
I.J. Information Technology and Computer Science, 2013, 08, 15-23

Published Online July 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.08.02

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

Fault Persistency and Fault Prediction in

Optimization of Software Release

Maurizio Pighin

Department of Mathematics and Computer Science, University of Udine, Italy

E-mail: maurizio.pighin@uniud.it

Anna Marzona

LiberaMente Srl, Udine, Italy

E-mail: amarzona@mentelibera.it

Abstract— This article serves two purposes: firstly, it

presents an innovative methodology that increases the

accuracy of fault p rediction measurements. This method

is based on the novel concept of "fault persistency",

which enables to correct prediction metrics with a

weighted value related to the module’s history.

Secondly, it aims to develop operational processes from

the aforesaid prediction metrics that may contribute to

software construction and validation. It presents an

example o f an allocation methodology for resources

used for testing purposes. The theoretical part is

followed by an extensive experimental phase.

Index Terms— Fault Predict ion, Fault Persistency,

Software Release, Software Metrics, Software Testing

I. Introduction

Our interest has been long focused on the use of

software metrics as a methodology evaluating the risk

of a module, where risk is related to the number of

faults still contained in the module. Activity in this

sector is stimulated both by theoretical interest and by

the intention of finding methodologies that may validate

with factual data the subjective evaluations adopted in

software engineering. Our attention is devoted to

methodological and operational aspects concerning

applicability of the measurement and prediction

processes in real working environments.

The scientific background of our work is related to

reliability and risk measures of software modules. The

size and complexity of software has grown dramatically

during the last decades and especially during the last

few years. When the requirements for and dependencies

of computers increase, chances of crises from failures

also increase. The impact of these failures ranges from

inconvenience to economic damages to loss of lives -

therefore it is clear that software reliability is becoming

a major concern for software engineers and computer

scientists. Software development is a complex process

in which software faults are inserted into the code

during the development process or during maintenance.

The literature on this subject shows that the pattern of

faults insertion phenomena is related to measurable

attributes of the software objects. During the last twenty

years, hundreds of metrics have been proposed for

software assessment.

Currently one of the most commonly used method for

evaluating module fau lt proneness is to adopt a range of

complexity-based metrics. Principal measurements are

mainly capable of predicting the total risk of a module

in terms of number of faults that the module might

produce in its life-cycle. However, o ften the interest is

focused on the degree of risk at a given project release

phase, e.g., in order to assess risk when the product is

released on the market.

In this article we present a new approach to fault

proneness measurement where the degree of risk of a

module is calculated in relationship to a specific release.

Then we present an example of use of the new

measurement in a real environment.

Chapter 2 describes the state of art of research about

fault prediction measurements, classification model

construction and accuracy evaluation of a model.

Chapter 3 presents the characteristics of fault measures

not operating on the whole software life cycle, but

working on each single software release and the

rationale of an application of this methodology on

software testing planning. Chapter 4 describes the

experimental validation of the whole model prev iously

defined.

II. Fault Prediction Measurement Systems

In an attempt to optimize product development and

test for the construction of high-quality software,

project managers and programmers try to identify the

elements that are most likely to experience problems

when in use, in order to focus the releasing activity on

them. Attention is usually concentrated on new modules,

on pre-existing functions heavily modified by the

current release, on the work delivered by the less skilled

16 Fault Persistency and Fault Prediction in Optimization of Software Release

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

technicians. These elements are supposed to contain a

high number of defects and therefore are intuitively

considered potentially highly fau lty. But other modules

can be critical, even if they do not belong to this first set.

In this paper we propose a methodology to find them.

Prediction systems are composed of metrics and a

classification model: metrics provide factual

measurements of a single element, while classification

model part itions these elements into classes or assigns

them a certain degree of risk. In literature there are

several fault pred iction models. Some approaches (for

example [1]) evaluate the characteristics of the project

documents, identifying any crit ical element already

during the specifications phase. Other research activities

(such as [2]) are focused on the analysis of some

characteristics, such as the number of people who were

involved in module development, the testing time, and

the faults detected in the previous phases; on the basis

of these measures it is possible to obtain information on

the degree of risk of a single module.

We will focus on prediction systems based on metrics

of the software manufactured, as they are adopted much

more frequently.

