
I.J. Information Technology and Computer Science, 2013, 04, 1-13

Published Online March 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.04.01

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

A Partial Ordered Number System for

Information Flow Control

Shih-Chien Chou

Department of Computer Science and Information Engineering, National Dong Hwa University, Taiwan

scchou@mail.ndhu.edu.tw

Abstract— Information flow control models can be

applied widely. This paper discusses only the models

preventing information leakage during program

execution. In the prevention, an informat ion flow

control model dynamically monitors statements that

will cause information flows and ban statements that

may cause leakage. We involved in the research of

informat ion flow control for years and identified that

sensitive informat ion may be leaked only when it is

output. However, most existing models ignore

informat ion flows induced by output statements. We

thus designed a new model XIFC (X informat ion flow

control) that especially emphasizes the monitoring of

output statements. We also designed XIFC as a precise

and low runtime overhead model. To achieve this

purpose, we took a different viewpoint to re-examine

the features offered by existing models and extracted a

necessary feature set for the design. Our experiments

show that XIFC bans every non-secure information

flow and substantially reduces runtime overhead when

comparing with our previous work.

Index Terms— Information Flow Control, Information

Leakage Prevention, Security, Access Control, Part ial

Ordered

I. Introduction

Information flow control models can ensure secure

database interfaces
[1]

, ensure secure informat ion flows

within an operating system
[2][3]

 and among distributed

operating systems
[4]

, prevent information leakage

during program execution, prevent informat ion leakage

within web services
[5][6]

, and ensure the security of

informat ion flowing forward to and backward from

cascading web services
[7][8]

. Perhaps preventing

informat ion leakage during program execution is the

earliest application of informat ion flow control. This

paper discusses only the control and excludes others.

Therefore, an informat ion flow control model

mentioned in the rest of this paper is a model that

prevents information leakage during program execution.

To achieve the prevention, an information flow

control model monitors statements that will cause

informat ion flows and ban statements that may leak

informat ion. For example, if h igh sensitive information

is required to output to a low sensitive device, the

output may be non-secure and therefore should be

banned (here ―sensitive information‖ is the information

that should be protected). Information flows may occur

when: (a) assigning an expression result to a variable

such as ―a=b+c;‖, (b) invoking a component and

returning from an invocation, (c) reading input media

such as ―scanf(―%d‖, &x);‖, (d) writing output media

such as ―printf(―%d‖, x);‖, and (e) sending information

to another program. Since an informat ion flow control

model prevents information leakage, we have to exp lain

the term ―information leakage‖. Generally, information

leakage occurs when sensitive information managed by

a software system is illegally obtained by persons or

other software. Our research excludes malicious

software such as viruses and worms. Therefore,

sensitive information may be leaked only when it is

output because persons and non-malicious software can

only access output information (note that sending

informat ion to other software is a special type of output).

According to our survey, most existing models monitor

information flows within a system but ignore the flows

induced by output statements. Accordingly, our new

design especially emphasizes the monitoring of

information output.

We involved in the research of informat ion flow

control for years and identified that precise control and

low runtime overhead are d ifficu lt to achieve

simultaneously. That is, a comprehensive model can

ban every non-secure information flow but may induce

high runtime overhead. On the other hand, a low

runtime overhead model may be imprecise. To design a

precise and low runtime overhead model, we re-

examined the features offered by existing models and

extracted a necessary feature set from a d ifferent

viewpoint. The extracted features is used to design a

new model, which bans the minimum set of information

flows but still ensured no information leakage. After a

long time of trial and error, we designed a model using

a partial ordered number system. It is named XIFC (X

informat ion flow control) in which the letter ―X‖

indicates that the concepts in XIFC deviate from

existing models. Primary features offered by XIFC are

listed below, in which the latter four features are all

useful in reducing runtime overhead.

2 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

a. XIFC prevents information leakage during program

execution. This feature should be offered by every

information flow control model.

b. XIFC uses simple partial ordered numbers instead

of complicated mechanisms such as decentralized

labels and role -based permissions to represent

security levels. Checking the validity of information

flows using number comparison is expected to be

faster than using the complicated mechanisms.

c. XIFC strict ly monitors every output statement but

allows most other ones because only output may

leak informat ion. To allow most non-output

statements, the join operator is applied to ensure no

information leakage will occur.

d. XIFC only monitors informat ion flows involving

sensitive variables and/or sensitive I/O media. The

runtime overhead will be smaller as the number of

sensitive information is less.

e. XIFC uses bits to represent security levels. With this,

bit operations can be applied to reduce runtime

overhead.

Although we just mention five features, XIFC offers

more important ones described in section 3.2.

According to our survey, most existing models only

offer the about mentioned first feature but not the others,

especially the third one. In the rest of this paper, we

discuss the extraction of features and the design of

XIFC. Our experiments show that XIFC bans every

non-secure information flow and reduces runtime

overhead substantially when comparing with our

previous work. In the rest of the paper, section II

discusses related work, section III describes feature

extraction, section IV describes XIFC, section V shows

an example, section VI proves the correctness of XIFC,

section VII gives the evaluation of XIFC, and section

VIII is the conclusion.

II. Related Work

Access control matrix (ACM)
[9]

 allows a subject to

access an object if the subject possesses the access right.

ACM generally achieves static but not dynamic access

control
[10][11]

, such as changing rights using the join

operator
[12]

. DACM (dynamic ACM)
[10]

 allows

dynamically granting access rights under different

situations. ACM and its variants such as capability lists

are discretionary access control (DAC)
[13]

.

Mandatory access control (MAC)
[14][15][16][17]

 is also

useful in access control. The MAC model proposed by

Bell&LaPadula
[14]

 categorizes the security levels of

objects. Subjects and information flows follow the ―no

read up‖ and ―no write down‖ rules
[14]

. The lattice

model
[15][16]

 is a generalization of Bell&LaPadula’s

model (see
[18]

 for a survey of lattice models). A lattice

is defined as (SC, , ), in which ―SC‖ is the set of

security classes, ―‖ is the ―can flow‖ relationship,

and ―  ‖ is the join operator. The ―can flow‖

relationship controls information flows and the jo in

operator prevent indirect information leakage
[12]

.

The model in
[19]

 is based on DAC, which controls

informat ion flows within object-oriented systems.

ACLs (access control lists) of objects are used to

compute ACLs of executions which are composed of

object method(s). Possibly non-secure information

flows are filtered out by a message filter. Interactions

among executions are categorized into five modes to

apply different security policies. Flexib ility is added by

allowing exceptions during or after method execution
[20][21]

. More flexibility is added using versions
[22]

.

The purpose-oriented model
[23][24][25]

 proposes that

invoking a method may be allowed for some methods

but disallowed for others, even when the invokers

belong to the same object. Since different methods may

be in different security levels
[26]

, the consideration of

purpose orientation is correct.

The approach in
[27]

 proposed a labeling system for

UNIX. It attaches a label to every file , device, p ipe, and

process. It controls information flows among files,

devices, and pipes but not the information flows among

program variables. It is thus considered insufficient in

controlling information flows within a program.

