1.J. Information Technology and Computer Science, 2013, 05, 67-73
Published Online April 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.05.09

=

|
| Modern Education
| and Computer Science

| PRESS

The Extensive Bit-level Encryption System
(EBES)

Satyaki Roy
Department of Computer Science, St. Xavier’s College, Kolkata, India
E-mail: unrivaledsatyaki@gmail.com

Abstract— In the present work, the Extensive Bit-level
Encryption System (EBES), a bit-level encryption
mechanism has been introduced. It is a symmetric key
cryptographic technique that combines advanced
randomization of bits and serial bitwise feedback
generation modules. After repeated testing with a
variety of test inputs, frequency analysis, it would be
safe to conclude that the algorithm is free fromstandard
cryptographic attacks. It can effectively encrypt short
messages and passwords.

Index Terms— Randomization, Feedback, Byte-
Extraction

. Introduction

Due to the growing need to protect the
confidentiality of information, there is a rising demand
for an encryption algorithm that can protect data of
every format, size and type. Protecting passwords from
interception and unauthorized intrusion is of utmost
importance. Some messages have repeated occurrences
of the same characters and encryption of such texts may
be rather difficult. Crypto analysis is fast becoming an
integral part of cryptographic algorithms because
measures must be taken to ensure that any file may be
suitably encrypted.

Cryptography algorithms are largely of two types (i)
Symmetric key cryptography where we use single key
for encryption and decryption purpose (ii) Public key
cryptography where we use one key for encryption
purpose and one key for decryption purpose.

The present algorithm EBES is a symmetric key
algorithmthat performs encryption by advanced bitwise
randomization and serial feedback generation. The
prime objective is to ensure that even the rarest of text
inputs like characters of ASCII 0, 1 and 2 may be
encrypted to ciphers that are difficult to intercept and
decode by standard cryptographic attack mechanisms.

Copyright © 2013 MECS

Il. The Extensive Bit-level Encryption System
(EBES) Algorithm

The EBES algorithm includes a number of modules
that may be largely classified under two algorithms (i)
Bit-wise Randomization (ii) Serial bitwise feedback
generation module. The first algorithm uses employs
permutation of the plain text bits and the second applies
new serial bit feedback generation to encrypt the
randomized bytes. The two modules are managed with
the help of integration modules for encryption and
decryption respectively.

2.1 Integration Module
The features of the module are described below:

1. The integration module converts the plain bytes into
bits.

2. It extracts bits of plain text depending on the size of
the file. According to the algorithm 2, 8, 32 and 128
bytes may be extracted and encrypted at a time
(described later).

3. The randomization module and the serial feedback
generation modules are also invoked.

4. The plain bits are encrypted multiple times according
to the user password.

Encryption

1. Enter the name of the Plain file, Cipher file and
key=password (maximum size=64 bytes).

2. Define ma=n=Size of (Plain file).

3. Define cod=X key[i]* (i+1) where 0<=i<=64
and 1-d array arr [] = {2, 8, 32, 128} where arr[i]

{0<=i<4} decides the number of bytes extracted
at a time for encryption.

4. Perform cod=number of times encryption is
repeated=modulus (cod, 30). If cod<10 then
perform cod=10.

5. Split the plain file into bits. Define ii=0.
6. If ii>cod Goto 16

1.J. Information Technology and Computer Science, 2013, 05, 67-73

68 The Extensive Bit-level Encryption System (EBES)

7. Perform n=ma, lI=1, i=3
8. Ifn<arr[i] Goto 13

9. Extract (arr[i]*8) bits of plain text. Define
m=square root (arr[i]*8)

10. Invoke function ran_en (m, Il) to perform bit-
level randomization onthe plain bits

11. Invoke module feed_en () to generate serial
feedback to encrypt the randomized bits.

12. Perform n=n-arr[i] where n=unprocessed bytes.
Perform lI=l+1. Goto 14

13. Perform i=i-1.

14. If n<=1 then copy the file to the cipher file else
Goto 8.

15. Write the cipher bits back to the plain bit file,
perform ii=ii+1 Goto 6 for another round of
encryption.

16. Convert the encrypted bits back to bytes to
obtain the final cipher file.

17. End

Decryption

The decryption process is almost the same as the
encryption module. However the only point of
difference is that the modules ran_en () and feed ()
modules are invoked in the opposite order during
decryption.