2.1 Software Complexity Metrics

Most of the research activity carried out on

complexity concerns structural complexity, i.e., the

measurement of the characteristics of the final product

in the software development p rocess, which can give an

idea of the module difficulty. As programming

languages are very formal, the measurement of module

structural characteristics is widely recognized as

“objective”, easy to repeat and to adopt in different

environments. Over the years various metrics s ystems

have been proposed to define the structural complexity

of software. Additionally, several experiments have

been carried out for the purpose of proving in an

objective way the relation between high complexity and

the faultiness in the code. The most important

methodologies are length-based metrics [3,4],

instruction flow metrics [5], mult ivariate systems

metrics [6,7,8,9,10,11,12] and entropy and the

informational content metrics [13,14].

Here we shortly outline the key elements of the

RPSM (Risk Predict ive Structural Metric) because we

will use this metrics in fo llowing sections (a broad

definit ion and validation is given in [12]). RPSM is a

multivariate metric proposed by our research group. It is

based on a set of parameters that can be broken down

into the different classes: flow control instructions,

memory allocation instructions, definition and usage of

structured variables, preprocessing instructions,

function calls, size. We measured these parameters on

each software module, and then we combined them with

the fault found in the same module; using this

methodology we found relations between faults and

structure of a module and we descended a mathematical

model to evaluate the risk of each parameter and the

global risk o f each future module in a defined

environment. RPSM examines several different aspects

of software structure, becoming a powerful pred ictor of

the total number o f fau lts collected by a module all over

its life cycle. RPSM, as other structural metrics, does

not consider the age of the module: it can be used as a

total fault number predictor and it’s not directly useful

in predict ing the expected fault number of a module in a

given project release.

2.2 Classification Systems

Classification systems may be based on several

methods: for example the use of threshold values

identified by means of statistical methods such as the

discriminating analysis that divide the set of elements

into classes on the grounds of the metrics values [6,11];

the calculation o f an index expressing the probability of

belonging to a certain class on the basis logistical

regression [10], or a classification by means of

Bayesian networks [15], linear programming techniques

[16] , decision trees [7] or neural networks [17], etc..

The informat ion provided by the measures obtained

from metrics is processed by the classification system,

which may produce, according to the model on which it

is based, a class or a continuous risk value. A metric

system can be a more or less effective fault pred ictor

according to the classification model used in the

prediction system. For example in [18] we calculated

that the degree of accuracy of the McCabe index

combined with a threshold classificat ion technique is

around 75/80%; the degree of precision of the RPSM

multivariate metrics ranges from 85 to 90% if combined

with a linear programming classification technique,

while it decreases slightly if the classification is carried

out on the basis of a threshold value.

We now shortly outline the classification models

construction and the concept of model accuracy on

which we based our experiment.

2.2.1 Classification Model Construction

Classification models are usually constructed using

assisted learning techniques: the user analyses a

significant set of data, with a known classification, and

divides it into two complementary subsets: the so-called

training set, or learn ing set, used to infer the

classification rules, and the testing set, or control set,

which is used to measure the effectiveness of the

classification system.

Let us consider, for example, the construction of a

model that enables to predict whether a g iven software

module is highly fault-prone or not. From h istorical data

we can indicate for each module whether it falls into the

“HR” (High Risk) or “LR” (Low Risk) class on the

basis of number of faults contained in the module.

 Fault Persistency and Fault Predict ion in Optimization of Software Release 17

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

A dichotomist classification model can be

constructed with the following steps:

1. through a random selection function the set is divided

into two subsets: TS (testing) and TR(training);

2. TR is divided into the HR and LR classes on the basis

of the classificat ion value known; this method is

called subsequent classification (or a posteriori

classification), because it is based on a known value;

3. the characteristics of the HR and LR modules are

analyzed;

4. from the common characteristics a generalized M

classification model is derived;

5. M is applied to TS data, obtaining a classificat ion

into two classes, HR’ and LR’; this method is called a

priori classification, because it is carried out on the

basis of a model without having data that support the

correctness of the classification;

6. the accuracy of the a priori classificat ion is checked

with a subsequent classification divid ing TS elements

into HR and LR classes and analyzing how many HR

and LR elements are really contained respectively in

HR’ and LR’.