The decentralized label model
[28][29][30]

 attaches

labels to variables. The security levels of variables are

shown in the labels. A label is composed of one or more

policies that should be simultaneously obeyed. In

general, a policy is composed of an owner and zero or

more readers that can read the data. Both owners and

readers are principals, which may be users, group of

users, and so on.

RBAC
[31][32][33][34][35][36][37]

 can also be used in access

control. It is composed of users, roles, sessions,

permissions, role h ierarch ies, user-role assignments

(URA), ro le-permission assignments (RPA), and

constraints. A role is composed of a set of permissions
[33]

, which is a consequence of RPA. Roles are

structured using the ― ‖ relationship. If a relationship

―x  y‖ exists, ―x‖ possesses all the permissions of ―y‖.

The ― ‖ relationship can thus be used to construct role

hierarchies. Roles are assigned to users, which result in

URA. Users can establish sessions, within which a user

possesses the permissions of the role assigned to him.

RBAC has been proved to be a super set of DAC and

MAC
[33][34][35][36][37]

. Since DAC and MAC are useful in

informat ion flow control
[14][15][16][17][19][20][21][22]

, RBAC

can also be applied in the control. The model in
[38]

applies RBAC to control information flows in object-

oriented systems. It classifies methods and derives a

flow graph from which non-secure information flows

can be identified. We also developed RBAC-based

model
[39]

. It offers a read access rule to prevent

informat ion leakage and a write access rule to prevent

information corruption.

 A Partial Ordered Number System for Information Flow Control 3

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

The model in
[40]

 uses read access control lists

(RACL), write access control lists (WACL), permission

lists (PERL), and create access lists (CACL) to

determine whether an object method can invoke another

one. The rules to determine the valid ity of an invocation

are: (a) the object containing the invoking method has

permissions to invoke the invoked method and (b) the

object containing the invoked method has permission to

access the parameters sent to the invoked method.

Flume
[2]

 is a decentralized information flow control

(DIFC) model for operating systems. It tracks

informat ion flows in a system using tags and labels. The

control granularity is detailed to processes (i.e., Flume

regards the information input to and output from a

process as a whole). The secrecy tags prevent

informat ion leakage and the integrity tags prevent

informat ion corruption. The two types of controls are

similar to the read and write control in our d iscussion.

Flume also avoids informat ion leaked to untrusted

channel (e.g., sockets). The function of Laminar
[3]

 is

similar to that of Flume. Nevertheless, the control

granularity is detailed to data structures (e.g., arrays)

and system resources (e.g., sockets). Both Flume and

Laminar are used in operating systems. Since our

research focuses on embedding an information flow

control model within a program to prevent information

leakage, other models including Flume and Laminar are

excluded in this paper.

III. Feature Extraction

In this section, we list the features offered by existing

models and extract a set of necessary ones from our

viewpoint to design XIFC.

3.1 Important Features Offered by Existing Models

Below we d iscuss the important features of

information flow control we collected.

a. Security levels of variables (―security level‖

represent the sensitivity of a variable). To control

informat ion flows, sensitive variables should be

associated with security levels such as ACLs and

permissions. This is the basic feature offered by

every existing model.

b. Read access control (secrecy control in
[2][3]

). Low

security level variables cannot receive high sensitive

informat ion. This is the basic feature offered by

every existing model.

c. Partial ordering of security levels. If numbers are

used to represent security levels, the numbers may

be partial ordered. Th is is an important feature

offered by the lattice model
[15][16]

.

d. Use of labels. A variable is associated with a label

composed of one or more policies that should be

simultaneously obeyed. This is the kernel feature

offered by the decentralized label model.

e. RBAC-embedding. RBAC is embedded in a

software system. Components of RBAC are used to

control the execution of the software. Th is is the

kernel feature offered by the RBAC-based models.

f. Role embedding. Some models do not embed the

entire RBAC model but embed the concepts of roles

and role hierarchies.

g. Use of ACLs. ACLs are applied to control object

access. This is the kernel feature offered by the

model in
[19]

.

h. Join operation. After a variable var receives the

informat ion derived from a set of variables, the join

operation is applied to ad just the security level of

var. The operation prevents both direct and indirect

informat ion leakage. It is an important feature

offered by almost every existing model.

i. Dynamically changing security levels of variables.

The security levels of variables may be changed

according to assignments. Most existing models

allow the change using operators such as join.

j. Declassification. If a low sensitive variable

possesses a high security level, the security level

should be declassified. For example, the case history

of a patient is sensitive and should be protected.

However, the statistic information of ten thousands

patients’ case histories becomes non-sensitive

because extract ing the case history of a specific

patient from the information is impossible. In this

case, the security level of the statistic information

should be declassified (the security level of the

statistic information will be h igh because of the jo in

operations).

k. Granularity of control. Control granularity of

different models may be different. For example, the

control granularity of the model in
[19]

, that in
[23][24][25][38][40]

, and that in
[39]

 are respectively

detailed to objects, methods, and variables.

l. Applicable systems. Some models are designed for

object-oriented systems
[19][39][40]

, some are for non-

object-oriented systems
[41]

, and some are for both

types of systems
[15][16][30]

.

m. Static analysis. The model in
[38]

 statically

constructs a method invocation graph and identifies

non-secure information flows from the graph.

n. Purpose-oriented invocation. The model in
[23][24][25]

proposes that invoking a method may be allowed for

some methods but disallowed for others according

to different purposes.

o. Role relationship management. Our previous work
[42]

 proposed that different role relationships may

result in different permissions. For example, the

discount rate given to a customer may be different

for different relationships (e.g., strangers, friends,

and family members will receive different d iscount

rates).

4 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

p. Write access control (integrity control in
[2][3

]). Our

previous work
[39]

 proposed that a variable can only

receive the information from trusted data sources.

This control prevents information corruption.

q. Controlling every variable. If the control granularity

of a model is detailed to variables, the model may

control the information flows of every variable.

r. Banning every non-secure information flow.

Existing models generally ban every non-secure

informat ion flow, except one of our previous work

(see below).

s. Allowing non-secure but harmless information flows;

banning secure but harmful ones. Since information

may be leaked only when it is output, our previous

work allows non-output information flows to

execute until output occurs
[43]

. The security of the

output will then be checked.

t. Separation-of-duty (SoD). Th is is an important

constraint of RBAC. It is naturally that an RBAC-

based model offers this feature.

u. Controlling inter-program information flows. Some

models control the informat ion exchanged among

different organizations
[17][44]

. This control is similar

to controlling inter-program information flows.

3.2 Extracting Necessary Features

A set of simple but necessary features are extracted

according to our viewpoint. Perhaps others may extract

other sets according to their viewpoints. We do not

argue which viewpoint is better. We only hope to use

the extracted features to design a precise and low

runtime overhead model. The extracted features are

listed below.

a. The control granularity is detailed to variables. We

need this granularity of control because different

variables carry informat ion with different

sensitivities. We use an example to exp lain this.