Ilustration of byte-extraction from the plain file:

1. If the size of the plain file is 43 bytes (ASSUME)
then extraction of 128 bytes is not possible.

2. The algorithm extracts 32 bytes and encrypts it and
writes it in the cipher file.

3. Therefore number of bytes remaining = 45-32=11.

4. Therefore extraction of 32 bytes is no longer possible.

The algorithm extracts 8 bytes and encrypts it.
5. Number of bytes remaining=11-8=3.
6. Now, the algorithm extracts 2 bytes and encrypts it.

7. Number of bytes remaining=3-2=1. It copies the
remaining byte into the cipher file.

2.2 Advanced Bit-wise Randomization Module
The features of this module are described below:

1. This module generates the key matrix for
randomization of plain bits based on the value
of'1I” which counts the number of times the key

Copyright © 2013 MECS

matrix is randomized before the actual bit
exchange.

2. The plain bits are randomized according to the
key matrix

3. The algorithm also performs selective compliment
of the plain bits based on the key matrix entries so
that the rare text inputs containing characters like
ASCII 0 or 1 only may be randomized. So some
plain bits of 0 become 1 and vice-versa.

Encryption rand_en (p, 1)

Step 1. Start

Step 2: Create a key matrix which is used to
randomize the bits of plain text where m=number of
rows / columns in the square matrix of plain bits,
ll=number of times the key matrix is randomized.

Step 3: Define 2-d arrays arr=the randomization key.
Define 2-d bits arrays chararr [] [] =plains bits and
chararr2 [] [] =randomized bits.

Step 4: Initialize all the elements in the bits arrays
chararr []J[] and chararr2[][] to null.

Step 5: 'm'=number of rows and columns in the square
matrix of chararr [] [], chararr2 [] [, arr [J [I.

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array
arr [] [1 by incrementing the value of n.

Step 7: Copy the inputfile bits to 2-d array chararr [] [].

Step 8: The program invokes function ‘leftshift ()'
which shifts every column in the array to one place left
thus the leftmost column goes to the extreme right.

Step 9: Invoke function top shift () which shifts very
row to the row above. Therefore the elements in first
row are displaced to the corresponding position of the
last row.

Step 10: Subsequently perform cycling operation on the
array arr [] []. Initialize ito 1.

Step 11: If i > m/2 Goto 15.

Step 12: If i is odd, perform clockwise cycling of the ith
cycle of the key matrix array. Invoke functions :

rights(),downs(), lefts(),tops() to implement the
clockwise displacement of the elements in arr[][].

Step 13: If i is even, perform anti-clockwise cycling of
the i-th cycle of the bits array. Invoke functions
ac_rights (), ac_downs (), ac_lefts (), ac_tops () to
implement the anti-clockwise displacement of the
elements in arr [] []. Therefore the array arr [] [] is
alternately randomized in clockwise and anti-clockwise
cycles.

Step 14: Increment i. Goto 11.

1.J. Information Technology and Computer Science, 2013, 05, 67-73

The Extensive Bit-level Encryption System (EBES) 69

Step 15: Repeat steps 11-14°1" number of times. The
program invokes function ‘rightshift ()' which shifts
every column in the array to one place right thus the
last column is displaced to the position of the first
column.

Step 16: Invoke function ‘downshift () which shifts very
row to the row below. Therefore the elements in the last
row are displaced in the corresponding position of the
first row.

Step 17: Invoke the function 'leftdiagonal ()' that
performs downshift on the elements in the left diagonal
such that the lowermost element is displaced to the
position of the topmost element in the left diagonal.

Step 18: Invoke the function 'rightdiagonal ()' that
performs downshift on the elements in the right
diagonal such that the lowermost element is displaced
to the position of the topmost element in the right
diagonal.

