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Abstract— An Artificial Neural Network (ANN) model 

was developed to predict the pressure drop of titanium 

dioxide-water (TiO2-water). The model was developed 

based on experimentally measured data. Experimental 

measurements of fully developed turbulent flow in pipe 

at different particle volumetric concentrations, 

nanoparticle diameters, nanoflu id temperature and 

Reynolds number were used to construct the proposed 

model. The ANN model was validated by comparing 

the predicted results with the experimental measured 

data at different experimental conditions.  It was shown 

that, the present ANN model performed well in 

predicting the pressure drop of TiO2-water nanoflu id 

under different flow conditions  with a high degree of 

accuracy. 

 

Index Terms— Nanofluids, Particle Concentration, 

Turbulent Flow, Pressure Drop, Artificial Neural 

Network 

 

I. Introduction 

Nanofluid is the name conceived by Argonne 

National Laboratory to describe a flu id in which 

nanometer-sized solid particles, fibers, or tubes are 

suspended in liquids such as water, engine oil, and 

ethylene glycol (EG). Many industrial processes involve 

the transfer of heat by means of a flowing fluid in either 

the laminar or turbulent regime as well as flowing or 

stagnant boiling flu ids.  Many of these processes would 

benefit from a decrease in the thermal resistance of the 

heat transfer fluid.  Correspondingly, smaller heat 

transfer systems with lower capital cost and improved 

thermal efficiencies would result.   Nanofluids have the 

potential to reduce such thermal resistances and can be 

used in d ifferent industrial applications such as 

electronics, transportation, medical, food, and 

manufacturing industry of many types (Yu et al., 2007).  

While thermal properties are important for heat 

transfer applications, the viscosity is also important in 

designing nanofluids for flow and heat transfer 

applications because the pressure drop and the resulting 

pumping power depend on the viscosity. Many 

experimental investigations on the heat transfer 

performance and pressure drop of different nanoflu ids 

with various nanoparticle volume concentrations, in 

both laminar and turbulent flow regimes, have been 

reported (Ko et al., 2007; He et al., 2007; Peng et al., 

2009; Duangthongsuk and Wongwises, 2009; 

Duangthongsuk and Wongwises, 2010; Fotukain and 

Esfahany, 2010;  Vajjha et al., 2010;  Teng et al., 2011; 

and Sajadi and Kazemi 2011). The results of 

Duangthongsuk and Wongwises (2010) showed that the 

pressure drop of nanofluids was slightly higher than the 

base fluid and increases with increasing the volume 

concentrations.  Also, the results of Duangthongsuk and 

Wongwises (2009) and He et al. (2007) disclosed that 

the pressure drop of the nanofluids was very close to 

that of the base fluid. Ko et al. (2007) experimentally 

measured the pressure drop of nanofluids containing 

carbon nanotubes flowing through a horizontal tube 

under laminar and turbulent flow conditions. Their 

results revealed significant increase in pressure drop on 

nanofluids under laminar flow condition, while, the 

pressure drop of nanofluids presented similar values to 

those of the base fluid at the turbulent flow condit ions. 

In another article published by Teng et al. (2011) results 

show that the enhancement of pressure drop for TiO2 

nanofluid was lower under turbulent flow conditions in 

a circular pipe but higher under laminar flow conditions. 

Recently, turbulent heat transfer behavior of titanium 

dioxide/water nanofluid in a circular pipe under fu lly-

developed turbulent regime for various volumetric 

concentrations was investigated experimentally by 

Sajadi and Kazemi (2011). Their measurements showed 

that the pressure drop of nanofluid was s lightly higher 

than that of the base fluid  and increased with  increasing 

the volume concentration. In contrast, the results of 

Fotukian and Esfahany (2010) ind icated that the 

maximum increase in p ressure drop was about 20 % for 

nanofluid.  In the same trend, the experimental results 

of Peng et al. (2009) showed that the frictional pressure 
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drop of refrigerant-based nanofluid increases with the 

increase of the mass fraction of nanoparticles, and the 

maximum enhancement of frictional pressure drop was 

20.8 % under their experimental conditions. Moreover, 

Vajjha et al. (2010) reported that the pressure loss of 

nanofluids increased with an increase in particle volume 

concentrations and the increase of pressure loss for a 

10 % Al2O3 nanofluid was about 4.7 times  that of the 

base fluid. Summarizing what is reviewed in the 

experimental studies, one could easily conclude that, the 

variation in the experimental data of the pressure drop 

of nanofluids is  attributed to the difficulties of the 

experimental measurements. These difficult ies arise due 

to lack in understanding the details and mechanis ms of 

heat transfer phenomenon that change the thermal 

conductivity and pressure drop in nanofluids 

(Kondaraju et al., 2010). 