Suppose a doctor can read and change the case

history of a patient assigned to him, and can read

but not change the case histories of others. Also

suppose the patient pt1 is assigned to the doctor dc2

but not dc1. This implies that dc1 can read the case

history of pt1 by invoking method(s) of pt1, and dc2

can read and change the case history of pt1 by

invoking other method(s) of pt1. If the control

granularity is detailed to objects, access rights are

defined among objects. With this, both dc1 and dc2

can invoke every method of pt1, which incorrectly

allows dc1 to change the case history of pt1. If the

control granularity is detailed to methods and dc1

can invoke the method pt1.md1 to read the case

history of pt1. If a statement that changes the case

history incorrectly appears in pt1.md1, the case

history of pt1 will be changed by the unauthorized

doctor dc1 when dc1 invokes pt1.md1.

b. The security levels of variables are depicted by

numbers. Existing models use mechanisms such as

ACLs and permissions to depict security levels.

Monitoring informat ion flows using the mechanisms

is time consuming when comparing with number

comparison. In our new design, we use bits to depict

security levels. This further reduces monitor time

because bit operations can be applied.

c. The security levels of variables are partial ordered.

Variables may be incomparable. For example,

variables storing member numbers and those storing

salaries are incomparab le. This induces the needs of

partial ordering. Partial ordering bans information

comparison/exchange among variables that are

incomparab le. We use groups to achieve part ial

ordering. Only variables in the same group are

comparable.

d. The join operation is applied. When a variable

receives information, its security level should be

adjusted to be the same as the in formation. This

prevents both direct and indirect information

leakage.

e. The declassification operation is applied. As

described in the example of section 3.1, this feature

is important and necessary.

f. Role concept is not applied inside a program but

applied outside it. An executing program is an

informat ion exchange center. As long as no

informat ion is output, no information leakage will

occur. Therefore, ro le concepts need not be embed

in a program. However, information will be output

eventually and the informat ion may be captured by

unauthorized ro les (played by users or other

software). Therefore, ro le concept should be applied

outside a program. Since a program cannot control

informat ion outside it, the role concept is actually

managed by the operating system. This implies that

the information flow control model should

cooperate with the operating system. The

cooperation occurs on the I/O media (devices or

files). That is, both I/O media and roles should

possess security levels . When a role intends to

access the information of an I/O media, the

operating system should check the security levels to

ensure the security of access.

g. Control inter-program information flows. Sending

informat ion to other programs is a type of output.

Since outputting informat ion may induce

informat ion leakage, inter-program information

flows should be controlled.

h. Control sensitive variables only. Most existing

models control information flows of every variable.

Our new design does not control the flows involving

only non-sensitive information to reduce runtime

overhead.

In addition to the features mentioned above, we need

two new features. The first is ―every output operations

 A Partial Ordered Number System for Information Flow Control 5

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

should be secure‖ because only output will cause

leakage. The second is ―variables should be allowed to

change group‖. For example, if a variable stores a

salary with the unit USD and another one stores a salary

with the unit NTD, they should belong to different

groups. If the unit in the fo rmer variable is changed to

be NTD by applying the currency exchange rate, the

group of the former variable should be changed to be

the same as the latter. We exp lain the extraction in the

following paragraphs.

We do not mention read/write access control, except

informat ion output, because only output may leak

informat ion. We use an assignment to explain our

consideration because assignment can be regarded as

both read and write. For example, the assignment

―a=b+c;‖ can be regarded that a read the information

obtained from ―b+c‖. It can also be regarded that the

informat ion obtained from ―b+c‖ is written to a.

Suppose variables in the assignment are in the same

group (otherwise the statement cannot be executed) and

the init ial security level numbers of a, b, and c are

respectively 1, 2, and 3. Since the security level of the

variable a is the lowest, existing models will ban the

statement. However, as the jo in operation will change

the security level number o f a to be 3 after the

assignment, the assignment will not cause information

leakage. This exp lains why we do not control read

access. To explain write access, we suppose the initial

security numbers of a, b, and c are respectively 4, 2, and

3. Since the security level of variable a is the highest

this time, existing model allows the assignment.

However, we think that the data sources of b and c

should be trusted by a to prevent information corruption

(this is ―write access control‖
[39]

). In our new design,

we use groups to control write access. That is, if the

informat ion obtained from ―b+c‖ cannot be written to a,

we place the variables in different groups.

The doctor/patient example mentioned near the

beginning of section 3.2 reveals the necessity of

differentiating whether an assignment is a read or a

write sometimes. Therefore, a variable should be

associated with a read group and a write group. In the

doctor/patient example, suppose the patient pt1 is not

assigned to the doctor dc1. Then, the assignment

―dc1.pt1CaseHistory = pt1.caseHistory;‖ can be

executed but not ―pt1.caseHistory =

dc1.pt1CaseHistory;‖ (dc1 reads pt1’s case history in

the former statement and write it in the latter one). To

achieve this control, the variables pt1.caseHistory and

dc1.pt1CaseHistory should be in the same read group

but in the different write groups. Moreover, a

mechanis m indicating that the former assignment is a

read and the latter a write should be available.

The spirit of the features ―use of labels‖, ―RBAC-

embedding‖, ―role embedding‖, and ―use of ACLs‖ is

similar. They assign permissions to roles (or principal).

Our model
[39]

 showed that using permissions induces

large runtime overhead. We thus ignore

permissions/roles inside a program but use partial

ordered numbers to represent security levels of

variables. However, the fact that users play roles cannot

be vetoed in a software system. We thus incorporate the

role concept outside the software. That is, the operating

system should manage users and roles.

The feature ―dynamically change security levels of

variables‖ is achieved by the join operation. As to the

feature ―applicable systems‖, we think that object

orientation or other paradigms will not affect the

function of a program. Therefore, an informat ion flow

control model should be applicable to software of every

paradigm. The feature ―static analysis‖ is difficult to

achieve because security levels will be changed

dynamically. The features ―purpose-oriented

invocation‖ can be achieved easily when the control

granularity is detailed to variables. For example,

suppose the method ―a.withdraw‖ can be invoked by

―b.hkeeping‖ but not ―b.drnk‖. A lso suppose that: (a)

the return value of ―a.withdraw‖ is stored in the variable

―a.mny‖ and (b) the variables ―b.hk‖ and ―b.dr‖

respectively receive the return values for ―b.hkeeping‖

and ―b.drnk‖. The purpose-oriented invocation can be

achieved by placing ―a.mny‖ and ―b.hk‖ in the same

group but placing ―a.mny‖ and ―b.dr‖ in different ones.

To achieve the feature ―role relationship

management‖, use different groups to store variables of

different relationships. The feature ―control every

variable‖ is replaced by ―control sensitive variables

only‖, because non-sensitive informat ion flows need not

be controlled. The features ―ban every non-secure

information flow‖ and ―allow non-secure but harmless

information flows; ban secure but harmful ones‖ is

replaced by the new feature ―every output operations

should be secure‖. The feature ―separation-of-duty

(SoD)‖ is related to role -based access control. Since

roles are managed by the operating system, SoD should

also be managed by it.

IV. XIFC

This section defines XIFC and describes the use of

the model.