Step 19: To arrange the elements in the bits array
chararr [] [] according to the randomized array arr [] [].
Initialize ito 1.

Step 19: Initialize jto 1
Step 20: Store element arr[i] [j] in z.

Step 21: Compute the k=row position=2/m and
I=column position=modulus (z, m) pointed by the
element z

Step 22: Place chararr[K][l] in auxiliary bits array

chararr2 [1[] in positions chararr2[i][j]. If modulus (j,2)
is not equal to O then compliment the bit stored in
chararr2[K][l].

Step 23: Increment j.
Step 24: If j<=m Goto 20
Step 25: Increment i
Step 26: If j<=m Goto 20

Step 27: Write the randomized elements in bits array
chararr2 [i] [j] tothe output file.

Step 28: End.

Decryptio rand_de (m, II)

Step 1. Start

Step 2: Create a key matrix which is used to randomize
the bits of plain text where m=number of rows /
columns in the square matrix of plain bits, ll=number of
times the key matrix is randomized.

Step 3: Define 2-d array ‘arr' = randomized key. Define
2-d bits arrays 'chararr [][]' = bits in encrypted file and
chararr2[][] = decrypted bits.

Copyright © 2013 MECS

Step 4: Initialize all the elements in the bits arrays
chararr []J[] and chararr2 [][] to 'null'.

Step 5: 'm' = number of rows and columns in the square
matrix of chararr [] [], chararr2 [] [], arr [] [].

Step 6: Input the numbers 1, 2, 3..., (m*8) to the array
arr [] [1 by incrementing the value of n. The bits in the
input file are copied to the bits array ‘chararr [][]"

Step 7: Use the numbers in the randomized array
created with the help of the functions subsequently
defined in the program to obtain key matrix.

Step 8: The program invokes function ‘leftshift ()’
which shifts every column in the array to one place left.

Step 9: Invoke function 'topshift () which shifts every
row to the row above.

Step 10: Perform cycling operation on the array ‘arr
[0 . Initialize ito 1.

Step 11: If i > m/2 goto 15.

Step 12: If i is odd, perform clockwise cycling of the i-
th cycle of the bits array. Invoke functions rights (),
downs (), lefts (), tops () to implement the clockwise
displacement of the elements in arr [] [].

Step 13: If i is even, perform anti-clockwise cycling of
the ith cycle of the bits array. Invoke functions :

ac_rights (), ac_downs (), ac_lefts (), ac_tops () to
implement the anti-clockwise displacement of the
elements in arr[]J[]. Therefore the array arr [] [] is
alternately randomized in clockwise and anti-clockwise
cycles.

Step 14: Increment i. Goto 11.

Step 15: Repeat steps 11-14 “II’ times. Invoke function
‘rightshift ()" which shifts every column in the array to
one place right.

Step 16: Invoke function 'downshift () which shifts very
row to the row below.

Step 17: Invoke the function ‘leftdiagonal ()' that
performs downshift on the elements in the left diagonal.

Step 18: Invoke the function 'rightdiagonal ()' that
performs downshift on the elements in the right
diagonal.

Step 19: Store the cipher bits in the 2d array chararr [][].
Define i=1

Step 20: Define j=1

Step 21: Define z=arrfi][j]

Step 22: Define k=z/m, I=modulus (z, m)

Step 23: If lis notequal to 0, k=k+1 else I=m.
Step 24: Compliment the bit stored in chararr[K][l].
Step 25: Perform j=j+2. If j<=m, Goto 21.

Step 26: Increment i. If i<=m, Goto 20

1.J. Information Technology and Computer Science, 2013, 05, 67-73

70 The Extensive Bit-level Encryption System (EBES)

Step 27: .Define n=1. Initialize ito 1.
Step 28: Initialize jto 1

Step 29: Initialize variables flag to 0, kto 0O and 1 to 0
where k=row index and I=column index for array
chararr [] [].

