papadimitriou, Umesh 

Vazirani, “Algorithms”, Tata McGraw-Hill, First 

Edition, 2008 

[8] A. Rakshit, A. K. Choudhury, S. S. Sarma and 

R.K. Sen, “An Efficient Tree  Generat ion  Algorith

m,” IETE, vol. 27, pp. 105-109, 1981 

[9] Sanjay Kumar Pal and Samar Sen Sarma, “An 

Efficient All Spanning Tree Generat ion  Algorithm

”, IJCS, vol. 2, No. 1, pp. 48 – 59, January 2008 

[10] F. A. Muntaner-Batle and M. Rius Font, “A  Note 

on degree Sequence of Graphs with restrictions”, 

http://upcommons.upc.edu/eprints/bitstream/2117/

1490/1/sequences.pdf, 02 January 2013 

[11] Arumugam S. and Ramachandran S., Invitation to 

Graph Theory, Scitech Publications(INDIA) Pvt. 

Ltd., Chennai, 2002 

 

Authors’ Profiles 

Sanjay Kumar Pal: Assistant 

Professor of Department of 

Computer Science and Applicat ions 

under West Bengal University of 

Technology, Kolkata. Published one 

book named „Allurement of Some 

Graph Algorithms‟, and having forty 

research publications in different 

international/national  journals, more than 9 years 

academic and twelve years industrial experience. 

 

Samar Sen Sarma: Professor of 

Department of Computer Science and 

Engineering in University of Calcutta, 

Kolkata. Author has published two 

books, and having eighty publications 

in different international /national journals, and more 

than forty years of academic and research experience. 

 

 

 
How to cite this paper: Sanjay Kumar Pal, Samar Sen 

Sarma,"An Approach of Degree Constraint MST Algorithm", 

International Journal of Information Technology and 

Computer Science(IJITCS), vol.5, no.9, pp.80-86, 2013. DOI: 

10.5815/ijitcs.2013.09.08 


