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Abstract— This article serves two purposes: firstly, it 

presents an innovative methodology that increases the 

accuracy of fault p rediction measurements. This method 

is based on the novel concept of "fault persistency", 

which enables to correct prediction metrics with a 

weighted value related to  the module’s history. 

Secondly, it  aims to develop operational processes from 

the aforesaid prediction metrics that may contribute to 

software construction and validation. It presents an 

example o f an allocation methodology for resources 

used for testing purposes. The theoretical part  is 

followed by an extensive experimental phase. 

 

Index Terms— Fault Predict ion, Fault Persistency, 

Software Release, Software Metrics, Software Testing  

 

I. Introduction 

Our interest has been long focused on the use of 

software metrics as a methodology evaluating the risk 

of a  module, where risk is related to the number of 

faults still contained in the module. Activity in this 

sector is stimulated both by theoretical interest and by 

the intention of finding methodologies that may validate 

with factual data the subjective evaluations adopted in 

software engineering. Our attention is devoted to 

methodological and operational aspects concerning 

applicability of the measurement and prediction 

processes in real working environments.  

The scientific background of our work is related to 

reliability and risk measures of software modules. The 

size and complexity of software has grown dramatically 

during the last decades and especially during the last 

few years. When the requirements for and dependencies 

of computers increase, chances of crises from failures 

also increase. The impact of these failures ranges from 

inconvenience to economic damages to loss of lives - 

therefore it is clear that software reliability is becoming 

a major concern for software engineers and computer 

scientists. Software development is a complex process 

in which  software faults are inserted into the code 

during the development process or during maintenance. 

The literature on this subject shows that the pattern of 

faults insertion phenomena is related to measurable 

attributes of the software objects. During the last twenty 

years, hundreds of metrics have been proposed for 

software assessment.  

Currently  one of the most commonly used method for 

evaluating module fau lt proneness is to adopt a range of 

complexity-based metrics. Principal measurements are 

mainly  capable of predicting the total risk of a module 

in terms  of number of faults that the module might 

produce in its life-cycle. However, o ften the interest is 

focused on the degree of risk at a  given project release 

phase, e.g., in order to assess risk when the product is 

released on the market.  

In this article we present a new approach to fault  

proneness measurement where the degree of risk of a 

module is calculated in relationship to a specific release. 

Then we present an example of use of the new 

measurement in a real environment. 

Chapter 2 describes the state of art of research about 

fault prediction measurements, classification model 

construction and accuracy evaluation of a model. 

Chapter 3 presents the characteristics of fault measures 

not operating on the whole software life cycle, but 

working on each  single software release and the 

rationale of an application of this methodology on 

software testing planning. Chapter 4 describes the 

experimental validation  of the whole model prev iously 

defined. 

 

II. Fault Prediction Measurement Systems 

In an attempt to optimize product development and 

test for the construction of high-quality software, 

project managers and programmers try  to identify the 

elements that are most likely to experience problems 

when in use, in order to focus the releasing activity on 

them. Attention is usually concentrated on new modules, 

on pre-existing functions heavily modified by the 

current release, on the work delivered by the less skilled 
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technicians. These elements are supposed to contain a 

high number of defects and therefore are intuitively 

considered potentially highly fau lty. But other modules 

can be critical, even if they do not belong to this first set. 

In this paper we propose a methodology to find them.  

Prediction systems are composed of metrics and a 

classification model: metrics provide factual 

measurements of a single element, while classification 

model part itions these elements into classes or assigns 

them a certain degree of risk.  In literature there are 

several fault pred iction models. Some approaches (for 

example [1]) evaluate the characteristics of the project 

documents, identifying any crit ical element already 

during the specifications phase. Other research activities 

(such as [2]) are focused on the analysis of some 

characteristics, such as the number of people who were 

involved in module development, the testing time, and 

the faults detected in the previous phases; on the basis 

of these measures it is possible to obtain information on 

the degree of risk of a single module. 

We will focus on prediction systems based on metrics 

of the software manufactured, as they are adopted much 

more frequently. 