Step 30: if arr[K] [I] is notequal to n Goto 32

Step 31: chararr2 [i][j] assumes the value in
chararr[K][l], flag=1 and BREAK.

Step 32: If 'flag' is equal to 1 break

Step 33: Increment .

Step 34: If | is less than or equal to m goto 30.
Step 35: Increment k

Step 36: If k is less than or equal to m goto 30.
Step 37: Increment n.

Step 38. Increment j.

Step 39. If jis less than or equal to m goto 29.
Step 40. Increment i

Step 41: If i is less than orequal to m goto 29.

Step 42: Write the decrypted elements in the bits array
chararr2 [] [] in the output file.

Step 43: End

2.3 Serial Feedback Generation Module
The features of this module are described below:
A. This algorithm stores a starting feedback of 0.

B. It extracts plain bits and generates simple
serial feedback (shown in the table-1 below) by
performing simple OR operation between the
current feedback and plain bit.

C. The current cipher bit becomes the feedback
for the next bit.

Encryption feed_en ()
1. Enter the name of thefile containing the plain
bits.

2. Define character chl = Starting value of
feedback=ASCII 48 (ASCII for character 0)

3. Define character ch2=1 extracted bit of plain
text.

4. Perform chl=chl+ch2-96 to generate the serial
bit feedback. Character chlcan have values 0
or1ie. ASCII 48 or 49.

Copyright © 2013 MECS

5. Write theencrypted bit chl into the cipher file.

6. Goto 3 until the entire plain text bits is
processed.

7. End

Table 1: Serial feedback generation

Initial feedback=0
Plain bits: 1010
Cipher bits: 1100

Plain text 1 0 1 0

Feedback | O b 1 0

Cipher Text 1 1 0 0

Decryption feed_de ()

1. Enterthe name of the file containing the cipher

bits.

2. Define character ch1=1 extracted bit of cipher
file.

3. Define character ch2=another extracted bit of
cipher file.

4. Perform chl=chl+ch2-96 where

chl=decrypted bit. The variable chl may have
values 0 or 1 i.e. ASCII 48 or 49.

5. Write the character chl into the cipher file.

6. Perform ch2=chl. Goto 3 until the entire
cipher file is processed.

7. End

I11. The Working of EBES

The EBES algorithm computes n which is the size of
the plain text. It defines an array arr [] = {2, 8, 32, 128}
and variable i=3. If the value of n is greater than equal
to arr [i] extract arr [i] bytes and perform the bit-wise
randomization and serial feedback generation
encryption on the arr [i] bytes. Perform n =n — arr [i].
Write the encrypted bytes in the cipher file. Repeat till
entirefile is encrypted or 1 byte is remaining.

Repeat the process ‘enc’ times where enc is the
multiple encryption number.

1.J. Information Technology and Computer Science, 2013, 05, 67-73

The Extensive Bit-level Encryption System (EBES)

Enter the Plain text, Cipher text and

Password

Y

n=Size Of (plain text)
Calculate encryption
number "cod’

Y

Define 1d array arr[]
={2,8,32,128}.
Convert the plain file
into bits , =3

\

If n>= arr[i]

Yes Y

Perform
randomization of plain
bits

VY

Perform serial
feedback generation
of randomized bits

¥

Perform n=n-arr[i]

No
Perform

i=i-1

v

71

Copy the remaining byte YES

into the cipher file.

If ne=1

no

Fig. 1: The working of the EBES algorithm for every iteration

IV. Test Results and Cryptanal ysis

In the present paper, two modules of advanced bit
randomization and serial feedback generation method
have been combined. The test results confirm that the
algorithm not only works for every file format but also
yields satisfactory test results for all possible file sizes.

The EBES algorithm has been tested with multiple
files. The files have been altered subtly and the results
have been recorded and analysed. Some of the results
that have beenincluded below are

A. Some general text inputs.

B. The variations of cipher file for different
passwords.

Performance Analysis
Byte analysis of similar text inputs.