2.2.2 Accuracy of the Classification System

The accuracy of a classificat ion model is determined

by several factors: especially in dichotomist systems it

is measured as follows: (i) the percentage of elements

correctly classified by the model (true positive and true

negative elements); (ii) the percentage of false positive

elements (the so-called Type I errors): in this case

elements without faults classified as high-risk; (iii) the

percentage of false negative elements (the so-called

Type II erro rs): in this case faulty elements classified as

low-risk. When evaluating the accuracy of a pred iction

method it is also important to consider the type of errors

concerned. For example, if we use fault prediction

values to plan testing activities, Type I errors are better

than those classified as Type II, as they imply an

accurate testing of an element which does not need it;

vice versa, in case of Type II errors, highly fault-prone

modules are classified as low-risk, and therefore are not

tested accurately: it is important to have a good global

accuracy and eventually a better accuracy in LR’ that in

HR’.

III. The Rationale of the Research

After the short description of state of art, we start

now analyzing the core of our research. One of the

major limitations to the use of structural complexity

metrics is the fact that risk predict ions made on the

basis of the total number of fau lts in the training set is

referred to the full module’s life-cycle; usually,

however, the intention is from fau lt proneness

evaluation models to obtain information about the risk

for the current software release. The evaluation of fau lt

allocation according to software age has only recently

become object of systematical investigation: even

though some trends, such as “a module that had a lot of

faults in the past is likely to have them also in the

future”, were outlined in previous studies, only in 2000

did Graves [19] propose a process metrics which

considers age a key factor in the assessment of fault

proneness: risk is calculated starting from the number of

modifications made in t ime weighted with the module

age and introducing a corrective element that halves the

weight of the older modificat ions. The studies by

Ostrand and Weyuker, applied to the development

teams of AT&T, are more systematic [20]: they have

been carried out concurrently with the starting of our

research. In both cases initially the approach was based

on the analysis of fault allocation per release,

investigating the fault trend, the correlation between the

structural characteristics of the module and the number

of faults in a release, the persistency of faults from one

release to the following one [21], the incidence of age

of a module on the number of faults in a g iven project

release. The results obtained by the two groups working

on completely d ifferent environments are basically

consistent and point out some general trends briefly

outlined at section 3.1. As far as we are concerned,

knowing such trends enabled us to create a method for

correcting structural metrics-based predictions thanks to

the use of a regression function calculated on the

average density of faults per release. This method is

outlined in the following sections.

3.1 Characteristics of Fault Partitioning per

Release

The analysis of fault trends through releases was the

purpose of the first step in our research [21]. The

characteristics analyzed were the following.

Age: for each release we created two subsets: one

with the files introduced in the release concerned (new)

and one with the files already included in previous

releases (old); the experimental analysis (surprisingly)

demonstrates that the new files do not show a

significantly higher rate of faults than the old files;

Faultiness in the first release: files that in their first

release contained a number of faults exceed ing a certain

level were classified as faulty files; the analysis shows

that faulty files tend to maintain a higher fault density in

the following releases than non-faulty files; we called

this phenomenon “persistency”. This idea confirms

studies previously carried out by Ostrand and Weyuker

[20]. They summarized their findings with the sentence

“once faulty ever faulty”, which means that when a file

has a high fault density in its first release (once faulty) it

tends to maintain a high fault density in subsequent

releases as well (ever fau lty). In [21] we verified

experimentally this phenomenon.

18 Fault Persistency and Fault Predict ion in Optimization of Software Release

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

Total file faultiness: in literature the 80%-20%

principle is well-known (80% of faults are in 20% of

modules), which is represented in the Pareto

distribution model; this rule holds true also in our

environment, and we have found out that modules with

a large number of faults had a much higher

concentration of faulty files than the whole project;

Structural complexity of files: the analysis showed

that faulty files tend to have a slightly more complex

structure than non-faulty files.

3.2 Fault Prediction per File Release

We have also made some research on the fault trend

in following releases, which is represented by a

decreasing curve that is different for faulty and non-

faulty files. Our innovative idea was to combine the two

elements (structural complexity measures and

persistency) in order to evaluate the fault proneness of a

specific module release. This new measurement is

useful for various application, for example better

allocating integration testing time before the release of a

new project version. In our study we aim to validate the

following hypotheses:

 a prediction measurement based on single modules

complexity can become even more accurate with the

introduction of a factor connected to each module’s

release

 we can use this predictions in real world

application: as example we propose a testing time

partitioning weighted on the basis of each module

fault proneness and we evaluate the benefit which

this approach can introduce in resource allocation.

