
I.J. Information Technology and Computer Science, 2013, 09, 108-117

Published Online August 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.09.12

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Validation of Novel Approach to Detect Type

Mismatch Problem Using Component Based

Development

M. Rizwan Jameel Qureshi, Ebtesam Ahmad Alomari

Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah, Saudi Arabia

E-mail: anriz@hotmail.com, ebtesam07@yahoo.com

Abstract—— Adaptation software component is a

crucial problem in component-based software

engineering (CBSE). Components that assembled or

reused sometimes cannot perfectly fit one another

because of the incompatibility issues between them.

The focus today is on finding adaptation technique, to

solve the mismatch between component interfaces and

to guarantee that the software components are able to

interact in the right way. This paper will focus on

detecting mis match, which considers as an important

step through adaptation process. We propose a solution

to detect mismatch, by suggesting improvement in

Symbolic Transition Systems that used in representing

component interface, and synchronous vector algorithm

to deal with parameters data type mismatch.

Index Terms— Software; Component; Adaptation;

Mismatch

I. Introduction

Component based software engineering (CBSE)

indicates that assembling and reusing existing software

components can develop the new systems . However, the

assembling or reusing process may lead to

interoperation among components that rise the needing

to adaptation technique.

Mainly, the component adaptation process helps to

guarantee that software components are able to interact

with each other's successfully. Moreover, finding

effective adaptation approach considers as a difficu lt

problem today where CBSE indicates that components

have to be reusable from its interface.

According to the description of component interface,

there are several levels of mis matches [1]: technical

level, signature level, behavioral level, semantic level

and service level. The behavioral mismatch can be

caused by not correspond message names, incompatible

ordering of messages in two or more components, or by

some messages in one component that have no match

with several messages in another component.

This paper focuses on detecting mismatch appearing

at the behavioral level by suggest improving Symbolic

Transition Systems (STS) that used to represent

component behavior interface and improving the

synchronous vector algorithm to make it ab le to detect

data type mis match, in addition to, massage name and

parameter mismatch.

The paper is organized as follows: section 2 provides

the literature review and limitations, section 3 describes

the problem and proposed solution, section 4 illustrates

the validation of proposed solution and the last section

gives the conclusion.

II. Related Work

Most components cannot be integrated directly into

an application because they are incompatible. Several

studies performed to propose a solution to this problem.

One study proposed a model-based adaptation approach

for software adaptation [1]. They proposed that

behavioral interfaces are represented by means of

Labeled Transition Systems (LTSs). The synchronous

product of several component LTSs results in new LTS,

which contains all of the possible interactions between

the involved components. Moreover, they rely on

synchronous vectors, which denote communication

between several components. Their proposal supported

by dedicated algorithms that automatically generates

adaptor protocols. These algorithms have been

implemented in a tool, called Adaptor. Their proposal is

equipped with two algorithms, depending on whether

reordering is necessary or not in the adaptation process.

The first one is based on synchronous product

computation and the second one on encodings into Petri.

The previous approach solved the problem of

messages mis match and messages reordering, but it

cannot perfectly solve the mismatch problem when

messages transmit with parameters. Other study

proposed approach to solve this problem [2] by

applying the composition operator to synchronous

vector and make it include the entire mismatch relat ions

of the transmitted messages with parameters, then

generated automatically adaptor protocols to solve the

 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development 109

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

mis match problems based on Petri net encoding and

Tina tools.

To calculate the behavior protocol of adaptor, there is

a need to calculate the synchronous product of the STS

specification of components and the STS specification

of adaptor. The synchronous vectors indicate

communicat ion between several components, where

each event appearing in one vector is executed by one

component and the overall result corresponds to

synchronization between all o f the involved

components [2].

Other study set up Component Interaction Adaptation

Model (ClAM) to remove behavioral mismatch [3].