4.1 Definitions

XIFC uses a partial ordered number system to control

informat ion flows. A part ial ordered number in XIFC is

called a security level (SL), which depicts the

sensitivities of variables and I/O media (devices and

files). A SL is defined below.

Definition 1. SL = (Grw, Gr, Gw, SLV), in which

a. Grw = {grw | grw is a group number to control both

read and write access}.

b. Gr = {gr | gr is a group number to control read

access}.

c. Gw = {gw | gw is a group number to control write

6 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

access}.

d. SLV is the security level number. Larger number

corresponds to more sensitive information.

Some may think that Grw is redundant because of Gr

and Gw. We introduce the redundancy to reduce

runtime overhead. For a read access, only Gr is checked.

For a write access, only Gw is checked. For assignment

statements not differentiated as a read or a write, only

Grw is checked (i.e., no need to check both Gr and Gw).

XIFC only attaches SLs to sensitive variables (i.e.,

variables storing sensitive information) and sensitive

I/O media. In Definit ion 1, a group in a SL may contain

multip le numbers because a variable may be used in

multip le situations. For example, a customer’s member

number may decide the discount rates and the airplane

classes.

In most cases, XIFC uses a bit to represent a group

number. For example, suppose a 32 bit word is used to

represent a group. Then, the group 10010…100

indicates that the group numbers constitute the set {2,

28, 31}. If a bit represent a group number, checking

whether variables are comparable can be achieved using

bit ANDs (a non-zero AND result means group

comparable). However, using bits to represent group

numbers may cause trouble in some systems. For

example, the case histories of different patients should

be in different groups because a patient’s case history

can only be accessed by the patient himself. In th is case,

numbers instead of bits should be used for groups. In

addition to groups, XIFC also uses bits to represent

SLVs in which only one bit in a SLV is 1. For example,

the SLVs 1000…00 and 000…001 in a 32 bit word are

respectively 31 and 0. When using bits to represent a

SLV, the largest SLV in a variable set can be identified

using bit ORs fo llowed by assembly instructions to

extract the most significant bit from the bit OR result.

SLs control information flows with in a program. If

informat ion should be sent to other programs, the

informat ion should be associated with a set of valid

destinations (VD). A VD contains the programs that can

receive the information, as defined below.

Definition 2. VD = {(IPAdd, PortNum)}, in which

a. IPAdd is the IP address of the site a program located.

b. PortNum is the port number assigned to the program.

SLs and VDs are associated with sensitive variab les.

According to Definition 2, a VD is a set, which means

that more than one program may be allowed to receive

the information of a variable. As to non-sensitive

variables, they have no SLs and VDs. When checking

SLs and VDs, non-sensitive variables are bypassed.

After defining SL and VD, XIFC is defined below.

Definition 3. XIFC = (SVAR, SIO, SLS, VDS, JOIN,

DECL, CTLM), in which

a. SVAR is the set of sensitive variables. Every

sensitive variable is associated with a SL and a VD.

b. SIO is the set of sensitive I/O media. Every sensitive

I/O media is associated with a SL but not VD

because a media cannot be sent to a program. The

SLs of I/O media are defined according to the

media’s location. The only possibility to change an

I/O media’s SL is changing its location. Since a

program does not know the change, changing the SL

is out of the scope of XIFC. This means that the SL

of I/O media will keep unchanged during program

execution. As to files (which are also I/O media),

their SLs also cannot be changed. For example, if

the SLV (see Definition 1) of a file is n, it can be

accessed by roles possessing a privilege to access

files whose SLV is n or smaller. If the SLV is

increased, the roles can no longer access the file.

c. SLS is the set of SLs associated with sensitive

variables and I/O media.

d. VDS is the set of VDs associated with sensitive

variables.

e. JOIN is the join operator. It will be described in

more details later.

f. DECL is the declassification operator.

g. CTLM is the informat ion flow control mechanisms

embedded in a program. XIFC use directives for the

control.

4.2 Using XIFC

We use the five types of statements that will result in

informat ion flows mentioned near the beginning of

section 1 to describe the use of XIFC.

a. Assignment statements

To control in formation flows, only statements that

may cause informat ion leakage or corruption should be

monitored. Since only output statements may cause

leakage, the monitoring of assignments focuses on

preventing information corruption. The prevention can

be achieved by checking whether variables are

comparable (i.e., checking whether variables are within

the same group).

For an assignment without sensitive variables, the

statement can be executed and XIFC does nothing. If a

sensitive variab le var is assigned a value derived from

non-sensitive ones, the assignment is allowed. After that,

var becomes non-sensitive.

For an assignment categorized as a read access,

suppose: (a) Rvar reads the value derived from the

sensitive variables in the set {vari} and other non-

sensitive ones, (b) the SL and VD o f vari are

respectively SLi and VDi, (c) SLi = (Grwi, Gri, Gwi,

SLVi), and (d) the SL of Rvar is (GrwRvar, GrRvar, GwRvar,

SLVRvar) and the VD of Rvar is VDRvar. Note that the SL

and VD of a non-sensitive variable are composed of

blank fields. The assignment can be executed if the set

 A Partial Ordered Number System for Information Flow Control 7

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

―
)(iiGr

GrRvar‖ is not empty (if blank fields

appear in the intersection, ignore it). The intersections

can be achieved by bit ANDs if bits represent groups. If

numbers represents groups, assembly instructions are

used. After the assignment, the join operator performs

the following operations.

GrRvar = ii Gr

GrwRvar = GrRvar
GwRvar

SLVRvar =
)(iSLVMAX

 (J1)

VDRvar = ii VD

In the operations, MAX retrieves the maximum one

from a set of values. The jo in operations are

implemented using assembly instructions to reduce

runtime overhead. According to the join, a non-sensitive

variable receiv ing sensitive information will become

sensitive to prevent leakage.

For an assignment categorized as a write access,

suppose: (a) Wvar is written by the value derived from

the sensitive variables in the set {vari} and other non-

sensitive ones, (b) the SL and VD o f vari are

respectively SLi and VDi, (c) SLi = (Grwi, Gri, Gwi,

SLVi), and (d) the SL of Wvar is (GrwW var, GrWvar,

GwW var, SLVW var) and the VD of Wvar is VDW var. The

assignment can be executed if the set

―
)(iiGw

GwW var‖ is not empty. After the

assignment, the join operator performs the following

operations.

GwW var = ii Gw

GrwW var = GrW var
GwWvar

SLVW var =
)(iSLVMAX

 (J2)

VDW var = ii VD

For an assignment not categorized as a read or a write,

suppose: (a) RWvar is assigned the value derived from

the sensitive variables in the set {vari} and other non-

sensitive ones, (b) the SL and VD o f vari are

respectively SLi and VDi, (c) SLi = (Grwi, Gri, Gwi,

SLVi), and (d) the SL of RWvar is (GrwRW var, GrRWvar,

GwRW var, SLVRWvar) and the VD of RWvar is VDRWvar.

The assignment can be executed if

―
)(iiGrw

GrwRW var‖ is not empty. After the

assignment, the join operator performs the following

operations.