 

2.1 Software Complexity Metrics 

Most of the research activity carried out on 

complexity concerns structural complexity, i.e., the 

measurement of the characteristics of the final product 

in the software development p rocess, which can give an 

idea of the module difficulty. As programming 

languages are very formal, the measurement of module 

structural characteristics is widely recognized as 

“objective”, easy to repeat and to adopt in different 

environments. Over the years various metrics s ystems 

have been proposed to define the structural complexity 

of software. Additionally, several experiments have 

been carried out for the purpose of proving in an 

objective way the relation between high complexity and 

the faultiness in the code. The most important 

methodologies are length-based metrics [3,4], 

instruction flow metrics [5],  mult ivariate systems 

metrics [6,7,8,9,10,11,12] and entropy and the 

informational content metrics [13,14]. 

Here we shortly outline the key  elements of the 

RPSM (Risk Predict ive Structural Metric) because we 

will use this metrics in fo llowing sections (a broad 

definit ion and validation is given in [12]). RPSM is a 

multivariate metric proposed by our research group. It is 

based on a set of parameters that can be broken down 

into the different classes: flow control instructions, 

memory allocation instructions, definition and usage of  

structured variables, preprocessing instructions, 

function calls, size. We measured these parameters on 

each software module, and then we combined them with 

the fault found in the same module; using this 

methodology we found relations between faults and 

structure of a module and we descended a mathematical 

model to evaluate the risk of each parameter and the 

global risk o f each future module in a defined 

environment. RPSM examines several different aspects 

of software structure, becoming a powerful pred ictor of 

the total number o f fau lts collected by a module all over 

its life cycle. RPSM, as other structural metrics, does 

not consider the age of the module: it can be used as a 

total fault  number predictor and it’s not directly  useful 

in predict ing the expected fault number of a module in a 

given project release. 

 

2.2 Classification Systems 

Classification systems may be based on several 

methods: for example the use of threshold values 

identified by means of statistical methods such as the 

discriminating analysis that divide the set of elements 

into classes on the grounds of the metrics values [6,11]; 

the calculation o f an  index expressing the probability of 

belonging to a certain class on the basis logistical 

regression [10], or a classification by means of 

Bayesian networks [15], linear programming techniques 

[16] , decision trees [7] or neural networks [17], etc.. 

The informat ion provided by the measures obtained 

from metrics is processed by the classification system, 

which may produce, according to the model on which it 

is based, a class or a continuous risk value. A metric 

system can be a more or less effective fault pred ictor 

according to the classification model used in the 

prediction system. For example in [18] we calculated 

that the degree of accuracy of the McCabe index 

combined with a threshold classificat ion technique is 

around 75/80%; the degree of precision of the RPSM 

multivariate metrics ranges from 85 to 90% if combined 

with a linear programming classification technique, 

while it decreases slightly if the classification is carried 

out on the basis of a threshold value. 

We now shortly outline the classification models 

construction and the concept of model accuracy on 

which we based our experiment. 

 

2.2.1 Classification Model Construction 

Classification models are usually constructed using 

assisted learning techniques: the user analyses a 

significant set of data, with a known classification, and 

divides it into two complementary subsets: the so-called 

training set, or learn ing set, used to infer the 

classification rules, and the testing set, or control set, 

which is used to measure the effectiveness of the 

classification system. 

Let  us consider, for example, the construction of a 

model that enables to predict whether a g iven software 

module is highly fault-prone or not. From h istorical data 

we can indicate for each module whether it falls into the 

“HR” (High Risk) or “LR” (Low Risk) class on the 

basis of number of faults contained in the module. 
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A dichotomist classification model can be 

constructed with the following steps:  

1. through a random selection function the set is divided 

into two subsets: TS (testing) and TR(training);  

2. TR is divided into the HR and LR classes on the basis 

of the classificat ion value known; this method is 

called  subsequent classification (or a posteriori 

classification), because it is based on a known value;  

3. the characteristics of the HR and LR modules are 

analyzed;  

4. from the common characteristics a generalized M 

classification model is derived;  

5. M is applied to TS data, obtaining a classificat ion 

into two classes, HR’ and LR’; this method is called a 

priori classification, because it is carried out on the 

basis of a model without having data that support the 

correctness of the classification;  

6. the accuracy of the a priori classificat ion is checked  

with a subsequent classification divid ing TS elements 

into HR and LR classes and analyzing how many HR 

and LR elements are really  contained respectively in 

HR’ and LR’. 