They describe two phases to remove mis matches. The

first one is detecting behavioral mismatch, by divid ing

different component groups , detect interaction behavior

deadlock. The second phase is obtaining adapter, in this

phase they define behavior rule, build adapter

specification by behavior rule and get an adapter to

solve deadlock.

Furthermore, adaptation focusing more on generating

as automatically as possible adaptors to solve the

mis match between components interfaces. Prior studies

[4] [5] p roposed general and safe approach to solve the

behavior mismatch and indicated that the behavior of

adaptor can be calculated automatically fro m the

adapted components and the adaptor specification. The

adaptor can correct the component interaction with data

exchange, and realize the reordering of message.

Furthermore, researchers computed synchronous

product of Symbolic Transition Systems (STS), which

are the abstract specification of component behavior, to

detect automatically deadlock mismatch [6].

The Symbolic Transition Systems (STS) is used as

graph tool to specify the component behavior, in

addition to solve the component behavior mismatch and

analysis the exchanged data. As presented in [6], STS is

a tuple (A, S, I, F, T):

a) A is an alphabet, each element in A is correspond to

the name of event;

b) S is a finite set; each element in S is a state;

c) I is the only initial state;

d) F is a set of finite states;

e) T is a set of transition functions ,

The alphabet of STS consists with the signature

informat ion of component. Each element in A can be an

inner operation of component, named as tau, also can be

a tuple (CI, M, D, PL) [6]:

1) CI is the identifier of component;

2) M is the identifier of message, namely the name of

operation, the name of interface;

3) D is the behavior type (!/?) of operation. The

symbol

“!” means that the operation of component provide

resource to the system, and the symbol “?” means that

the operation of component receive resource from the

system;

4) PL is the parameter list of message.

To more support the adaptation of components,

researchers in [7] developed the technique depend on

binary component adaptation techniques and adaptation

components techniques. In addit ion to that, they

developed a support tool to support an effect ive of the

adaptation process.

Other researchers proposed a new approach to

component adaptation by dealing with extra-functional

mis matches [8]. Their approach was proposed analyzing

functional mis matches and extra-functional mis matches

appearing in the integration and assembly of software

components. Then, generating adapter specifications,

and producing the final adapter mediat ing the functional

and extra-functional mis matches. So, this approach can

successfully solve most of both functional and extra-

functional mismatches.

Additional study performed for distributed

applications when designers want to distribute the

adaptation mechanisms themselves. Researchers

propose a model for dynamic adaptation that clearly

separates adaptation from business logic, and that can

be customized by applications designers in order to

satisfy adaptation needs [9].

For gray-box component model, although it has been

successfully used in software engineering, its adaption

in real-t ime embedded systems still raises serious

challenges. A prior study presented a component-based

framework that automated the integration of these

components [10].

Table 1 illustrates the limitations founded in each

paper presented in the literature review.

Table 1: Comparison of brief literature review

Paper Title Limitations

Model-Based
Adaptation of
Behavioral

Mismatching
Components [1]

The study did not solve the mismatch about
the messages with parameters. Also, it
omitted the elements relative to data

exchange in the signature interfaces.

Model-Based
Adaptation of
Component
Behaviors [2]

Their approach was only for the message
level to solve the parameter mismatch; it did
not describe the one-to-one relation of the
parameters.

A Behavior-Driven

Model of Component
Interaction
Adaptation [3]

Researchers did not focus on description,
detection and adaptation of the non-behavior
properties.

Research on Safe
Behavior Adaptation
of Software
Component [4]

Researchers need to realize an automatic
general solution for component behavior
mismatch.

110 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Paper Title Limitations

Safety Verification of
Software Component
Behavior Adaptation

[5]

They need to provide a calculation for the
synchronous relation among the component
behaviors, and solution to remember the order

of messages and make them reorder.

Research on
Behavior Adaptation

of Software
Component [6]

They need to provide a calculation for the
synchronous relation among the component

behaviors, and solution to remember the order
of messages and make them reorder.