Now the issue is how to measure the degree of risk of

a current release and how to allocate testing time on the

basis of risk measurement. The new fault pred iction

measure proposed for a version to be tested is obtained

by weighting one of its structural measurements with

other factors, including one related to age.

The set of elements that in our opinion contribute to

measuring module risk of a given release can be

calculated as

Rj,k = Sj * Gj * Cj * Fj,k (1)

where:

 j is a project module to be tested;

 k is the module release, that is the age of a module in

terms of releases (the maximum value for k is equal

to the current release and the minimum is 1 when it is

new);

 Sj is the subjective module risk, measured by the

person in charge of the testing activity according to

the most unpredictable (and difficult to formalize)

conditions, such as the competence of the developer,

the functional criticality of the module, the kind of

users, the attention dedicated to customer

expectations, problems related to software

specifications, etc.;

 Gj is the module test gravity factor, i.e., a

measurement of the difficulty of the testing activity;

 Cj is the absolute module risk factor, calcu lated as a

complexity measurement of the module j: it can be

for example the McCabe index or any other structural

measurement;

 Fj,k is the release correction factor; it is calculated

applying the persistency function on the module j in

its kth release,

 Rj,k is the corrected risk factor calculated for the

module j in its kth release, according to the formula:

it is the risk measure we used to classify modules by

risk.

Our first aim is to demonstrate that introducing the

correction factor connected to the module age it is

possible to identify the more fault -prone modules in the

current release with greater accuracy than with a

classification based exclusively on the Cj risk

measurement. For th is purpose we simplify the function

proposed by omitting the subjective factor Sj and the

gravity factor Gj, considering both equal to 1, so as to

emphasize the contribution of the correction factor Fj,k.

Therefore the simplified function for fault predict ion

becomes

Rj,k = Cj * Fj,k (2)

In order to demonstrate the effectiveness of the age-

based correction factor we create two classification

models, M and M’. The former is based on the new

measurement, the second one exclusively on the

complexity measurement. At the end of the

classification we have compared the two models’

accuracy. More in detail, we follow these steps:

 We make a random partit ion of the project modules

and test the model creating two different subsets (TR

– Training Set, and TS – Testing Set)

 We use TR elements to define the classification

model through: (i) the construction by means of

regression methods of persistency functions F to be

used for the calculation o f the correction factor

related to the file age and to whether the file is fau lty

or non-faulty; (ii) the calculation of Cj and Rj,k for

each module j; (iii) the construction of a priori

classification model M on the basis of Rj,k and the

number of faults detected in the current release of

each module j; (iv) the construction of a priori

classification model M’ on the basis of the

complexity metrics Cj only and the number of faults

in each module j current release.

 Fault Persistency and Fault Predict ion in Optimization of Software Release 19

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

 We use TS elements to validate the classification

model through: (i) the calculation of Rj,k and Cj for

each module j; (ii) the a priori classification of each

module applying to Rj,k the Model M; (iii) the a

priori classification of each module applying to Cj

the Model M’; (iv) the assessment of the degree of

accuracy of M and M’ by counting the faults really

detected in each TS module j, and the comparison of

the results.

The experiment’s details and results are described at

section 4.

3.3 Examples of Practical Use of Risk Measure

The measure described in the previous paragraph can

be used for different purposes: operational processes

should consider the activity necessary to take this

measure ad to use it. The decision to use the risk based

measure influence, for example, the following items. (i)

Configurat ion management and quality management

documents: they must describe processes, documents,

parameters and actions related to the acquisition and the

use of the measure. (ii) Daily development activity: the

measure can be taken of software modules under

development to early evaluate their potential fau ltiness.

(iii) Integration test: the measure can be used to allocate

more testing time to the most risky modules (see par.

3.4 and 4.6 for an example)

The process must be supported by a data collection

system, to store collected measures and modules

attributes. The parameters of the model must be

periodically recalcu lated, in order to tune the model and

to reflect the changes of the organizat ional structure of

the company. If there is no historical data, the process

can be set up using data collected in the development of

systems similar for technology, team, etc, to calculate

the init ial value of model’s parameters. As the process

runs, model’s parameters can be regenerated by using

actual measures collected during the process, until they

converge to stable values.