 

2.2.2 Accuracy of the Classification System 

The accuracy of a classificat ion model is determined 

by several factors: especially in dichotomist systems it 

is measured as follows: (i) the percentage of elements 

correctly classified by the model (true positive and true 

negative elements); (ii) the percentage of false positive 

elements (the so-called Type I errors): in  this case 

elements without faults classified as high-risk; (iii) the 

percentage of false negative elements (the so-called 

Type II erro rs): in  this case faulty elements classified as 

low-risk. When evaluating the accuracy of a pred iction 

method it is also important to consider the type of errors 

concerned. For example, if we use fault prediction 

values to plan testing activities, Type I errors are better 

than those classified as Type II, as they imply an 

accurate testing of an element which does not need it; 

vice versa, in case of Type II errors, highly fault-prone 

modules are classified as low-risk, and therefore are not 

tested accurately: it is important to have a good global 

accuracy and eventually a better accuracy in LR’ that in 

HR’. 

 

III. The Rationale of the Research  

After the short description of state of art, we start 

now analyzing  the core of our research. One of the 

major limitations to the use of structural complexity 

metrics is the fact that risk predict ions made on the 

basis of the total number of fau lts in the training set is 

referred to the full module’s life-cycle; usually, 

however, the intention is from fau lt proneness 

evaluation models to obtain information about the risk 

for the current software release. The evaluation of fau lt 

allocation according to software age has only recently 

become object of systematical investigation: even 

though some trends, such as “a module that had a lot of 

faults in the past is likely to  have them also in the 

future”, were outlined in previous studies, only in 2000 

did Graves [19] propose a process metrics which 

considers age a key factor in the assessment of fault 

proneness: risk is calculated starting from the number of 

modifications made in t ime weighted with the module 

age and introducing a corrective element that halves the 

weight of the older modificat ions. The studies by 

Ostrand and Weyuker, applied to the development 

teams of AT&T, are more systematic [20]: they have 

been carried  out concurrently with the starting of our 

research. In both cases initially the approach was based 

on the analysis of fault allocation per release, 

investigating the fault trend, the correlation between the 

structural characteristics of the module and the number 

of faults in a release, the persistency of faults from one 

release to the following one [21], the incidence of age 

of a module on the number of faults in  a g iven project 

release. The results obtained by the two groups working 

on completely d ifferent environments are basically 

consistent and point out some general trends briefly 

outlined at section 3.1. As far as we are concerned, 

knowing such trends enabled us to create a method for 

correcting structural metrics-based predictions thanks to 

the use of a regression function calculated on the 

average density of faults per release. This method is 

outlined in the following sections. 

 

3.1 Characteristics of Fault Partitioning per 

Release 

The analysis of fault trends through releases was the 

purpose of the first step in our research [21]. The 

characteristics analyzed were the following. 

Age: for each release we created two subsets: one 

with the files introduced in the release concerned (new) 

and one with the files already included in previous 

releases (old); the experimental analysis (surprisingly) 

demonstrates that the new files do  not show a 

significantly higher rate of faults than the old files; 

Faultiness in the first release: files that in their first 

release contained a number of faults exceed ing a certain 

level were classified as faulty files; the analysis shows 

that faulty files tend to maintain a higher fault density in 

the following releases than non-faulty files; we called 

this phenomenon “persistency”. This idea confirms 

studies previously carried out by Ostrand and Weyuker 

[20]. They summarized their findings with the sentence 

“once faulty ever faulty”, which means that when a file  

has a high fault density in its first release (once faulty) it 

tends to maintain a high  fault  density in subsequent 

releases as well (ever fau lty). In [21] we verified 

experimentally this phenomenon. 
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Total file faultiness: in  literature the 80%-20% 

principle is well-known (80% of faults are in 20% of 

modules), which is represented in the Pareto 

distribution model; this rule holds true also in our 

environment, and we have found out that modules with 

a large number of faults had a much higher 

concentration of faulty files than the whole project;  

Structural complexity of files: the analysis showed 

that faulty files tend to have a  slightly more complex 

structure than non-faulty files. 

 

3.2 Fault Prediction per File Release 

We have also made some research on the fault trend 

in following releases, which is represented by a 

decreasing curve that is different for faulty and non-

faulty files. Our innovative idea was to combine the two 

elements (structural complexity measures and 

persistency) in order to evaluate the fault  proneness of a 

specific module release. This new measurement is 

useful for various application, for example better 

allocating integration testing time before the release of a 

new project  version. In  our study we aim to validate the 

following hypotheses: 

 a prediction measurement based on single modules 

complexity can become even more accurate with the 

introduction of a factor connected to each module’s 

release  

 we can use this predictions in real world 

application: as example we propose a testing time 

partitioning weighted on the basis of each module 

fault proneness and we evaluate the benefit which  

this approach can introduce in resource allocation. 