Component
Adaptation
Mechanism [7]

Researchers need to improve the automation
of the adaptation process, and prevent errors
that may occur during the adaptation process.

A New Approach to

Component
Adaptation Dealing
with Extra-
Functional

Mismatches [8]

Researchers in this paper need to explore

general formal methods representing extra
functional adaptation, which supports semi-
automatic or automatic process of generation
of extra-functional adapter.

A Distributed
Dynamic Adaptation

Model for
Component-Based
Applications [9]

Researchers can refinement their model by

identifying other functionalities, and going
deeper into the structure of their coordination
tower.

Automatic Synthesis
and Adaption of
Gray-box
Components for

Embedded Systems
— Reuse vs.
Optimization [10]

This study requires implementing the
interactions between components to ensure

the respect of non-functional properties.

III. Problem and Proposed Solutions

As presented in section 2, there is several studies

discussed components adaptation and provides a

solution for behavioural mis match by focusing on

massages and parameters. However, they do not

consider data type mis match. So, this paper will focus

on this problem and suggest a solution.

The proposed solution will focus into parameters data

type. It divides into two parts, first part focuses on

specify data type by suggesting improvement in

Symbolic Transition Systems (STS) model proposed in

[4], which used to represent component behavior

interface. The second part extends the synchronous

vector algorithm provided in [2], to detect data type

mismatch.

3.1 Component Interface Representation

This proposed solution improves Symbolic

Transition Systems (STS), which presented in section 2.

The solution suggests adding parameter's data type in

transition label. So, we suggest adding "TY" to element

in tuple (CI, M, D, PL, TY).

 For each component's operation, data type should

specify in addition to the other three parts of STS

transition label.

1-operation name

2-behavior type (!/?) where “!” mean send and “?”

mean receive.

3- Parameters name

4- Parameter data type

For example: if component1 has operation with name

“Login” which send two integer parameter username

and password to other component, this operation

describe as shown in Fig.1, which represent the STS of

component1.

Fig. 1: STS of Component1

3.2 Detecting Mismatch

As presented in [2], behavior mis match can be

detected by synchronous vector that calculated after

translating each component interface. This solution

suggests extending synchronous vector algorithm to

deal with data type by adding the data type name inside

the parameter arc.

For each component i with STS Li,

“I” is the event, “P” is the parameter and “ty” is the

data type

A) If l has the form a!

Then add an arc from the transition to place a

(ty.P1, ...ty.Pn)

B) If l has the form a?

Then add an arc from the transition to place a

(ty.P1, ...ty.Pn)

IV. Validation

Questioner shown in appendix A approves validation

of proposed solution. It consists of 13 questions, which

electronically distributed among different developers

and designers through software engineering society.

Likert scale is ranging from 1 to 5 as the following.

 Strongly Disagree/ Very Low effect indicating 1

 Disagree/ Low effect indicating 2

 Neutral/ Normal effect indicating 3

 Agree/ High effect indicating 4

 Strongly agree/ Very High effect indicating 5

Statistical analysis performed after gathering data.

Frequency tables and bar charts illustrate the analyses

of the 30 questionnaires responses . The validation

results describe below.

 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development 111

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

4.1 Cumulative Analysis of the First Goal

Goal 1: focusing on data type through adaptation

components . Question 1: Is it important to consider

parameter's data type through adaptation process?

Table 2: Frequency of question 1

 Frequency Percent

1 1 3%

2 1 3%

3 5 17%

4 15 50%

5 8 27%

The frequency Table 2 shows out of 27%

questionnaires strongly agreed, 50 % agreed where as

17 % neither agreed nor d isagree. And 3% of people are

disagreeing.

Fig. 2: Graphical Representation of question 1

Goal 1, Question 2: How much detecting data type

mismatch improve component adaptation?