Various analytical and numerical models were 

proposed to study the mechanism and predict the 

thermal conductivity and pressure drop of different 

nanofluids (Namburu  et al., 2009; Fard  et al., 2010; and 

Demir et al., 2011).The numerical studies of nanofluids 

can be conducted using single-phase (homogenous) or 

two-phase approaches. In the former approach it  is 

assumed that the fluid  phase and nanoparticles are in 

thermal equilibrium with zero relat ive velocity. While, 

in the latter approach, base flu id (liquid) and 

nanoparticles (solid) are considered as two different 

phases with different momentums respectively (Fard et 

al., 2010). Some of the published articles were related 

to investigation of laminar convective heat transfer of 

nanofluids (Fard et al., 2010, and Demir et al., 2011), 

while, the others were concerning with turbulent ones 

(Namburu et al., 2009). Fard et al. (2010) used 

Computational Flu id Dynamics (CFD) approach 

regarding single-phase and two-phase models to study 

laminar convective heat transfer of nanofluids with 

different volume concentration in a circular tube.  Their 

numerical results have clearly  shown that nanofluids 

with h igher volume concentration have higher pressure 

drop and two-phase model showed better agreement 

with experimental data. Commercial CFD package, 

FLUENT, was used by Demir et al. (2011) fo r solving 

the volume-averaged continuity, momentum, and 

energy equations of different nanofluids flowing in a 

horizontal tube under constant temperature condition. 

Their numerical results have clearly indicated that 

pressure drop increased with increasing the particle 

loading parameter and Reynolds number because of 

increasing velocity and viscosity of nanofluid.  

Turbulent flow and heat transfer of three different 

nanofluids flowing through a circular tube under 

constant heat flux condition have been numerically 

analyzed by Namburu et al. (2009). They assumed 

single-phase fluid model to solve two-d imensional 

steady, forced turbulent convection flow of nanoflu id 

flowing inside a straight circu lar tube. Two-equation 

turbulence model of Launder and Spald ing was adopted 

by Namburu et al. (2009) in their numerical analysis. 

Their computed results indicated that pressure loss 

increased with  increase in the volume concentration of 

nanofluids. 

Based on the preceding literature review of numerical 

algorithms, one could conclude that, the algorithms 

employed in numerical studies particularly  with 

turbulent flows are usually complicated since they 

involve the solution of complex d ifferential equations.  

As a corollary, these programs usually require large 

computing power and need a considerable amount of 

time to give accurate predictions.  Therefore, instead of 

carrying out experimental measurements or using 

complex algorithms and mathematical routines to 

determine the pressure drop of nanofluids, a simple and 

accurate model is desirable. The object ive of the present 

study is to develop an Artificial Neural Network (ANN) 

model to predict the pressure drop of nanofluid at 

different particle volumetric concentrations, 

nanoparticle diameters, nanofluid temperatures and 

different values of Reynolds number.  Titan ium dioxide 

dispersed in water (TiO2/water) was selected as a 

sample-nanoflu id due to their abundant experimental 

data to assess the proposed ANN model. 

 

II. Theoretical Background of Pressure Drop 

Pressure drop during the flow is one of the important 

parameters determining the efficiency of nanoflu ids 

application. Pressure drop and nanofluid pumping 

power are closely associated with each other (Saidur et 

al., 2011). It is expected that pressure drop, P, of the 

nanofluid flowing in a p ipe depends upon a number of 

factors such as density and viscosity of the nanofluid, 

diameter of the pipe, the volume fract ion of the 

suspended particles, the flow pattern, the dimensions 

and the shape of the suspended particles. To our 

knowledge, there are no published literatures on 

deriving the pressure drop correlation of the nanofluid 

from either theoretical or experimental approach. 

Therefore, some theoretical equations related to base 

flu ids or conventional fluids are cited here and the 

following expression is used to determine the pressure 

drop in a horizontal pipe (He et al., 2007; and Vajjha et 

al., 2010). 