GrRW var=GwRWvar=GrwRWvar = ii Grw

SLVRW var =
)(iSLVMAX

 (J3)

VDRW var = ii VD

b. Invocation and returning from an invocation

During an invocation, the arguments of an invoking

component (e.g., a C function) are assigned to the

parameters of an invoked one. The informat ion flows

induced by an invocation are thus similar to an

assignment not categorized as a read or a write.

Accordingly, the management for an assignment and

the join operation set J3 can be applied for an

invocation. As to returning from an invocation, the

return informat ion is assigned to a variable. This is

again similar to an assignment. It can thus be handled

similar to an invocation.

c. Statements that read information from input media

A read operation will not output information.

Therefore, only read groups should be checked for

variable comparab ility. If the checking passes, the read

operation is allowed. A read operation may obtain

informat ion from input devices or files. Manipulating

the two types of read operations is similar. If the

variable var intends to read information from an input

media ime (ime may be an input device or a file), the

read operation is decided as follows.

c.1 If both var and ime are non-sensitive, the read

operation is allowed and XIFC does nothing.

c.2 If var is sensitive but ime is non-sensitive, the read

operation is allowed. After that, var becomes non-

sensitive.

c.3 If var is non-sensitive but ime is sensitive, the read

operation is allowed.

c.4 If both var and ime are sensitive, the read operation

is allowed if the intersection of their read group is

not empty.

After reading an input device, the join operator

performs the operations below (Gwvar and VDvar are

unchanged because an input device has no Gw and VD).

Grvar = Grime

Grwvar = Grvar
Gwvar (J4)

SLVvar = SLVime

After reading a file, the join operator performs the

operations below (here we suppose the variable var

reads the information inf from the file ime).

Grvar = Grinf

Gwvar = Gwinf

Grwvar = Grvar
Gwvar (J5)

SLVvar = SLVinf

VDvar = VDinf

d. Statements that write information to output media

Only informat ion output may cause leakage.

Therefore, XIFC controls output strictly. To achieve the

control, every sensitive output device and file is

8 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

associated with a SL. If the informat ion inf is required to

output to the media (devices or files) odev, the output

operation is decided as follows.

Only informat ion output may cause leakage.

Therefore, XIFC controls output strictly. To achieve the

control, every sensitive output device and file is

associated with a SL. If the informat ion inf is required to

output to the media (devices or files) odev, the output

operation is decided as follows.

d.1 If inf is non-sensitive, the output is allowed and

XIFC does nothing.

d.2 If inf is sensitive but odev is non-sensitive, the

output is banned.

d.3 If both inf and odev are sensitive, the output should

be checked. Suppose: (a) the SLs of inf and odev are

respectively SLinf and SLodev, (b) SLinf = (Grwinf, Grinf,

Gwinf, SLVinf), and (c) SLodev = (Grwodev, Grodev,

Gwodev, SLVodev). Then, the output is allowed only

when the condition ―
)(inf odevGwGw

)(infSLVSLV odev ‖ is true.

When outputting informat ion to a file , the SL and VD

of the informat ion should also be output to protect the

informat ion. No join operations are needed after the

output because the SL of an output media cannot be

changed.

When outputting informat ion to a file , the SL and VD

of the informat ion should also be output to protect the

informat ion. No join operations are needed after the

output because the SL of an output media cannot be

changed.

e. Statements that send information to another

program

If program prg1 intends to send information to prg2,

prg2 should be embedded with XIFC. Sending non-

sensitive information is allowed and XIFC does nothing.

To send the sensitive information inf to prg2, the IP

address and port number pair of prg2 should be within

the VD of inf. When prg1 sends inf to prg2, the SL and

VD of inf are also sent. The parameter receiv ing inf

should be associated with the SL and VD to protect inf

in prg2.

The SLs, VDs, and join operations of XIFC ensure

that sensitive information managed by a program will

not be leaked. However, XIFC cannot control the

informat ion after it is output. In this case, the operating

system should cooperate with XIFC to prevent

informat ion leakage. We propose a possible cooperation

approach as described below.

For the information output to devices such as screens

and printers, the operating system cannot control its

access because it cannot control their locations.

Accordingly, system managers should control the

locations of sensitive output devices. In general, the

location placing a sensitive output device should be

comparable with the SLV of the device. That is, a device

with a high SLV should be placed in a location in wh ich

only high security level persons can be there. Moreover,

the location of a sensitive device should better not

change during program execution because the SLV of an

output device is fixed during program execution. When

a program is not under execution, device locations can

be changed. However, the new location should still be

comparable with the SLV of the device. If an output

device is migrated to a higher (lower) sensitive location,

its SLV of the device in the program should be increased

(decreased) accordingly. This will cause re-compiling

of the program.

For the informat ion output to files, the operating

system can control its access. To cooperate with XIFC,

the operating system should offer a file access interface

operated as follows. First, every role appears in the

system should be associated with a SL similar to that in

XIFC. Second, when a role intends to access a file, the

operating system compares the SLs of the information

stored in the file with the ro le’s SL. The operating

system then retrieves the information accessible by the

role from the file. We use the doctor/patient example to

explain the necessity of the file access interface.

Suppose the case histories of all patients are stored in a

file and a patient can access his own case history only.

In this case, if a patient intends to access the case

history file , the file access interface will retrieve only

the patient’s case history.

V. Example

We use partial function of a hospital’s patient

management system as an example to depict the used of

XIFC. The function is described below.

In a hospital, the case histories of patients are stored

in a file. A doctor can read and change the case history

of a patient assigned to him, and can read but not

change the case histories of others.

Since a rea l hospital supports thousands of patients

and each patient should be in an independent group,

numbers should be used to represent groups. To depict

the use of bits, this example assumes only two doctors

dc0 and dc1 who support six patients pt0 through pt5.

We also assume that: (a) pt0 through pt2 is assigned to

dc0 and the others to dc1 and (b) the patients’ case

histories are stored in the file CaseHt. We use an eight

bit byte to represent groups. We also use an eight bit

byte to represent SLV. The following exh ibit ion uses

PDL (program design language) to depict the use of

XIFC in which a statement started with two asterisks is

a XIFC d irective. To depict the control of I/O media,

we add a file CastHt_operator, a keyboard Kb_dc0 for

dc0, a screen Scrn_dc0 for dc0, and a screen

Scrn_operator.

 A Partial Ordered Number System for Information Flow Control 9

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

Exhibition 1. A PDL program segment embedding

XIFC

** GROUP bit(8); // Use 8 bits to represent a group

number set.

** SLV bit(8); // Use 8 bits to represent a security level

number.

** SL CaseHt (00111111, 00111111, 10000000) // The

file CaseHt can be read/write by variables related

to patients (i.e., those in groups 0 through 5) and its

SLV is 7.

** SL CaseHt_operator (10000000, 10000000,

00000100); // The SLV of CaseHt_operator is 2.

** SL Kb_dc0 (00000111, , 10000000); // The read

group numbers of Kb_dc0 are 0 through 2.

Therefore, pt0 through pt2 can read information

from Kb_dc0.