Table 3: Frequency of question 2

 Frequency Percent

3 7 23%

4 14 47%

5 9 30%

The frequency Table 3 shows out of 47%

questionnaires agreed, 30 % strongly agreed where as

23 % neither agreed nor disagree.

Fig. 3: Graphical Representation of question 2

Goal 1, Question 3: How much the current adaptation

methods inefficient in detecting data type mismatch?

Table 4: Frequency of question 3

 Frequency Percent

1 1 3%

2 2 7%

3 8 27%

4 9 30%

5 10 33%

As presented in frequency Table 4, 33%

questionnaires strongly agreed, 30 % agreed where as

27 % neither agreed nor d isagree. And 3% of people are

disagreeing.

Fig. 4: Graphical Representation of question 3

Goal 1, Question 4: Do you think that the proposed

solution will improve adaptation result?

Table 5: Frequency of question 4

 Frequency Percent

3 8 27%

4 12 40%

5 10 33%

The frequency Table 5 shows out of 33%

questionnaires strongly agreed, 40 % agreed where as

27 % neither agreed nor disagree.

Fig. 5: Graphical Representation of question 3

Cumulative Survey of Goal 1

The result of the analysis of goal 1 is shown in Table

6.

112 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Table 6: Cumulative Statistical Analysis of Goal 1

Strongly Agree Agree Neutral Disagree Strongly Disagree Q . number

8 15 5 1 1 1

9 14 7 0 0 2

10 9 8 2 1 3

10 12 8 0 0 4

37 50 28 3 2 Total

31.62% 42.74% 23.93% 0.85% 0.85% Average

As shown in fig.6, it is clear from the cumulative

descriptive analysis of goal 1 that 42.74% of the sample

agreed that there is a need to focus on data type

mis match through adapt component behavior and

31.62% strongly agreed to that. In addition, 0.85 %

disagreed and 0.85% strongly disagreed where 23.93%

remained neutral.

Fig. 6: Graph shown the Cumulative Results of Questionnaire for
Goal 1

4.2 Cumulative Analysis of the Second Goal

Goal 2: considering data type through representing

component interface. Question 5: Is specifying data

type through describing component interface easy?

Table 7: Frequency of question 5

 Frequency Percent

1 1 3%

2 4 13%

3 8 27%

4 10 33%

5 7 23%

The frequency Table 7 shows out of 23% people

strongly agreed, 33 % agreed where as 27 % neither

agreed nor disagree. In addition 13% of people are

disagreeing, 3% strongly disagreed.

Fig. 7: Graphical Representation of question 5

Goal 2, Question 6: Is specifying data type through

describing component interface dose not consuming

time?

Table 8: Frequency of question 6

 Frequency Percent

1 1 3%

3 9 30%

4 14 47%

5 6 20%

As shown in frequency Table 8, 20% of people are

strongly agree, 47 % are agree while 30 % neither

agreed nor disagree, and 3% are disagreeing.

Fig. 8: Graphical Representation of question 6

Goal 2, Question 7: Is Symbolic Transition Systems

(STS) efficient to represent component interface in

adaptation process?

 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development 113

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Table 9: Frequency of question 7

 Frequency Percent

2 1 3%

3 8 27%

4 16 53%

5 5 17%

The Table 7 illustrates that 53% people agreed, 17 %

strongly agreed where as 27 % neither agreed nor

disagree. In addition 3% of people are disagreeing.

Fig. 9: Graphical Representation of question 7

Goal 2, Question 8: Is it efficient to use STS to

specify data type?

Table 10: Frequency of question 8

 Frequency Percent

3 9 30%

4 11 37%

5 10 33%

As presented in frequency Table 10, 33%

questionnaires strongly agreed and 37 % agreed where

as 30 % neither agreed nor disagree.

Fig. 10: Graphical Representation of question 8

Goal 2, Question 9: Do you agree that the time spend

through considering data type in STS lead to save effort

in the next step for detecting mismatch?