D

L  v f 2
  P

2


                                                  (1) 

where P is the pressure drop, f is the friction factor, 

 is the density of fluid, v  is the average velocity of 

flow, L is the length of tube where the pressure drop is 

determined, D is the inside diameter o f tube.  In 

turbulent flow regime, the friction factor f is determined 

from the so-called Blasius equation as follows (Vajjha 

et al., 2010). 

-0.25Re 0.078  f                                                     (2) 
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Substituting from Eq. (2) into Eq. (1), the following 

equation for the pressure drop is obtained. 
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                                   (3) 

where  and Re are the absolute viscosity of flu id and 

Reynolds number of flow, respectively.  The output 

data from Eq . (3) will be used for comparison with both 

the predicted pressure drop values from the ANN model 

and the experimental measurements as will be seen later.  

 

III. Artificial Neural Network (ANN) Model 

Principles 

3.1 ANN Model Structure 

Artificial neural networks (ANNs) are computational 

model constructed of many simple interconnected 

elements called  neurons, which is based on the 

informat ion processing system of the human brain.  

Figure 1 shows the architecture of the neural network 

model used in this work. The basic structure is a 

multilayer ANN model where the chosen four inputs are 

fed into the first layer o f hidden units. The circles 

represent the neurons (weights, bias, and activation 

functions) and the lines represent the connections 

between the inputs and neurons, and between the 

neurons in one layer and those in the next layer. Several 

studies have found that a three-layered neural network, 

where there are three stages of neural processing 

between the inputs and outputs, can approximate any 

nonlinear function to any desired accuracy (Hsu et al., 

1995; Aly, 2007; and Kurt and Kayfeci, 2009).  Each 

layer consists of units which  receive their input from 

units from a layer directly below and send their output 

to units in a layer direct ly above the unit.  Each 

connection to a neuron has an adjustable weighting 

factor associated with it. The output of the hidden units 

is distributed over the next layer of h idden units, until 

the last layer of hidden units, of which the outputs are 

fed into a layer of no output units. Train ing of the ANN 

model typically  implies adjustments of connection 

weights and biases so that the differences between ANN 

outputs and desired outputs are minimized. 

 

3.2 Back-propagation Training Algorithm 

Back-propagation training, used in this investigation, 

is one of the most popular ANN training methods. The 

basic back-propagation algorithm adjusts the weights in 

the steepest descent direction (negative of the gradient). 

This is the d irection in  which the error decreases most 

rapidly. To exp lain the back-propagation rule in detail, 

the three-layer network shown in Fig. 1 will be used.  

The train ing phase is divided into two  phases as follows: 

 

1. Forward-propagation phase: In the first phase, input 

data are sent from the input layer to the output layer, 

i.e., x=[x1:x4] propagate from the input layer to the 

output layer y. 
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where iqW  and qjV  represent weights in the hidden-to-

output and input-to-hidden connections, respectively. 

2. Back-propagation phase: In the second phase, the 

errors between target outputs, d, and predicted 

outputs, y, are calculated and propagated backwards 

to the input layer in order to change the weights of 

hidden layers by using the gradient descent method.  

The algorithm tries to min imize the objective 

function, i.e. the least square error between the 

predicted and the target outputs, which is given by: 

2)(
2

1 p

o

p

p

o ydE                                           (6) 

where p  represents the number of t rain ing datasets and 

o  represents the number of output nodes. Then the 

algorithm uses the steepest-descent direction to adjust 

the weights in the hidden-to-output and input-to-hidden 

connections and as follows: 
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where λ  is the learning rate. 

Since this algorithm requires a learning rate 

parameter to determine the extent to which the weights 

change during iteration, i.e ., the step sizes, its 

performance depends on the choice of the value of the 

learning rate.  The two  phases are iterated until the 

performance error is decreased to certain desirable 

range (Hsu et al., 1995; Aly, 2007; and Kurt and 

Kayfeci, 2009).  

 

3.3 Activation Functions 

Activation functions are used in ANNs to produce 

continuous values rather than discrete ones. The 

activation functions used in hidden layer neurons are 

tan sigmoid functions and the piecewise linear 

activation function is used for the last layer neurons. 

The logistic activation function or more popularly 
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referred to as the sigmoid function is semi-linear in 

character, differentiab le and produces a value between 0 

and 1. The mathematical expression of this sigmoid 

function is: 

)(
1

1
)(

jnetcj
e

netf



                                           (8) 

where c controls the firing angle of the sigmoid. When c 

is large, the sigmoid becomes like a threshold function 

and when is c small, the sigmoid becomes more like a 

straight line (linear). When c is large, learn ing is much 

faster but a lot of in formation is lost, however when c  is 

small, learn ing is very slow but informat ion is retained. 