 

Now the issue is how to measure the degree of risk of 

a current release and how to allocate testing time on the 

basis of risk measurement. The new fault pred iction 

measure proposed for a version to be tested is obtained 

by weighting one of its structural measurements with 

other factors, including one related to age.  

The set of elements that in our opinion contribute to 

measuring module risk of a given release can be 

calculated as  

Rj,k = Sj * Gj * Cj * Fj,k (1) 

where:  

 j is a project module to be tested; 

 k  is the module release, that is the age of a module in  

terms of releases (the maximum value for k is equal 

to the current release and the minimum is 1 when it is 

new);  

 Sj is the subjective module risk, measured by the 

person in charge of the testing activity according to 

the most unpredictable (and difficult to  formalize) 

conditions, such as the competence of the developer, 

the functional criticality of the module, the kind of 

users, the attention dedicated to customer 

expectations, problems related to software 

specifications, etc.;  

 Gj  is the module test gravity factor, i.e., a  

measurement of the difficulty of the testing activity;  

 Cj is the absolute module risk factor, calcu lated as a 

complexity measurement of the module j: it  can be 

for example the McCabe index or any other structural 

measurement;  

 Fj,k is the release correction factor; it is calculated 

applying the persistency function on the module j in  

its kth release,  

 Rj,k is the corrected risk factor calculated for the 

module j in its kth release, according to the formula: 

it is the risk measure we used to classify modules by 

risk. 

 

Our first aim is to demonstrate that introducing the 

correction factor connected to the module age it  is 

possible to identify the more fault -prone modules in the 

current release with greater accuracy than with a 

classification based exclusively on the Cj risk 

measurement. For th is purpose we simplify the function 

proposed by omitting the subjective factor Sj and the 

gravity factor Gj, considering both equal to 1, so as to 

emphasize the contribution of the correction factor Fj,k.  

Therefore the simplified function for fault predict ion 

becomes 

Rj,k = Cj * Fj,k  (2) 

In order to demonstrate the effectiveness of the age-

based correction factor we create two classification 

models, M and M’. The former is based on the new 

measurement, the second one exclusively on the 

complexity measurement. At the end of the 

classification we have compared  the two models’ 

accuracy. More in detail, we follow these steps: 

 We make a random partit ion of the project modules 

and test the model creating two different subsets (TR 

– Training Set, and TS – Testing Set) 

 We use TR elements to define the classification 

model through: (i) the construction by means of 

regression methods of persistency functions F to be 

used for the calculation o f the correction factor 

related to the file  age and to  whether the file  is fau lty 

or non-faulty; (ii) the calculation of Cj and Rj,k for 

each module j; (iii) the construction of a priori 

classification model M on the basis of Rj,k and the 

number of faults detected in the current release of 

each module j; (iv) the construction of a priori 

classification model M’ on the basis of the 

complexity  metrics Cj only  and the number of faults 

in each module j current release. 
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 We use TS elements to validate the classification 

model through:  (i) the calculation of Rj,k and Cj  for 

each module j; (ii) the a priori classification of each 

module applying to Rj,k the Model M; (iii) the a 

priori classification of each module applying to Cj 

the Model M’; (iv) the assessment of the degree of 

accuracy of M and M’ by counting the faults really 

detected in each TS module j, and the comparison of 

the results. 

 

The experiment’s details and results are described at 

section 4. 

 

3.3 Examples of Practical Use of Risk Measure 

The measure described in the previous paragraph can 

be used for different purposes: operational processes 

should consider the activity necessary to take this 

measure ad to use it. The decision to use the risk based 

measure influence, for example, the following items. (i) 

Configurat ion management and quality management 

documents: they must describe processes, documents, 

parameters and actions related to the acquisition and the 

use of the measure. (ii) Daily development activity: the 

measure can be taken of software modules under 

development to early evaluate their potential fau ltiness. 

(iii) Integration test: the measure can be used to allocate 

more testing time to the most risky modules (see par. 