Table 11: Frequency of question 9

 Frequency Percent

2 5 17%

3 10 33%

4 9 30%

5 5 17%

As presented in frequency Table 11, 17% of

questionnaires are strongly agreed, 30 % agreed where

as 33 % neither agreed nor disagree. And 17% are

disagreeing.

Fig. 11: Graphical Representation of question 9

Cumulative Survey of Goal 2

The result of survey of this goal is shown in Table 12.

Table 12: Cumulative Statistical Analysis of Goal 2

Strongly Agree Agree Neutral Disagree Strongly Disagree Q . number

7 10 8 4 1 5

6 14 9 0 1 6

5 16 8 1 0 7

10 11 9 0 0 8

5 9 10 5 0 9

33 60 44 10 2 Total

22.15% 40.27% 29.53% 6.71% 1.34% Average

As shown in Fig. 12, 40.27% of people agreed that

there is a need to specify data type by STS through

representing component interface. While, 22.15 %

strongly agreed, 6.71% disagreed and 1.34% strongly

disagreed. The remained 29.53% are neutral.

114 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Fig. 12: Graph Shown the Cumulative Results of Questionnaire for
Goal 2

4.3 Cumulative Analysis of the Third Goal

Goal 3: detecting data type mismatch.

Question 10: Is detecting data type mismatch difficult?

Table 13: Frequency of question 10

 Frequency Percent

2 4 13%

3 11 37%

4 11 37%

5 3 10%

As shown in frequency Table 13, 37% of

questionnaires are agreed and only 10 % strongly

agreed where as 37 % neither agreed nor disagree. And

13% are disagreeing.

Fig. 13: Graphical Representation of question 10

Goal 3, Question 11: Is detecting data type mismatch

consuming time?

Table 14: Frequency of question 11

 Frequency Percent

3 11 37%

4 16 53%

5 3 10%

The frequency Table 14 shows that only 10%

questionnaires strongly agreed while 53 % agreed, and

37 % neither agreed nor disagree.

Fig. 14: Graphical Representation of question 11

Goal 3, Question 12: Is it efficient to consider data

type through calculating synchronous vector to detect

mismatch?

Table 15: Frequency of question 12

 Frequency Percent

2 1 3%

3 11 37%

4 13 43%

5 5 17%

The frequency Table 15 shows out of 17%

questionnaires strongly agreed, 43 % agreed where as

37 % neither agreed nor d isagree. And 3% of people are

disagreeing.

Fig. 15: Graphical Representation of question 12

Goal 3, Question 13: Do you agree that time spent to

deal with data type in synchronous vector lead to

provide better adaptation protocol?

Table 16: Frequency of question 13

 Frequency Percent

2 3 10%

3 9 30%

4 12 40%

5 6 20%

The frequency Table 16 shows out of 20%

questionnaires strongly agreed, 40 % agreed where as

30 % neither agreed nor disagree. And 10% of people

are disagreeing.

 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development 115

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

Fig. 16: Graphical Representation of question 13

Cumulative Survey of Goal 3

The result of survey of this goal is shown in Table 17.

Table 17: Cumulative Statistical Analysis of Goal 3

Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Q .
number

3 11 11 4 0 10

3 16 11 0 0 11

5 13 11 1 0 12

6 12 9 3 0 13

17 52 42 8 0 Total

14.29% 43.7% 35.29% 6.72% 0.00% Average

It is clear from the cumulative descriptive analysis of

goal 3 that 43.7% of the sample agreed to detect data

type mismatch and 14.29% strongly agreed while

35.29% remained neutral as shown in fig. 17.

Fig. 17: Graph Shown the Cumulative Results of Questionnaire for
Goal 3

4.4 Cumulative Analysis of the Three Goals

The result of survey of these three goals is shown in

Table18. As shown in fig 18 that 41.75% of the sample

agreed and 22.42% strongly agreed to that. In addition,

5.41% d isagreed and 1.03% strongly disagreed where

29.38% remained neutral.