E. Frequency Analysis

Copyright © 2013 MECS

4.1 Some general text inputs

The following table shows some miscellaneous text
inputs as plain files and their corresponding ciphers.
The text inputs have been made similar in terms of the
constituting characters.

Table 2: Miscellaneous text inputs

Plain Text Cipher Text
he is great 30r_+i‘[Si,
Aaaaaaaaaa 47/06_[FqR
bbbbbbbbbb m_iDy(Ys@

Cceeeeceeee —3'S7/B%Cb
Aabbbbaa _DjExia

1.J. Information Technology and Computer Science, 2013, 05, 67-73

72 The Extensive Bit-level Encryption System (EBES)

4.2 The variation of cipher files for different
password.

The idea behind this analysis &k to study the
effectiveness of the user password.

Table 3: The Variation Of Cipher File For Same Plain Text But
Different Passwords

Plain Text Password Cipher Text
the Extensive Az P
Bit-level >RE =Aga>Ua
encryption 10 D.,‘]?U\h ,Xse'
mode [ror,__f
th%ﬁﬁ:\;‘;l"’e «D2C_5Y~_6CEA
encryption 1 15 _0f7-
o ok -
e -0_nane-
encryption 12 —B—:fgvl:(/?(’l\;é—)ews
mode
the Extensive -
Bit-level (MEUND?_d="TT
A 13 Ep,* n;_ w. %IO°
encryption AGCo
mode ate

4.3 Performance Analysis

The objective of this table is to study the encryption
and decryption time for plain file for different sizes.

Table 4: Performance Analysis- the EBESalgorithm has been tested

with suitable time functions. The computation times for files of

different sizes have been recorded for encryptionand decryption for
the same user password.

Table 5: The following table performs byte wise comparison of 10
characters of ASCII 1, 2 and 3

Cipher byte Cipher Cipher byte
Byte for byte for for
Number | characters | characters | characters
of ASCII'1 | of ASCII 2 | of ASCII 3
1 _ E w
2) _
3 ~ U e
4 - A
5 D o) =
6 T ; «
7 T % I
8 =] &
9 3 X -
10 r P

4.5 Frequency Analysis

This is the most crucial aspect of cryptanalysis as it
explores the frequency spread of the characters in the
cipher files. We check the occurrence of every
character in the cipher file. It indicates the distribution
of characters in the cipher file. In the graphs below x-
axis represent the character set (0-255) whereas the y-
axis represents the frequency of every character. For
EBES method, the test results are quite remarkable for
the text inputs of (i) 1024 characters of ‘a’ (ii) 1024
characters of ASCII 0.

Time to Time to
Plain Text Encrypt Decrypt
(inseconds) | (inseconds)
64 characters of ‘A’ 1 1
128 characters of ‘A’ 1 1
256 characters of ‘A’ 2 2
512 characters of ‘A’ 2 2

4.4 Byte Analysis of similar text inputs

The EBES algorithm has been tested with similar but
rare text inputs like 10 characters of ASCII 0, 1 and 2.
This byte wise encryption confirms that for every byte
of cipher file no repetitive patterns have been noticed.

Copyright © 2013 MECS

=
S}

9
8
F 7
R 6
£ 5
Q
u 4
E 3
N
2
C
Y 1
0
B B T S R T S
e B S R I v = R S R]
2382238822228 34
CHARACTERS FROM 0-255 -~~~ >

Fig. 2: The frequency analysis for plain file of 1024 characters of ‘a’

Result-1 corresponds to Figure-Il (shown above).
Fromthe frequency analysis of 1024 ‘a’, we can clearly
understand that there are no clear dominance of any
characters as the distribution of characters in the
spectrumseems largely random.

1.J. Information Technology and Computer Science, 2013, 05, 67-73

The Extensive Bit-level Encryption System (EBES) 73

12

10

<Oozmcom=mm
=)

ﬁﬁﬁﬁﬁﬁﬁﬁﬁﬁ

CHARACTERS FROM 0-255

Fig. 3: T he frequency analysis for plain file of 1024 bytes of ASCII 0

Fig-111 corresponds to result-1l (shown above). It is
quite remarkable that 1024 occurrences of ASCII 0,
that is 1024 X 8=9192 bits of ASCIl 0 may have a
frequency distribution as seen above. The reasons are
not hard to fathom. The selective compliment of bits
performed in the bit randomization models has yielded
such a frequency distribution in EBES algorithm.