3.4 and 4.6 for an example) 

The process must be supported by a data collection 

system, to store collected measures and modules 

attributes. The parameters of the model must be 

periodically recalcu lated, in  order to tune the model and 

to reflect the changes of the organizat ional structure of 

the company. If there is no historical data, the process 

can be set up using data collected in the development of 

systems similar for technology, team, etc, to calculate 

the init ial value of model’s parameters. As the process 

runs, model’s parameters can be regenerated by using 

actual measures collected during the process, until they 

converge to stable values.  

 

3.4 Risk-Based Testing Time Partitioning of a 

Given Release 

This part of the study must be considered an example 

of application of our risk evaluation in real world.  

Our starting point is the limit that each software 

house has for testing time: in order to test a given 

release usually they have a limited amount of time that 

must be used to achieve an optimal result in terms of 

overall project reliability.  

If we consider the time available as partitionable into 

T units of tests that can be allocated in a discrete way, 

the problem can be solved with the fo llowing equation 

system 

{ 
 

SUMjk(Tj,k) = T  

Tj,k = Fun (NFj,k) 
(3) 

 

Tj,k is the number of units to be partit ioned in order to 

test the j
th

 module in its k
th

 release. NFj,k is the number 

of fault presents in j
th

 module in its k
th

 release; Fun is a 

function that enables to allocate a greater amount of 

time to more fault-prone files. When we plan tests, we 

do not know NFj,k, so we approximate its values with 

Rj,k, obtaining the equation Tj,k = Fun (Rj,k). 

Our target is to demonstrate that testing time 

partitioning to modules  on the basis of Rj,k (weighted 

partitioning) enables to reach a more effective 

partitioning of testing units to faults than a generic flat 

one to each module: note that we used as reference a 

“flat” part ition due to  the fact that in our experimental 

environment the modules were constructed using rigid 

software engineering rules, so where all of similar 

length and so we have not “a prio ri” motivation to test 

with different resources different files; in other 

experimental environments it is possible to use as 

reference other partit ion methodologies (usually based 

on dimension or other similar parameters). 

 

IV. Experimental Validation  

The whole experiment has been carried out on a real 

project, i.e., an integrated company management system 

developed in 10 years by a software house employing 

20 programmers. We have informat ion on the 

composition of g roups working on themat ic subset of 

modules (i.e ., on Accounting, on Production, on 

Logistics, …). We know also that all people worked on 

the development of the standard edition of the software, 

on its customization and on software maintenance, but 

we have no detailed information on each developer’s 

work, nor on his personal characteristics.  

The software in its latest release is made up of 1,061 

modules in C language (a mounting to a total of more 

than 450,000 lines of code.), it runs on Unix 

environment and interfaces an Informix database. It has 

been provided to us in its most recent version with a list 

of releases and a list of fau lts found and corrected 

between one release and the other. The development 

environment adopted at first was very innovative and 

did not change during the period mapped by our data 

collection.  

The set of files in the current release has been 

partitioned between the two TR set, which contain 40% 

of files, and TS, which contain all the others. TR has 

been used for the classification model construction and 

TS for all the remaining evaluations. The experiment 

has been repeated on four different random part itions of 

the sets of TR and TS files in order to have more 

significant results from a statistical point of view. The 

experiment has been carried out on CC (Cyclomatic 
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Complexity, the McCabe index) and RPSM. Therefore 

totally we have analyzed 8 test cases, and the results 

confirmed our expectations. 

 

4.1 Calculation of Persistency Functions 

For each  of the four distinct test sets, persistency 

functions have been evaluated as follows:  

1. partition of TR files between Fau lty and Non Fau lty 

classes;  

2. calculation of average fault density per release on 

each of the two classes;  

3. interpolation of density values per release with a 4
th

 

degree polynomial regression function selected to 

describe faithfully but without ups and downs density 

trend in time;  

4. for first-version modules, whose faultiness class in 

their first release is not known, the correction factor 

adopted has been the average result obtained from the 

interpolation functions in the first release. An 

example of the function graphs calculated on the two 

sets is shown in Fig. 1. 
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Fig. 1: Graphs of fault  density functions per release 

 

4.2 Calculation of Structural Metrics C 

The experiment has been carried out correct ing the 

two different structural metrics CC and the RPSM. We 

used in the present experiment these different metrics 

because the first is very famous and well known, while 

the second is a new metric proposed by our Laboratory. 