3.4 Risk-Based Testing Time Partitioning of a

Given Release

This part of the study must be considered an example

of application of our risk evaluation in real world.

Our starting point is the limit that each software

house has for testing time: in order to test a given

release usually they have a limited amount of time that

must be used to achieve an optimal result in terms of

overall project reliability.

If we consider the time available as partitionable into

T units of tests that can be allocated in a discrete way,

the problem can be solved with the fo llowing equation

system

{

SUMjk(Tj,k) = T

Tj,k = Fun (NFj,k)
(3)

Tj,k is the number of units to be partit ioned in order to

test the j
th

 module in its k
th

 release. NFj,k is the number

of fault presents in j
th

 module in its k
th

 release; Fun is a

function that enables to allocate a greater amount of

time to more fault-prone files. When we plan tests, we

do not know NFj,k, so we approximate its values with

Rj,k, obtaining the equation Tj,k = Fun (Rj,k).

Our target is to demonstrate that testing time

partitioning to modules on the basis of Rj,k (weighted

partitioning) enables to reach a more effective

partitioning of testing units to faults than a generic flat

one to each module: note that we used as reference a

“flat” part ition due to the fact that in our experimental

environment the modules were constructed using rigid

software engineering rules, so where all of similar

length and so we have not “a prio ri” motivation to test

with different resources different files; in other

experimental environments it is possible to use as

reference other partit ion methodologies (usually based

on dimension or other similar parameters).

IV. Experimental Validation

The whole experiment has been carried out on a real

project, i.e., an integrated company management system

developed in 10 years by a software house employing

20 programmers. We have informat ion on the

composition of g roups working on themat ic subset of

modules (i.e ., on Accounting, on Production, on

Logistics, …). We know also that all people worked on

the development of the standard edition of the software,

on its customization and on software maintenance, but

we have no detailed information on each developer’s

work, nor on his personal characteristics.

The software in its latest release is made up of 1,061

modules in C language (a mounting to a total of more

than 450,000 lines of code.), it runs on Unix

environment and interfaces an Informix database. It has

been provided to us in its most recent version with a list

of releases and a list of fau lts found and corrected

between one release and the other. The development

environment adopted at first was very innovative and

did not change during the period mapped by our data

collection.

The set of files in the current release has been

partitioned between the two TR set, which contain 40%

of files, and TS, which contain all the others. TR has

been used for the classification model construction and

TS for all the remaining evaluations. The experiment

has been repeated on four different random part itions of

the sets of TR and TS files in order to have more

significant results from a statistical point of view. The

experiment has been carried out on CC (Cyclomatic

20 Fault Persistency and Fault Predict ion in Optimization of Software Release

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

Complexity, the McCabe index) and RPSM. Therefore

totally we have analyzed 8 test cases, and the results

confirmed our expectations.

4.1 Calculation of Persistency Functions

For each of the four distinct test sets, persistency

functions have been evaluated as follows:

1. partition of TR files between Fau lty and Non Fau lty

classes;

2. calculation of average fault density per release on

each of the two classes;

3. interpolation of density values per release with a 4
th

degree polynomial regression function selected to

describe faithfully but without ups and downs density

trend in time;

4. for first-version modules, whose faultiness class in

their first release is not known, the correction factor

adopted has been the average result obtained from the

interpolation functions in the first release. An

example of the function graphs calculated on the two

sets is shown in Fig. 1.

0

0.5

1

1.5

2

2.5

3

0 2 4 6 8 10

File release

A
v
g

.
fa

u
lt

 n
u

m
b

e
r

F (non faulty)

F (Faulty)

Points (Non Faulty)

Points (Faulty)

Fig. 1: Graphs of fault density functions per release

4.2 Calculation of Structural Metrics C

The experiment has been carried out correct ing the

two different structural metrics CC and the RPSM. We

used in the present experiment these different metrics

because the first is very famous and well known, while

the second is a new metric proposed by our Laboratory.

The experiment has been carried out correct ing the

two different structural metrics CC and the RPSM. We

used in the present experiment these different metrics

because the first is very famous and well known, while

the second is a new metric proposed by our Laboratory.