** SL Scrn_dc0 (, 00111111, 10000000); // The write

group numbers of Scrn_dc0 are 0 through 5.

Therefore, pt0 through pt5 can write information to

Scrn_dc0.

** SL Scrn_operator (, 10000000, 00000100); // No

patient can write Scrn_operator.

Variables: newCaseHt_dc0, newCaseHt_dc1,

obtainedCaseHt_dc0, obtainedCaseHt_dc1,

caseHt_Pt0, caseHt_Pt5, va, vb, vc, vd;

** SL newCaseHt_dc0 (00000001, 00000001,

10000000); // This variable stores the new case

history offered by the doctor dc0 to change the case

history of the patient pt0.

** SL newCaseHt_dc1 (00100000, 00100000,

10000000); // This variable stores the new case

history offered by the doctor dc1 to change the case

history of the patient pt5.

** SL obtainedCaseHt_dc0 (00111111, ,); // This is a

variable for dc0 to read the case histories of

patients. The doctor dc0 can read the case histories

of every patient.

** SL obtainedCaseHt_dc1 (00111111, ,);

** SL caseHt_pt0 (00111111, 00000001, 10000000); //

This variable stores the case history of pt0. It can be

written by variables in group 0 only and can be

read by variables in groups 0 through 5.

** SL caseHt_pt5 (00111111, 00100000, 10000000); //

This variable stores the case history of pt5.

** READ; // This directive indicates that the following

assignment is a read access.

obtainedCaseHt_dc0 = caseHt_pt0; // The

assignment is allowed according to read group

comparison. After the assignment, the SL of

obtainedCaseHt_dc0 will be changed to (00111111,

00000001, 10000000) according to the join

operation set J1.

** WRITE; // This directive indicate that the following

assignment is a write access.

caseHt_pt5 = newCaseHt_dc1; // The assignment is

allowed according to write group comparison. After

the assignment, the SL of caseHt_pt5 will be

changed to (00100000, 00100000, 10000000)

according to the join operation set J2.

** XSL caseHt_pt5 (00111111, 00100000, 10000000);

// The directive XSL changes SLs.

readKeyboard(Kb_dc0, caseHt_pt0); // This read is

allowed according to group comparison. The SL of

caseHt_pt0 will be changed to (00000111,

00000001, 10000000) according to the join

operation set J4.

// Before outputting a patient’s case history, the SL

should be changed for proper protection.

** XSL caseHt_pt0 (00000001, 00000001, 10000000);

writeScreen(Scrn_dc0, caseHt_pt0); // This write

operation is allowed according to group and SLV

comparisons. The SL of Scrn_dc0 will be unchanged

because the SLs of I/O media are fixed.

writeFile(CaseHt, caseHt_pt0); // The statement is

allowed.

// Some statements that will be banned are shown below.

obtainedCaseHt_dc0 = caseHt_pt0; // The

assignment is allowed. After the assignment, the SL

of obtainedCaseHt_dc0 will be changed to

(00111111, 00000001, 10000000) according to the

join operation set J1.

writeFile(CaseHt_operator, obtainedCaseHt_dc0);

// This statement will be banned because the SLV of

the file CaseHt_operator (which is 2) is smaller

than that of obtainedCaseHt_dc0 (which is 7).

readKeyboard(Kb_dc0, caseHt_pt5); // This

statement will be banned because it failed to pass

the read group comparison.

writeScreen(Scrn_operator, caseHt_pt0); // This

statement will be banned because it failed to pass

the write group and SLV comparisons.

// Some assignment statements are shown below.

** SL va (01000000, 01000000, 00001000);

** SL vb (01000000, 01000000, 00100000);

** SL vc (10000000, 10000000,);

// The variable vd is initially non-sensitive.

vd = va+vb+100; // This statement is allowed

because of group comparison. After the assignment,

the non-sensitive variable vd becomes sensitive and

is associated with the SL (01000000, 01000000,

00100000) according to the join operation set J3.

vd = vc+vd; // This statement will be banned

because vc and vd are in different groups.

. . . .

The above exhib ition shows the following facts: (a)

group comparison dominates the validity of non-output

statements (the comparison prevents information

corruption) and (b) SLV comparison is applied only

when information is output (the comparison prevents

information leakage).

10 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

VI. Proof of Correctness

The primary mission of an informat ion flow control

model is preventing information leakage and corruption.

To prove in formation corruption will not occur is

difficult because even a data source trusted by a

variable may incidentally corrupt the variab le. In XIFC,

variables in the same write group are considered

mutually trusted and write operations can occur among

the variables. Although we cannot ensure XIFC

prevents every corruption, we can at least say that

malicious corruption will not occur. For example,

sending a customer’s member number to a variable

storing his salary will corrupt the variable. XIFC will

ban this corruption because the variable s toring a

customer’s member number and that storing his salary

are in different write groups. To prove XIFC prevents

informat ion leakage, we need the following

assumptions:

a. The cooperation among XIFC, the system managers,

and the operating system function correctly (see the

description near the end of section 4.2). Otherwise,

either the system managers or the operating system

may leak information.

b. Programmers do not commit erro rs. Otherwise,

unpredictable leakage may occur. For example,

misusing the directive XSL may cause serious

results.

In addition to the assumptions, we also need the

following definition.

Definition 4. DEVvar = {devvar | devvar is a variable

derived from the variable var}. For example, the

statement ―var0 = var + var1;‖ causes var0 to become

an element of DEVvar. A devvar belonging to DEVvar is

associated with SLdevvar and VDdevvar in which SLdevvar =

(Grwdevvar, Grdevvar, Gwdevvar, SLVdevvar).

Suppose var is a sensitive variable associated with

SLvar and VDvar in which SLvar = (Grwvar, Grvar, Gwvar,

SLVvar). As we have emphasized, only output operations

may cause information leakage. Therefore, the

informat ion stored in var will not be leaked (i.e., XIFC

prevents informat ion leakage) if the following cases are

all true.

a. The variable var and every devvar in DEVvar will not

be output to devices or files whose groups are

incomparable with those of var.

b. The variable var and every devvar in DEVvar will not

be output to devices or files whose SLVs are s maller

than SLVvar.

c. The variable var and every devvar in DEVvar will not

be sent to programs not allowed to receive var.

d. None of the above cases will happen to a program

reading informat ion from a file output by another

one (here we suppose XIFC is embedded in the

programs).

Case d is necessary because informat ion output to a

file may be read and leaked by other programs. In case

a, var will not be output to group incomparable devices

or files because group comparison will be performed

before the output. As to devvar, the intersections on

groups in the join operation sets J1 through J3 ensure

that ―Grwdevvar
 Grwvar‖, ―Grdevvar

 Grvar‖, and

―Gwdevvar
 Gwvar‖. Therefore, no devvar will be output

to devices or files whose groups are incomparab le with

those of var.

In case b, var will not be output to devices or files

with a s maller SLV because SLV comparison will be

performed before the output. As to devvar, the MAX

function in the jo in operation sets J1 through J3 ens ures

that ―SLVdevvar  SLVvar‖. Therefore, no devvar will be

output to devices or files with SLVs smaller than SLVvar.