Fig. 18: Graph Shown the Cumulative Results of Questionnaire for
the three goals

Table 18: Cumulative Statistical Analysis of the three goals

Strongly
Agree

Agree Neutral Disagree
Strongly
Disagree

Q .
number

8 15 5 1 1 1

9 14 7 0 0 2

10 9 8 2 1 3

10 12 8 0 0 4

7 10 8 4 1 5

6 14 9 0 1 6

5 16 8 1 0 7

10 11 9 0 0 8

5 9 10 5 0 9

3 11 11 4 0 10

3 16 11 0 0 11

5 13 11 1 0 12

6 12 9 3 0 13

87 162 114 21 4 Total

22.42% 41.75% 29.38% 5.41% 1.03% Average

V. Conclusion

This paper focuses on detecting component behavior

mis match by proposing a solution and validates it by

conduct a survey. The solution suggests focusing on

data type through representing component interface by

Symbolic Transition Systems (STS) and through

calculating synchronous vector, where the behavior

mis match can be detected by synchronous vector that

calculated after translating each component interface

into STS.

As conclude from the cumulative analysis, data types

have to consider through adaptation components. In

addition, specifying data type through representation the

component interface helps in the next step, for

calculation the synchronous vector to detect data type

mismatch, which provide better adaptor protocol.

In future, there is a need to consider data type

through generating adaptor protocol and the

implementing the adaptation algorithm in adaptor tool.

116 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

References

[1] Canal C, Poizat P, Salaun G. Model-Based

Adaptation of Behavioral Mismatching

Components, Software Engineering [J].IEEE

Transactions on, 2008, 34(4):546-563.

[2] Zheng Jian, Jiang Jianhui. Model-Based

Adaptation of Component Behaviors,

Computational Intelligence and Software

Engineering[C]. CiSE International, 2009, 1-4, 11-

13.

[3] Qi Huacheng, Rong Mei, Zhang Guangquan. A

behavior-driven model of component interaction

adaptation[C]. Computer Science & Education.

ICCSE '09. 4th International Conference on ,

2009,871-875, 25-28

[4] Xiong Xie, Weishi Zhang, Xiuguo Zhang, Zhiying

Cao, Jinyu Shi. Research on Safe Behavior

Adaptation of Software Component[C].

Computational Intelligence and Software

Engineering (CiSE), 2010,1-4, 10-12

[5] Xiong Xie, Weishi Zhang, Xiuguo Zhang, Zhiying

Cao, Jinyu Shi. Safety Verification of Software

Component Behavior Adaptation[C]. E-Product E-

Service and E-Entertainment (ICEEE), 2010, 1-4,

7-9

[6] Xiong Xie, Weishi Zhang, Xiuguo Zhang, Zhiying

Cao, Jinyu Shi. Research on Behavior Adaptation

of Software Component, Paralle l Architectures[C].

Algorithms and Programming (PAAP), Third

International Symposium on , 2010,.412-416, 18-

20

[7] Sae Hoon Kim, Jeong Ah Kim. Component

Adaptation Mechanism[C]. Ubiquitous Computing

and Multimedia Applications (UCMA), 2011, 90-

95, 13-15

[8] Guorong Cao, Qingping Tan; Jingang Xie. A New

Approach to Component Adaptation Dealing with

Extra-Functional Mis matches[C]. Information

Engineering and Computer Science, ICIECS, 2009,

1-4, 19-20

[9] Segarra M T, Andre F. A Distributed Dynamic

Adaptation Model for Component-Based

Applications[C]. Advanced Information

Networking and Applications, AINA '09.