As we could see in the following sections, the results

are very similar and other evaluation with other metrics

obtained also similar results: we assess that the results

depend on the methodology applied, not on the specific

complexity metric used. The RPSM calculat ion model

has been constructed on the basis of the elements in TR:

from structural measurements and the file fault iness we

have calculated the relative weight of each structural

parameter.

4.3 Construction of Classification Models M and

M’

We have decided to use as dichotomist classificat ion

model a threshold value identified by means of a

logistical regression function, a value that enables us to

partition the files into the HR and LR classes. The

regression function used as a basis for the calculation is

a linear regression on average complexity values of the

elements with the same number of faults in their current

release: we have partitioned TR into four classes on the

basis of the number of faults (0, 1, 2, >2). The

partitioning into four classes has been determined on

the grounds of the fault distribution per release.

Table 1: Number of Files per Fault Class

Number of faults Average % of files in TR

0 72%

1 18%

2 6%

>2 4%

Then we have calculated the average complexity

(Cm0, Cm1, Cm2, Cm3) of the elements contained in

each of the four classes and then we have calculated the

regression curve coefficients at (Cm0, 0), (Cm1, 1),

(Cm2, 2), (Cm3, 3). The threshold for the part itioning of

files into the HR and LR classes has been calculated

searching the zero of the third derivative of the

logistical regression function applied to the regression

line: this value represent the point where the

distribution of fau lt change drastically its behavior and

so can classify correctly the two classes; similar

analysis where used by Denaro and Pezzè [10]. For

each of the four TR sets and for each of the two

complexity measures we have calculated the threshold

values with this method

 Tr: the discriminating factor of the Model M, based

on the structural complexity measurement corrected

with the persistency factor (Rj,k);

 Tc : the discriminating factor of the model M’,

based on the non-corrected structural complexity

measurement (Cj).

4.4 A Priori Classification of TS Elements

For each TS element we have calculated

1. the structural complexity measurement Cj (McCabe

and RPSM);

2. the persistency correction factor Fj,k, by means of

persistency functions;

3. the corrected complexity measurement Rj,k (McCabe

and RPSM).

 Fault Persistency and Fault Predict ion in Optimization of Software Release 21

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

With the two measurements we have divided the

elements into the two HR’r and LR’r classes on the basis

of the model M comparing the value of Rj,k with the

threshold value Tr.; then we have created a new

partitioning into the HR’c and LR’c classes on the basis

of the model M’, comparing for each model the value of

Cj with the threshold value Tc.

4.5 Evaluation of Classification Accuracy

Model accuracy has been evaluated on the basis of

the overall classification accuracy (number of files

correctly classified) which is better detailed with an

analysis of the classification accuracy in the highly

faulty class. The analysis of data enabled us not only to

see the difference between the two models in terms of

classification accuracy, but also the variation in the

number of elements in the highly faulty class.

Table 2: Classification accuracy comparison

 M’ (CC) M (CC Corrected) Variation % Improv. %

A 87.1% 92.2% +5.9% 39.5%

B 35.6% 56.0% +57.3% 31.7%

C 10.7% 8.8% -17.8%

 M’ (RPSM) M (RPSM Corrected) Variation % Improv. %

A' 85.0% 91.0% +7.1% 40.0%

B' 47.2% 64.7% +37.1% 33.1%

C' 14.1% 11.4% -19.1%

The results are detailed in Table 2: it presents

detailed results of HR’, which is the worst classified

class. The table shows in separate columns the degree

of accuracy measured with the classification methods

M’ and M, indicating the difference between accuracy

measurements in percentage both in terms of variation

(M – M’)/M’, and improvement (M-M’)/(1-M’).

4.6 Effectiveness Assessment of Testing Time

Weighted Partitioning

In this section we present, as an example of the

application of fault prediction, a partit ioning of testing

modules on the basis of the complexity measure

corrected with persistency. We divided the range of Rj,k

in n steps V1..Vn. We allocated the total testing time T

on the basis of the following equation system

{
Tj,k= A1*Class1(R(j,k))+A2*Class2(R(j,k)) +...

..+ An*Classn(R(j,k))

SUMj,k (Tj,k) = T

(4)

where a module j at its release k belongs to

Classi(Rj,k), and consequently Class i(Rj,k)=1, if Rj,k

belongs to Vi and 0 otherwise; A1, ..., An are calculated

in order to make the testing time per fault homogeneous

among the various classes.