Because this function is differentiable, it  enables the 

back-propagation algorithm to adapt the lower layers of 

weights in a multilayer neural network.  

 

 

 

Fig. 1: A schematic of neural network model 

 

IV. ANN Model 

In the present study, the effects of four independent 

parameters on the pressure drops of Titanium d ioxide 

dispersed in water (TiO2/water)flowing through a pipe 

under turbulent flow regime was investigated. These 

four independent parameters are the particle volumetric 

concentration in nanofluid, temperature of nanofluid, 

nanoparticle diameter, and Reynolds number of flow.  

Values of these four inputs are fed into the hidden layer. 

Each connection to a neuron has adjustable weighting 

factor associated with it. The outputs of the hidden layer 

are fed into a layer of one output units which is the 

pressure drop P of nanofluid. The activation functions 

in hidden layer neurons are tan sigmoid functions and 

the piecewise linear activation function is used for the 

last layer neurons. The algorithm tries to minimize the 

objective function, i.e. the least square error between 

the predicted and the target outputs. Several neural 

network models were trained with various  designs 

including number of hidden layers and number of nodes 

in each hidden layer. The selection of the optimum 

model was based on min imizing the difference between 

the neural network results and the desired output. It was 

found that, best structure of the ANN model had an 

input layer, a hidden layer and an output layer. 

Therefore, the developed ANN architecture had a 

configuration as shown in Fig. 1. The input layer 

comprises all of the four input variables, which are 

connected to neurons in the hidden layer through the 

weights assigned for each link. The number of neurons 

in the hidden layer is found by optimizing the network. 

All the four input parameters and their range of values 

of Titanium d ioxide dispersed in water(TiO2/water) 

used to develop the neural network model are 

mentioned in Table 1.  

 
Table 1: The range of input parameters and experimental data set used in training and testing the proposed ANN model [Duangth ongsuk and 

Wongwises, 2009; Duangthongsuk and Wongwises, 2010, and He et al., 2007]  

Input variable  
Duangthongsuk and 

Wongwise (2010) 
Duangthongsuk Wongwise  

(2009) 
He et al. 

(2007) 

Reynolds number range 3800—12300 4000—16400 2300—6000 

Particle volumetric concentration,   0%, 0.2%, 0.6%, 1.0%, 1.5% 0%, 0.2% 0%, 0.24%, 0.6% 

Nanoparticle diameter 21nm 21nm 95nm 

Nano fluid temperature 15
 o

C 15, 20, 25
 o

C 22
 o

C 

Experimental data set  40(for training) 48(32 for training and 16 for testing) 18(for training) 
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V. Results and Discussions 

The developed ANN model was trained using the 

measured data of TiO2-water obtained from the 

experiments for pressure drop P.  The experimental 

data set consisted of 106 values as shown in Table 1.  

These values were divided into two groups, of which 90 

values were used for training/learning of the ANN 

model.  This means that the experimental data of 

Duangthongsuk and Wongwises (2010), the 

experimental data of Duangthongsuk and Wongwises 

(2009) at 20 
o
C and 25 

o
C, as well as the experimental 

data of He et al. (2007) were used for train ing of the 

proposed model.  On the other hand, 16 values of the 

experimental data of Duangthongsuk and Wongwises 

(2009) at  15
o
C of nanoflu id temperature were chosen to 

validate the proposed ANN model.  The results of 

training and validation of the developed ANN model 

are explained and discussed in the following two 

sections. 

 

5.1 Results of Training 

A sets of 90 values obtained from the experimental 

data have been used to train the developed ANN model. 