International Conference on 2009, 525-529, 26-29

[10] Borde E, Carlson J. Automatic Synthesis and

Adaption of Gray-Box Components for Embedded

Systems - Reuse vs. Optimization[C]. Computer

Software and Applications Conference Workshops

(COMPSACW), IEEE 35th Annual , 2011, 224-

229, 18-22

Appendix A

Questionnaire about Detecting
Component Behavior Mismatch

Rizwan J. Qureshi, Ebtesam A. Alomari

Information Technology Department,

To adapt component, there is a need to detect

mismatch.

Problem: The current adaptation model focuses on

massages name mismatch. There is a need to improve

this method to detect the data type mismatch.

Proposed Solution:

-The paper suggests focusing on specifying data type

through representing component interface by Symbolic

Transition Systems (STS)

-And consider data type through calculating

synchronous vector, where the behavior mismatch can

be detected by synchronous vector that calculated after

translating each component interface into STS.

Note:

-STS is a graph tool to describe the component

behavior.

-Synchronous vector denote communicat ion between

several components, where each event appearing in one

vector is executed by one component.

To validate the proposed solution this questionnaire

divided into 3 groups which are:

-Focusing on data type through adaptation

components.

-Considering data type through representing

component interface.

-Detecting data type mismatch.

I hope you help in answer the following questions.

Filling guideline

Likert scale is ranging from 1 to 5.

Very low effect indicating 1

Low effect indicating 2

Nominal/Average effect indicating 3

Very high effect indicating

 Validation of Novel Approach to Detect Type Mismatch Problem Using Component Based Development 117

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 09, 108-117

* Focusing on data type through adaptation components

1- Is it important to consider parameter's data type through adaptation process?
□Very low □ Low □ Nominal/Average
□High □ Very high

2-How much detecting data type mismatch improve component adaptation?
□Very low □ Low □ Nominal/Average
□High □ Very high

3-How much the current adaptation methods inefficient in detecting data type mismatch?
□Very low □ Low □ Nominal/Average
□High □ Very high

4-Do you think that the proposed solution will improve adaptation result?
□Very low □ Low □ Nominal/Average
□High □ Very high

* Considering data type through representing component interface

5- Is specifying data type through describing component interface easy?
□Very low □ Low □ Nominal/Average

□High □ Very high

6- Is specifying data type through describing component
 interface dose not consuming time?

□Very low □ Low □ Nominal/Average
□High □ Very high

7-Is Symbolic Transition Systems (STS) efficient to represent component
interface in adaptation process?

□Very low □ Low □ Nominal/Average
□High □ Very high

8- Is it efficient to use STS to specify data type?
□Very low □ Low □ Nominal/Average
□High □ Very high

9- Do you agree that the time spend through considering data type
in STS lead to save effort in the next step for detecting mismatch?

□Very low □ Low □ Nominal/Average
□High □ Very high

* Detecting data type mismatch

10- Is detecting data type mismatch difficult?
□Very low □ Low □ Nominal/Average
□High □ Very high

11- Is detecting data type mismatch consuming time?
□Very low □ Low □ Nominal/Average
□High □ Very high

12- Is it efficient to consider data type through calculating

synchronous vector to detect mismatch?

□Very low □ Low □ Nominal/Average

□High □ Very high

13-Do you agree that time spent to deal with data type in
synchronous vector lead to provide better adaptation protocol?

□Very low □ Low □ Nominal/Average
□High □ Very high

Authors’ Profiles

M. Rizwan Jameel Qureshi: Assistant Professor at

Faculty of Computing & Informat ion Technology,

King Abdulaziz University, major in CBD and agile

development.

Ebtesam Ahmad Alomari : Master student in IT

Department at King Abdulaziz University, interested in

CBD and Technology Management.

How to cite this paper: M. Rizwan Jameel Qureshi,

Ebtesam Ahmad Alomari,"Validation of Novel Approach to

Detect Type Mismatch Problem Using Component Based

Development", International Journal of Information
Technology and Computer Science(IJITCS), vol.5, no.9,

pp.108-117, 2013. DOI: 10.5815/ijitcs.2013.09.12