The method has been validated by calculating

subsequently for each risk class the average number of

testing units per fault obtained with this time

partitioning method; the result has been compared with

the average number of units per fault obtained with a

flat partitioning.

The general problem is very complex, and we

analyzed d ifferent number of part itions. At the end we

obtained good results adopting a simplified version with

a partition into three equidistant classes: augmenting the

number of classes the enhancement of results is not very

significant in the context. Partition ing into classes has

been carried out normalizing the risk measurement and

reducing it to an interval between 0 and 10. Then we

have partitioned the modules into classes identified by

means of equidistant thresholds.

Table 3: Files partitioning into risk classes

Class (Risk) Num. of files Total Num. of faults

High 17 30

Medium 64 59

Low 552 136

The time partit ioning test was carried out on the

overall data risk calculated by means of the CC index

corrected with the persistency factor. We have

considered a real case in which the testing time

available was 160 hours partitioned into 10-minutes

testing units, for a maximum number of 960 units. We

have simulated the distribution of testing time on the

basis of the time allocated to each class. We have

experimented three different criteria of class weight and

compared them (a flat d istribution and two d ifferent

weighted distribution).

From the results shown in Tab le 4 emerge the

partitioning of average time values per fault into the

various classes. Weight indicates the weight allotted to

the risk class, while Average is the average number of

22 Fault Persistency and Fault Predict ion in Optimization of Software Release

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

units per fault, calculated with a subsequent evaluation.

We can see that Weighted Distribution 2 have an almost

equally average unit per faults and so is the optimal

solution

Table 4: Testing time partitioning into risk classes

Weighted distribution 1

Class (Risk) Weight Testing Units Average units/faults

High 3 66 2.20

Medium 2 165 2.80

Low 1 713 5.24

Weighted distribution 2

 Weight Testing Units Average units/faults

High 8 136 4.53

Medium 4 256 4.34

Low 1 552 4.06

Flat distribution

Class (Risk) Weight Testing Units Average units/faults

High 1 25 0.85

Medium 1 95 1.62

Low 1 823 6.05

V. Conclusion

We presented in this paper a large research work

done in our Laboratory. The principal and innovative

idea is the introduction of the new parameter (fau lt

persistency), which is a function of the age of a file. The

most important results we reached are the following.

The identification and evaluation of a new factor

which can help to better understand the fault behavior

with the age of a module: the persistency factor, widely

discussed in section 3.

The new approach of evaluating fault prediction,

considering the age o f modules as well as their

structural characteristics, leads to a more accurate

classification andfault predict ion than the traditional

methodologies (for instance Table 2) .

As an example of real world applicat ion of fault

prediction, we proposed a testing time part itioning

methodology: if we apply a weighted partitioning of the

modules on the basis of their membership to a given

risk class, we can allocate testing time in an effective

way, priorizing testing and so giving more testing time

to high faulty modules and less to low fau lty modules;

the total testing time is available is usually fixed, but

time is more correctly allocated and we obtained a more

homogeneous sharing of testing resources.

The following steps of the research study concern the

analysis of the full testing time d istribution equation

described at section 3.2 and not only a reduced version.

In particular, we are now analyzing the influence of

people related factors.

Further investigations concern the assessment of the

model on new data sets coming from other application

contexts, to find common characteristics and

peculiarities of each application area; the analysis of

fault proneness variation through a regression analysis

over releases, to better describe fault density functions;

the evaluation of efficiency of the method proposed for

testing time allocation, by analyzing data collected from

organizational processes that adopt this time allocation

method

References

[1] N. Ohlsson, M. Helander, and C. Wohlin, Quality

Improvement by Identificat ion of Fault-Prone

Modules using Software Design Metrics, in

Proceedings Sixth International Conference on

Software Quality, ICSQ 1996

[2] [K. Koga, Software reliability design method in

Hitachi, in Proceedings of the Third European

Conference on Software Quality, CSQ 1992

[3] M.H. Halstead, Elements of Software Science

(Operating, and Programming Systems Series)