V. Conclusion and Future Scope

Itis evident that the quality of encryption obtained at
the bit level is significant as seen in this present
algorithm EBES. The plain text files have been split
into respective bits before we apply the aforementioned
algorithms. The rare text files have been encrypted to
test whether the algorithm can handle small messages
as easily as long ones. Even when the same characters
are provided as input, the cipher files have almost no
occurrence of repetitive patterns. The use of multiple
encryption and the role of the password provided by the
user have also been demonstrated in the test results.
Clearly, the user generated password is contributing
greatly to the quality of encryption rendered.

Moreover the method of byte extraction based on the
size of file is unique and efficient. The integration
module follows the technique of extraction based on the
size of the file. It adds to the effectiveness of the
method. The idea of serial feedback is very new though
it needs further attention for improvement.

Acknowledgement

The author is grateful to the Department of Computer
Science of St. Xavier’s College, Kolkata for their
guidance and support.

References

[1] Ultra Encryption Standard(UES) Version-
| :Symmetric Key Cryptosystem using generalized
modified Vernam Cipher method, Permutation

Copyright © 2013 MECS

method and Columnar Transposition method,
Satyaki Roy, Navajit Maitra, Shalabh Agarwal and
Asoke Nath, Proceedings of RACCCT 2012, held
at Surat , Mar 29-30, Page-81-88(2012)

[2] Ultra Encryption Standard (UES) \ersion-Il:
Symmetric Key Cryptosystem using generalized
modified Vernam Cipher method, Permutation
method, Columnar Transposition method and
TTJSA Method, Satyaki Roy, Navajit Maitra,
Shalabh Agarwal and Asoke Nath, Proceedings of
the 2012 International Conference on Foundation
of Computer Science, held at Las Vegas, July 14-
19, Page 97-104.

[3] Cryptography and Network, William Stallings,
Prentice Hall of India.

[4] Cryptography & Network Security, B.A.Forouzan,
Tata McGraw Hill Book Company.

[5] SD-AREE-I Cipher: Amalgamation of Bit
Manipulation Modified VERNAM CIPHER &
Modified Caesar Cipher (SD-AREE), International
Journal of Modern Education and Computer
Science (IJIMECS), July, 2012.

[6] Ultra Encryption Standard Modified (UES)
Version-l1: Symmetric Key Cryptosystem with
Multiple Encryption and Randomized Vernam Key
Using Generalized Modified Vernam Cipher
Method, Permutation Method, and Columnar
Transposition Method, Satyaki Roy, Navajit
Maitra, Shalabh Agarwal, Joyshree Nath, Asoke
Nath, International Journal of Modern Education
and Computer Science (IIMECS), Volume 4
Number 7, July 2012.

[71 Ultra Encryption Standard (UES) Version-Ill:
Symmetric Key Cryptosystem With Bit-level
Encryption Algorithm, Satyaki Roy, Navajit
Maitra, Shalabh Agarwal, Joyshree Nath, Asoke
Nath, International Journal of Modern Education
and Computer Science (IIMECS), Volume 4
Number 7, July 2012.

Author’s Profile

Satyaki Roy: He has recently graduated in computer
Science from St. Xavier’s College, Kolkata, India. He
is currently starting to pursue his post-graduation. He
has four publications in cryptography and recently
presented his paper at an international conference. At
present he is working on new encryption algorith ms
and improvement of his existent methods.

How to cite this paper: Satyaki Roy,"The Extensive Bit-
level Encryption System (EBES)", International Journal of
Information Technology and Computer Science(lJITCS),
vol.5, no.5, pp.67-73,2013.DOI: 10.5815/ijitcs.2013.05.09

1.J. Information Technology and Computer Science, 2013, 05, 67-73