In case c, var will not be sent to programs not

allowed to receive var because of VD checking before

the sending (see item e of section 4.2). As to devvar, the

intersections on VDs in the join operation sets J1

through J3 ensure that ―VDdevvar
 VDvar‖. Therefore,

devvar will not be sent to programs not allowed to

receive var.

In case d, the join operation set J5 ensures that the

variable var reading the informat ion inf stored in a file

will be associated with the SL and VD of inf. Cases a

through c above ensure that var will not leak inf. #

VII. Evaluation

We embedded XIFC in C language and implemented

a prototype. The prototype is a preprocessor, which

changes XIFC d irect ives into C definit ions or

statements and stores SLs and VDs. It also adds code to:

(a) manage the directives XSL and DECLASSIFY, (b)

check the security of informat ion flows and, (c) do jo in

operations. The runtime overhead of XIFC deviates

substantially according to different systems. For

example, if a system manages few sensitive variables

and bits can represent groups, the runtime overhead

should be low because bit operations can be applied. As

another example, if a system manages a large number of

sensitive variables and numbers should be used to

represent groups, the runtime overhead should be high

because bit operations cannot apply. Although we still

use assembly procedures, the procedures are more time

consuming than bit operations. We used the following

systems in the experiments to check the runtime

overheads of XIFC.

a. An advertising system in which only the real prices

are sensitive. In this system, b its can represent

groups.

b. A depositing/withdrawing system of a bank. In this

system, most information is sensitive. However,

since customers cannot access the files storing their

informat ion, customer informat ion can be

 A Partial Ordered Number System for Information Flow Control 11

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

categorized into few groups. Therefore, bits can

represent groups.

c. An order management system. In the system, we

suppose only the credit card information and the

order histories of customers are sensitive. We also

suppose that a customer can access his own order

history storing in a file . Since the number of

customers is generally large and different customers

should belong to different groups, numbers should

be used to represent groups.

d. A system managing the case histories of patients. In

this system, numbers should be used to represent

groups. Moreover, most variables are sensitive.

Before evaluating runtime overhead, we first

obtained the detection percentage of invalid statements

(i.e ., statements that may leak informat ion). We

required students to inject invalid statements into

programs embedding XIFC. The experiments showed

that every injected invalid statement was detected. After

that, we required students to implement: (a) the about

mentioned four systems embedding XIFC and (b) the

same systems not embedding XIFC. We then collected

the following information: (a) the percentage of

sensitive variables during runtime, (b) the runtime of

the systems embedding XIFC, and (c) the runtime of the

systems not embedding XIFC. Since sensitive variables

may become non-sensitive and vice versa according to

joins and the XSL and DECLASSIFY direct ives, the

percentage of sensitive variables is not fixed during

runtime. The averaged percentages of sensitive

variables for the four systems are respectively between:

(a) 5% and 8%, (b) 91% and 95%, (c) 35% and 40%,

and (d) 88% and 93%.

Runtime overhead experiment result

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

1 2 3 4 5 6 7 8 9 10
Student

R
u

n
ti

m
e

o
v

er
h

ea
d

s

System a

System b

System c

System d

Fig. 1: The experiment data of runtime overhead

To identify the runtime overheads of the systems, the

systems embedding and those not embedding XIFC

were executed and their runtimes were compared. The

experiment result is depicted in Fig. 1. In the figure, a

system with a runtime overhead k corresponds that the

runtime of the system embedding XIFC is k+1 times the

runtime of that without the embedding. Fig. 1 shows

that the runtime overhead of system d is about 1.5,

which is much smaller than those of the models we

developed before. The runtime overheads for systems a,

b, and c are about 0.08, 0.78, and 0.8 respectively.

These overheads are attractive, which implies that the

features offered by XIFC are useful. The runtime

overheads of the four system deviate substantially

because of the factors: (a) the percentage of sensitive

variables and (b) the representation of groups (i.e.,

using bits or numbers).

VIII. Conclusion

Information flow control models can ensure secure

database interfaces, ensure secure informat ion flows

within an operating system and among distributed

operating systems, prevent informat ion leakage during

program execution, prevent information leakage in web

services, and ensure the security of informat ion flowing

forward to and backward from cascading web services.

This paper discusses the models that prevent

informat ion leakage during program execut ion and

excludes others.

Existing informat ion flow control models offer more

or less features. Since only in formation output may

cause leakage, controlling output statements is an

important feature. However, our survey reveals that

existing models generally ignore this feature. We thus

emphasize the importance of the control in this paper.

In addition, we also intend to design a precise and low

runtime overhead model. To ach ieve this, we re-

examined the features offered by existing models and

extracted a set of simple and necessary features to

design a new model XIFC (X information flow control).

With the assistance of join operations, XIFC only

strictly controls output statements and allows most other

ones. This reduces runtime overhead. To further reduce

the overhead, XIFC only controls information flows

involving sensitive variables and/or I/O media.

Moreover, XIFC uses bits to represent the security

levels of sensitive in formation and uses assembly

procedures to monitor information flows. Our

experiments show that XIFC bans every non-secure

informat ion flows and the runtime overhead is

substantially reduced when comparing with our

previous work.

References

[1] Li P. and Zdancewic S. Practical Information-flow

Control in Web-based Information Systems. In:

18’th IEEE Computer Security Foundation

Workshop, 2005.

[2] Krohn M, Yip A, Brodsky M, Cliffer N, Kaashoek

M F, Kohler E, and Morris R. Information Flow

Control for Standard OS Abstractions . In:

SOSP’07, 2007.

[3] Roy I, Porter D E, Bond M D, McKin ley K S, and

Witchel E. Laminar: Practical Fine-Grained

Decentralized Informat ion Flow Control. In:

PLDI’09, 2009.

12 A Partial Ordered Number System for Information Flow Control

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

[4] Zeldovich N, Boyd-Wickizer S, and Mazieres D.

Securing Distributed Systems with Information

Flow Control. In: 7’th Symposium on Operating

System Design and Imoplementation, 2006.

[5] Chou S –C and Huang C –H. An Extended

XACML Model to Ensure Secure Information

Access for Web Services. Journal of Systems and

Software, 2010, 83(1): 77-84.

[6] Chou S –C. Dynamically Preventing Information

Leakage for Web Serv ices using Lattice. In : 5’th

International Conference on Computer Sciences

and Convergence Informat ion Technology

(ICCIT), 2010.

[7] She W, Yen I -L, Thuraisingham B, and Bertino E.

The SCIFC Model for Informat ion Flow Control

in Web Service Composition. In: 2009 IEEE

International Conference on Web Services, 2009.

[8] She W, Yen I -L, Thuraisingham B, and Bertino E.

Effective and Efficient Implementation of an

Information Flow Control Protocol for Serv ice

Composition. In: IEEE International Conference

on Service-Oriented Computing and Applicat ions,

2009.

[9] Harrison M H, Ruzzo W L, and Ullman J D.

Protection in Operating Systems. Communications

of the ACM, 1976, 19(8): 461-471.

[10] Olivier M S, van de Riet R P, and Gudes E.