Volume 7. New York, NY, Elsevier, 1977

[4] N.E. Fenton, S.L. Pfleeger, Software Metrics, PWS

Publishing Company, Boston 1997

[5] McCabe T.J., A complexity measure, IEEE

Transactions on Software Engineering, 4/1976

[6] J.C. Munson, T.M. Khoshgoftaar, Predicting

software development error using software

 Fault Persistency and Fault Predict ion in Optimization of Software Release 23

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 08, 15-23

complexity metrics, in IEEE Trans. on Software

Engineering, 2/1990

[7] T.M. Khoshgoftaar, Tree based software quality

estimation models for fault pred iction, in

Proceedings of the 8th IEEEE Symposium on

Software Metrics, METRICS 2002

[8] L. Briand, S. Morasca, V. Basili, Property based

software engineering measurement, in IEEE

Transactions on Software Engineering , 1/1996

[9] Morasca S., Briand L.C., Towards A Theoretical

Framework For Measuring Software Attributes, in

Proceedings of 4th International Software Metrics

Symposium, METRICS 1997

[10] G. Denaro, M. Pezzè, An empirical evaluation of

fault proneness models, in Proceeding of

International Conference of Software Engineering,

ICSE 2002

[11] M. Pighin, R. Zamolo, A predictive metric based

on discriminant statistical analysis, in Proceedings

of the 19th International Conference on Software

Engineering, ICSE 1997

[12] M. Pighin, P. Kokol, RPSM: A Risk-Predictive

Structural Experimental Metric, in Proceedings of

the European Software Measurement Conference ,

FESMA 1999

[13] B.A. Kitchenham, The certainty of uncertainty, in

Proceedings of the European Software

Measurement Conference, FESMA 1998

[14] P. Kokol, Long-Range correlat ions in computer

programs, in Cybernetics & Systems, 1/1997,

Taylor & Francis Publisher, 1997

[15] N.E. Fenton, P. Krause, M. Neil, Software

Measurement: Uncertainty and Causal Modeling”,

in IEEE Transactions on software engineering ,

4/2002

[16] M. Pighin, V. Podgorelec, P. Kokol, Program risk

definit ion via Linear Programming Techniques, in

Proceedings of the 8th IEEEE Symposium on

Software Metrics, METRICS 2002

[17] A. Mahaweerawat, P. Sophatsahit, C. Lursinsap, P.

Musilek, Fault Prediction in Object-Oriented

Software Using Neural Network Techniques, in

Proceedings of the InTech Conference, InTech

2004

[18] M. Pighin, V. Podgorelec, P. Kokol, The Operative

Constraints of Software Reliability Predict ion, in

Proceedings of Sistemics, Cybernetics and

Informatics Conference, SCI 2001

[19] Graves T.L., Karr A.F., and others, Predicting fault

incidence using change history, in IEEE

Transactions on software engineering , 7/2000

[20] T.J. Ostrand, E.J. Weyuker, R.M. Bell, Where the

bugs are, in Proceedings of International

Symposium on Software Testing and Analysis,

ISSTA 2004

[21] M. Pighin, A. Marzona, Influence Of Structural

Complexity On Fault Persistence, in Proceedings

of the International Association of Science and

Technology for Development, IASTED 2004

Authors’ Profiles

Maurizio Pighin: Professor at the

Department of Mathematics and

Computer Science o f the University

of Udine; currently teaches

advanced courses of Software

Engineering and In formation

Systems. His major research interests

are in the area of Software

Engineering and ERP and Data Warehouse Systems. He

is the author of more than 70 scientific publicat ions in

international journals, books and refereed conference

proceedings. He worked at several national and

international research and development projects. He is a

referee of various international journals. He has been

involved in the organization of some important events

in the fields of Software Engineering and Information

Systems.

Anna Marzona: Contract Professor at

the Department of Mathemat ics and

Computer Science of the University of

Udine; currently teaches courses of

Information Systems and Data

Warehouse at the University of Udine.

Her major research interests are in the area of Software

Engineering and ERP Systems. She is a member of the

Academic Spinoff LiberaMente Srl, a company that

deals with design and implementation of computerized

processes and data analysis systems for SMEs and the

public sector.

How to cite this paper: Maurizio Pighin, Anna

Marzona,"Fault Persistency and Fault Prediction in

Optimization of Software Release", International Journal of
Information Technology and Computer Science(IJITCS),

vol.5, no.8, pp.15-23, 2013. DOI: 10.5815/ijitcs.2013.08.02