The experiment has been carried out correct ing the 

two different structural metrics CC and the RPSM. We 

used in the present experiment these different metrics 

because the first is very famous and well known, while 

the second is a new metric proposed by our Laboratory. 

As we could see in the following sections, the results 

are very similar and other evaluation with other metrics 

obtained also similar results: we assess that the results 

depend on the methodology applied, not on the specific 

complexity metric used. The RPSM calculat ion model 

has been constructed on the basis of the elements in TR: 

from structural measurements and the file fault iness we 

have calculated the relative weight of each structural 

parameter. 

4.3 Construction of Classification Models M and 

M’ 

We have decided to use as dichotomist classificat ion 

model a threshold value identified by means of a 

logistical regression function, a value that enables us to 

partition the files into the HR and LR classes. The 

regression function used as a basis for the calculation is 

a linear regression on average complexity values of the 

elements with the same number of faults in  their current 

release: we have partitioned TR into four classes on the 

basis of the number of faults (0, 1, 2, >2). The 

partitioning into four classes has been determined on 

the grounds of the fault distribution per release.  

 
Table 1: Number of Files per Fault Class 

Number of faults Average % of files in TR 

0 72% 

1 18% 

2 6% 

>2 4% 

 

Then we have calculated the average complexity 

(Cm0, Cm1, Cm2, Cm3) of the elements contained in 

each of the four classes and then we have calculated the 

regression curve coefficients at (Cm0, 0), (Cm1, 1), 

(Cm2, 2), (Cm3, 3). The threshold for the part itioning of 

files into the HR and LR classes has been calculated 

searching the zero  of the third derivative of the 

logistical regression function applied to the regression 

line: this value represent the point where the 

distribution of fau lt change drastically  its behavior and 

so can classify correctly  the two  classes; similar 

analysis where used by Denaro  and Pezzè [10]. For 

each of the four TR sets and for each of the two 

complexity measures we have calculated the threshold 

values with this method 

 Tr: the discriminating factor of the Model M, based 

on the structural complexity measurement corrected 

with the persistency factor (Rj,k);  

 Tc : the discriminating factor of the model M’, 

based on the non-corrected structural complexity 

measurement (Cj). 

 

4.4 A Priori Classification of TS Elements  

For each TS element we have calculated  

1. the structural complexity measurement Cj (McCabe 

and RPSM);  

2. the persistency correction factor Fj,k, by means of 

persistency functions;  

3. the corrected complexity measurement Rj,k (McCabe 

and RPSM). 
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With the two measurements we have divided the 

elements into the two HR’r and LR’r classes on the basis 

of the model M comparing the value of Rj,k with the 

threshold value Tr.; then we have created a new 

partitioning into the HR’c and LR’c classes on the basis 

of the model M’, comparing for each model the value of 

Cj with the threshold value Tc. 

 

4.5 Evaluation of Classification Accuracy  

Model accuracy has been evaluated on the basis of 

the overall classification accuracy (number of files 

correctly classified) which is better detailed with an 

analysis of the classification accuracy in  the highly 

faulty class. The analysis of data enabled us not only to 

see the difference between the two models in terms of 

classification accuracy, but also the variation in the 

number of elements in the highly faulty class. 

 
Table 2: Classification accuracy comparison 

 M’ (CC) M (CC Corrected) Variation % Improv. % 

A 87.1% 92.2% +5.9% 39.5% 

B 35.6% 56.0% +57.3% 31.7% 

C 10.7% 8.8% -17.8%  

 M’ (RPSM) M (RPSM Corrected) Variation % Improv. % 

A' 85.0% 91.0% +7.1% 40.0% 

B' 47.2% 64.7% +37.1% 33.1% 

C' 14.1% 11.4% -19.1%  

 

The results are detailed in Table 2: it presents 

detailed results of HR’, which is the worst classified 

class. The table shows in separate columns the degree 

of accuracy measured with the classification methods 

M’ and M, indicating the difference between accuracy 

measurements in percentage both in terms of variation 

(M – M’)/M’, and improvement (M-M’)/(1-M’). 