Details of these data sets are found in Table 1. Figure 2 

shows the distribution of the ANN predicted pressure 

drop P for 21 nm nanoparticle at 15 
o
C temperature of 

TiO2along with the experimentally measured values of 

Duangthongsuk and Wongwises (2010) at the same 

conditions. Excellent agreement is found between the 

trained values of the model and both the experimental 

measurements of Duangthongsuk and Wongwises (2010) 

and the calculated values from the theoretical equation 

of pressure drop. Variat ions of the ANN predicted 

pressure drop with the Reynolds number for 21 nm 

nanoparticle at 20 
o
C and 25 

o
C nanoflu id temperatures 

as well as for 95 nm nanoparticle at 22 
o
C nanoflu id 

temperature are shown in  Figure 3 and Figure 4, 

respectively.  Also, included in these figures are the 

experimental measurements of Duangthongsuk and 

Wongwises (2009) and He et al. (2007) as well as the 

calculated results from the theoretical equation of pure 

water (Eq. 3).  It  can be seen from these figures that the 

trained values are in good agreement with the 

experimental data, while, the calcu lated values using Eq. 

3 show a slight variation in  both cases.  The variation in 

calculated values can be attributed to the change of 

dynamic v iscosity of nanofluid.  A comparison of the 

experimental and ANN predicted values of the pressure 

drop P for all training data set of 21 nm and 95 nm 

nanoparticles are shown in Figs. 5 and 6, respectively.  

Also, included in these figures are straight lines 

indicating the perfect p rediction to evaluate the 

accuracy of the ANN model p redictions. It  is evident 

from these figures that excellent agreement in accord 

with  all experimental measurements of Duang thongsuk 

and Wongwises (2009; 2010) and He et al. (2007) as 

well as the perfect  prediction straight lines. It  can be 

safely concluded that the proposed ANN model behaves 

well in  the train ing stage and, therefore, is expected to 

exhibit a satisfactory performance in the validation 

stage as seen in the next section.  

 

 

Fig. 2: Comparison of ANN-predicted values of pressure drop P 
with Reynolds number Re for the training data set. 

 

 

Fig. 3: Comparison of ANN-predicted values of pressure drop P 
with Reynolds number Re for the training data set. 

 

 

Fig. 4: Comparison of ANN-predicted values of pressure drop P 
with Reynolds number Re for the training data set  
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Fig. 5: Comparison of experimentally measured and ANN-predicted 

values of pressure drop P for the training data set. 

 

 

Fig. 6: Comparison of experimentally measured and ANN-predicted 

values of pressure drop P for the training data set  

 

5.2 Results of Validation 

To validate the proposed ANN model, a  set of 

experimental data of TiO2-water for pressure drop as 

mentioned before was used. The predicted results of 

pressure drop, P, from the ANN model were compared 

to the experimental measured data of Duangthongsuk 

and Wongwises (2009) as shown in Fig. 7. A lso 

included in th is figure arethe theoretical values of 

pressure drop obtained from the equation of single-

phase fluid  (Eq. 3). It  was noticed from Fig. 7 that the 

predicted values of pressure drop were in  good 

agreement with both the experimental data of 

Duangthongsuk and Wongwises (2009) and the 

calculated values using the theoretical equation for pure 

water (Eq . 3). To evaluate further the accuracy of the 

ANN model pred ictions, Fig. 8 shows another 

prediction performance measurement which a straight 

line indicating the perfect pred iction is provided.  Note 

that the comparisons shown in Figs. 7and 8, were made 

using the experimental values only from the test data set, 

which was not introduced to the ANN model during the 

training process as mentioned before and was selected 

randomly  from experimentally obtained data set of 

Duangthongsuk and Wongwises (2009).  It can be seen 

in Fig. 8 that the predicted results of pressure drop 

mimic almost the corresponding experimental results.  

 

 
Fig. 7. Comparison of ANN-predicted values of pressure drop P 

with Reynolds number Re for the test data set. 

 

 

Fig. 8: Comparison of experimentally measured and ANN-

predicted values of pressure drop P for the test data set  

 

VI. Conclusion 

This study represented an ANN model to predict the 

pressure drop of TiO2-water flowing through a 

horizontal p ipe under different turbulent flow 

conditions. Different experimental measured data with 

different particle volumetric concentrations, 

nanoparticle diameters, and nanofluid temperatures at 

different values of Reynolds number were used to 

construct the present ANN model.  The ANN model 

based on a multilayer perception with error back 

propagation learning algorithm was developed. 

Excellent agreement between the predicted values and 

the experimental data at d ifferent parameters for 
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pressure drop of TiO2-water nanoflu id was observed.  

Moreover, acceptable agreement between the calculated 

values obtained from the theoretical equation for 

pressure drop of a single-phase fluid  and the predicted 

values of the proposed ANN model was noticed.  More 

experimental data fo r other nanofluids are needed to 

widen the range of application of the proposed ANN 

model. 
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