Specifying Application-level Security in

Workflow Systems. In : 9’th International

Workshop on Database and Expert Systems

Applications, 1998, 346-351.

[11] Thomas R K and Sandhu R S. Task-Based

Authorizat ion Controls (TBAC): A Family of

Models for Active and Enterprise-oriented

Authorizat ion Management. In: IFIP W G11.3

Workshop on Database Security, 1997.

[12] Myers A and Liskov B. Complete, Safe

Information Flow with Decentralized Labels . In:

14’th IEEE Symp. Security and Privacy, 1998,

186-197.

[13] Available on

http://en.wikipedia.org/wiki/Discretionary_access_

control

[14] Bell D E and LaPadula L J. Secure Computer

Systems: Unified Exposition and Multics

Interpretation. Available on

http://csrc.nist.gov/publications /history/bell76.pdf

[15] Denning D E. A Lattice Model of Secure

Information Flow. Comm. ACM, 1976, 19(5):

236-243.

[16] Denning D E and Denning P J. Certificat ion of

Program for Secure Information Flow. Comm.

ACM, 1977, 20(7): 504-513.

[17] Brewer D F C, and Nash M J. The Chinese Wall

Access control policy. In : Proc. 5’th IEEE Symp.

Security and Privacy, 1989, 206-214.

[18] Sandhu R S. Lattice-Based Access Control Models .

IEEE Computer, 1993, 26(11): 9-19.

[19] Samarati P, Bertino E, Ciampichetti A, and Jajodia

S. Informat ion Flow Control in Object-Oriented

Systems. IEEE Trans. Knowledge Data Eng, 1997,

9(4): 524-538.

[20] Bert ino E, Sabrina de Capitani di Vimercati,

Ferrari E, and P. Samarat i P. Exception-based

Information Flow Control in Object-Oriented

Systems. ACM Trans. Information System

Security, 1998, 1(1): 26-65.

[21] Ferrari E, Samarati P, Bert ino E, and Jajodia S.

Providing Flexibility in Information flow control

for Object-Oriented Systems. In: 13’th IEEE Symp.

Security and Privacy, 1997, 130-140.

[22] Maamir A and Fellah A. Adding Flexib ility in

Information Flow Control for Object-Oriented

Systems Using Versions. International Journal of

Software Engineering and Knowledge Engineering,

2003,. 13(3): 313-326.

[23] Yasuda M, Tachikawa T, and Takizawa M.

Information Flow in a Purpose-Oriented Access

Control Model. In : 1997 International Conf.

Parallel and Distributed Systems, 1997. 244-249.

[24] Yasuda M, Tachikawa T, and Takizawa M. A

Purpose-Oriented Access Control Model. In: 12’th

International Conf. Informat ion Networking, 1998,

168-173.

[25] Tachikawa T, Yasuda M, and Takizawa M. A

Purposed-Oriented Access Control Model in

Object-Based Systems. Trans. Information

Processing Society of Japan, 1997, 38(11): 2362-

2369.

[26] Varadharajan V and Black S. A Multilevel

Security Model for a Distributed Object-Oriented

System. In: 6’th IEEE Symp. Security and Privacy,

1990, 68-78.

[27] McIlroy M D and Reeds J A. Multilevel Security

in the UNIX Tradit ion. Software - Practice and

Experience, 1992, 22(8): 673-694.

[28] Myers A C and Liskov B. A Decentralized Model

for Information Flow Control. In: 17’th ACM

Symp. Operating Systems Princip les , 1997, 129-

142.

[29] Myers A C. JFlow: Practical Mostly-Static

Information Flow Control. In: 26’th ACM Symp.

Principles of Programming Language, 1999, 228-

241.

[30] Myers A and Liskov B. Protecting Privacy using

the Decentralized Label Model. ACM Trans.

Software Eng. Methodology, 2000, 9(4): 410-442.

 A Partial Ordered Number System for Information Flow Control 13

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 04, 1-13

[31] Zhang C N and Yang C. An Object-Oriented

RBAC model for Distributed System. In: Working

IEEE/IFIP Conference on Software Arch itecture,

2001, 24-32.

[32] Ferraiolo D F, Sandhu S, Gavrila S, Kuhn D R,

and Chandramouli R. Proposed NIST Standard for

Role-Based Access Control. ACM Trans.

Information and System Security. 2001, 4(3): 224-

274.

[33] Sandhu R S, Coyne E J, Feinstein H L, and

Youman C E. Role-Based Access Control Models.

IEEE Computer, 1996, 29(2): 38-47.

[34] Nyanchama M and Osborn S. Modeling

Mandatory Access Control in Role-Based Security

Systems. Database Security IX: Status and

Prospects, 1995, 129-144.

[35] Osborn S. Mandatory Access Control and Role-

Based Access Control Revisited. In: Proc. Second

ACM Workshop on Role-Based Access Control,

1997, 31-40.

[36] Osborn S, Sandhu R, and Munawer Q.

Configuring Role-Based Access Control to

Enforce Mandatory and Discretionary Access

Control Policies. ACM Trans. Info. Sys. Security,

2000, 3(2): 85-106.

[37] Sandhu R. Role Hierarchies and Constraints for

Lattice-Based Access Controls . In: Fourth

European Symposium on Research in Computer

Security, 1996, 65-79.

[38] Izaki K, Tanaka K, and Takizawa M. Information

Flow Control in Role-Based Model for Distributed

Objects. In : 8’th International Conf. Parallel and

Distributed Systems, 2001, 363-370.

[39] Chou S -C. Embedding Role-Based Access

Control Model in Object-Oriented Systems to

Protect Privacy. Journal of Systems and Software,

2004, 71(1-2): 143-161.

[40] A. Maamir A, A. Fellah A, and A. Salem A,

Controlling Flow in Object-oriented Systems.

Journal of In formation Assurance and Security,

2008, 2(2): 140-146.

[41] Chou S. –C and Chang C –Y. An Information

Flow Control Model for C Applications Based on

Access Control Lists. Journal of Systems and

Software, 2005, 78(1): 84-100.

[42] Chou S. –C and Chen Y. –C. Managing Role

Relationships in an Informat ion Flow Control

Model. Journal of Systems and Software, 2006,

79(4): 507-522.

[43] Chou S. –C. Provid ing Flexib le Access Control to

an Informat ion Flow Control Model. Journal of

Systems and Software, 2004, 73(3): 425-439.

[44] Chou S -C, Liu A -F, and Wu C -J, Preventing

Information Leakage within Workflows That

Execute among Competing Organizations . Journal

of Systems and Software, 2005, 75(1-2): 109-123.

Authors’ Profiles

Shih-Chien Chou: Professor in the Department of

Computer Science and Informat ion Engineering,

National Dong Hwa University, Taiwan. He is major in

software engineering, process environment, software

reuse, and information flow control.

How to cite this paper: Shih-Chien Chou,"A Partial Ordered
Number System for Information Flow Control", International

Journal of Information Technology and Computer

Science(IJITCS), vol.5, no.4, pp.1-13, 2013.DOI:

10.5815/ijitcs.2013.04.01