 

4.6 Effectiveness Assessment of Testing Time 

Weighted Partitioning 

In this section we present, as an example of the 

application of fault prediction, a partit ioning of testing 

modules on the basis of the complexity measure 

corrected with persistency. We divided the range of  Rj,k  

in n steps V1..Vn.  We allocated the total testing time T 

on the basis of the following equation system 

{ 
Tj,k= A1*Class1(R(j,k))+A2*Class2(R(j,k)) +...  

..+ An*Classn(R(j,k)) 

SUMj,k (Tj,k) = T 

(4) 

 

where a module j at its release k  belongs to 

Classi(Rj,k), and consequently Class i(Rj,k)=1, if Rj,k 

belongs to Vi and 0 otherwise; A1, ..., An are calculated 

in order to make the testing time per fault homogeneous 

among the various classes. 

The method has been validated by calculating 

subsequently for each risk class the average number of 

testing units per fault obtained with this time 

partitioning method; the result has been compared with 

the average number of units per fault obtained with a 

flat partitioning. 

The general problem is very complex, and we 

analyzed d ifferent number of part itions. At the end we 

obtained good results adopting a simplified version with 

a partition into three equidistant classes: augmenting the 

number of classes the enhancement of results is not very 

significant in the context. Partition ing into classes has 

been carried out normalizing the risk measurement and 

reducing it to an interval between 0 and 10. Then we 

have partitioned the modules into classes identified by 

means of equidistant thresholds. 

 
Table 3: Files partitioning into risk classes 

Class (Risk) Num. of files Total Num. of faults  

High 17 30 

Medium 64 59 

Low 552 136 

 

The time partit ioning test was carried out on the 

overall data risk calculated by means of the CC index 

corrected with the persistency factor. We have 

considered a real case in  which the testing time 

available was 160 hours partitioned into 10-minutes 

testing units, for a maximum number of 960 units. We 

have simulated the distribution of testing time on the 

basis of the time allocated to each class. We have 

experimented three different criteria of class weight and 

compared them (a flat d istribution and two d ifferent 

weighted distribution).  

From the results shown in Tab le 4 emerge the 

partitioning of average time values per fault into the 

various classes. Weight indicates the weight allotted to 

the risk class, while Average is the average number of 
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units per fault, calculated with a subsequent evaluation. 

We can see that Weighted Distribution 2 have an almost 

equally average unit per faults and so is the optimal 

solution 

 
Table 4: Testing time partitioning into risk classes 

Weighted distribution 1 

Class (Risk) Weight Testing Units Average units/faults  

High 3 66 2.20 

Medium 2 165 2.80 

Low 1 713 5.24 

Weighted distribution 2 

 Weight Testing Units Average units/faults 

High 8 136 4.53 

Medium 4 256 4.34 

Low 1 552 4.06 

Flat distribution 

Class (Risk) Weight Testing Units Average units/faults  

High 1 25 0.85 

Medium 1 95 1.62 

Low 1 823 6.05 

 

V. Conclusion 

We presented in this paper a large research work 

done in our Laboratory.  The principal and innovative 

idea is the introduction of the new parameter (fau lt 

persistency), which is a function of the age of a file. The 

most important results we reached are the following. 

The identification and evaluation of a new factor 

which can help to better understand the fault behavior 

with the age of a module: the persistency factor, widely 

discussed in  section 3. 

The new approach of evaluating fault prediction, 

considering the age o f modules as well as their 

structural characteristics, leads to a more accurate 

classification andfault  predict ion than the traditional 

methodologies (for instance Table 2) . 

As an example of real world applicat ion of fault  

prediction, we proposed a testing time part itioning 

methodology: if we apply a weighted partitioning of the 

modules on the basis of their membership to a given 

risk class, we can allocate testing time in an effective 

way, priorizing testing and so giving more testing time 

to high faulty modules and less to low fau lty modules; 

the total testing time is available is usually fixed, but 

time is more correctly  allocated and we obtained a more 

homogeneous sharing of testing resources. 

The following steps of the research study concern the 

analysis of the full testing time d istribution equation 

described at section 3.2 and not only a reduced version. 

In particular, we are now analyzing the influence of 

people related factors.  

Further investigations concern the assessment of the 

model on new data sets coming from other application 

contexts, to find common characteristics and 

peculiarities of each application area; the analysis of 

fault proneness variation through a regression analysis 

over releases, to better describe fault density functions; 

the evaluation of efficiency of the method proposed for 

testing time allocation, by analyzing data collected from 

organizational processes that adopt this time allocation 

method 
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