
I.J. Information Technology and Computer Science, 2013, 10, 39-61

Published Online September 2013 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2013.10.05

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and

Modified Huffman Techniques

Syed Mahamud Hossein

Regional Office, Kolaghat; Directorate of Vocational Education & Training, West Bengal, India

E-mail: mahamud123@gmail.com

S.Roy

HIT, Haldia, India

Abstract— Storing, transmitting and security of DNA

sequences are well known research challenge. The

problem has got magnified with increasing discovery

and availability of DNA sequences. We have represent

DNA sequence compression algorithm based on

Dynamic Look Up Table (DLUT) and modified

Huffman technique. DLUT consists of 4
3
(64) bases

that are 64 sub-stings, each sub-string is of 3 bases

long. Each sub-string are individually coded by single

ASCII code from 33(!) to 96(`) and vice versa. Encode

depends on encryption key choose by user from four

base pair {a,t.g and c}and decode also require

decryption key provide by the encoded user. Decoding

must require authenticate input for encode the data.

The sub-strings are combined into a Dynamic Look up

Table based pre-coding routine. This algorithm is

tested on reverse; complement & reverse complement

the DNA sequences and also test on artificial DNA

sequences of equivalent length. Speed of encryption

and security levels are two important measurements for

evaluating any encryption system. Due to pro liferate of

ubiquitous computing system, where d igital contents

are accessible through resource constraint biological

database security concern is very important issue. A lot

of research has been made to find an encryption system

which can be run effectively in those biological

databases. Informat ion security is the most challenging

question to protect the data from unauthorized user.

The proposed method may protect the data from

hackers. It can provide the three tier security, in tier

one is ASCII code, in t ier two is nucleotide (a,t,g and c)

choice by user and tier three is change of label or

change of node position in Huffman Tree.

Compression of the genome sequences will help to

increase the efficiency of their use. The greatest

advantage of this algorithm is fast execution, small

memory occupation and easy implementation. Since

the program to implement the technique have been

written

originally in the C language, (Windows XP

platform, and TC compiler) it is possible to run in other

microcomputers with s mall changes (depending on

platform and Compiler used). The execution is quite

fast, all the operations are carried out in fraction of

seconds, depending on the required task and on the

sequence length. The technique can approach an

effective compression ratio of 1.98 bits/base and even

lower. When a user searches for any sequence for an

organism, an encrypted compressed sequence file can

be sent from the data source to the user. The encrypted

compressed file then can be decrypted & decompressed

at the client end resulting in reduced transmission time

over the Internet. An encrypt compression algorithm

that provides a moderately high compression with

encryption rate with minimal decryption with

decompression time.

Index Terms— Compression, Security,

Abbreviation— DLUT-Dynamic Look up Table

I. Introduction

With more and more complete genomes of

prokaryotes and eukaryotes becoming available and the

complet ion of Human Genome Project on the horizon,

fundamental questions regarding the characteristics of

these sequences arise. Life represents order. It is not

chaotic or random [1]. Thus, we expect the DNA

sequences that encode life to be nonrandom. In other

words, they should be very compressible. There is also

strong bio logical evidence that supports this claim, it

is well known that DNA sequences only consist of four

nucleotide bases {a, t,g,c},(note that T is replaced with

U in the case of the RNA), and one byte are enough to

store each base. All this evidence gives more concrete

support that the DNA sequences should be reasonably

compressible. It is well recognized that the

compression of DNA sequences is a very difficult task

[2-6]. However, if one applies standard compression

tools such as the Unix ―compress‖ and ―compact‖ or

the MS-DOS archive programs ―pkzip‖ and ―arj‖, they

all expand the file. These tools are designed for text

mailto:mahamud123@gmail.com

40 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

compression [2], while the regularities in DNA

sequences are much subtler. It means that DNA

sequences do not have the same properties for the

traditional compression algorithms to be counted on.

This requires a better model for computing the DNA

content such that better data compression results can be

achieved. In fact, it is our purpose to reveal such

subtleties, such as dynamic Look Up Table of 3 letter

64 sub-string, match with source DNA sequences by

using a more appropriate compression algorithm. In

this article, we will present a DNA compression

algorithm, DLUT, based on exact matching between

Look Up Table and source file and that gives the best

compression results on standard benchmark DNA

sequences. We will present the design rationale of

dynamic LUT based on exact matching, discuss details

of the algorithm, provide experimental results and

compare the results with the one most effective

compression algorithm for DNA sequence (gzip-9).

We can find the compression rate and compression

rate over reverse, complement and reverse complement

of DNA sequences result of same cellu lar DNA

sequences. Also we can find the compression rate,

compression ratio of artificially sequence generated by

randomly of equivalent length of cellular DNA

sequence. Compare all result to each other. For that

purpose we can generate two different algorithms.

We devised a new DNA sequence compression

algorithm based on dynamic Look Up Table pre-

coding routine which maps the 3 letter 64 sub-sting

into 64 ASCII characters start from 33(!) to 96 (`) and

vice versa. Since the essence of compression is a

mapping between source file and destination file , the

compression algorithm dedicates to find the

relationship. We migrate this idea to our research on

DNA sequence compression. We are t rying to build a

fin ite DLUT which implements the mapping

relationship of our coding process. Some experiments

indicate that the compression ratio is 3.1 bits/base.

Huffman CODING: Statistical codes represent

data blocks of fixed length with variab le-length code[7]

words. Huffman coding is one type of statistical

code[8-9]. This coding is also one type of entropy

coding. Entropy encoding is a lossless data

compression scheme that is independent of the media‘s

specific characteristics. Entropy coding[10-11] assigns

codes to symbols so as to match code lengths with the

probabilit ies of the symbols. Typically, these entropy

encoders are used to compress data by replacing

symbols represented by equal-length codes with

symbols represented by codes where the length of each

codeword is proportional to the negative logarithm (is

−logbP, where b is the number of symbols used to

make output codes and P is the probability of the input

symbol) of the probability. Therefore, the most

common symbols use the shortest codes.

The efficiency of a Huffman[12-13] code depends

on the frequency of occurrence of all distinct fixed

length blocks in a set of data. The most frequently

occurring blocks are encoded with short code words,

whereas the less frequently occurring ones are encoded

with large code words. In this way, the average

codeword length is minimized. It is obvious however

that, if all d istinct blocks in a data set appear with the

same (or nearly the same) frequency, then no

compression can be achieved. Among all statistical

codes, Huffman offer the best compression since they

provably provide the shortest average codeword length.

Another advantageous property of a Huffman code is

that it is prefix free; i.e., no codeword is the prefix of

another one. This makes the decoding process simple

and easy to implement.

Let T be the fully specified test set. Let us also

assume that if we partit ion the test vectors of T into

blocks of length l, we get k distinct blocks b1, b2, . . . ,

bk with frequencies (probabilit ies) of occurrence p1,

p2, . . . , pk , respectively. The entropy of the test set is

defined as

2

1

() (log)
k

i i

i

H T P P

 (1)

and corresponds to the min imum average number of

bits required for each codeword. The average

codeword length of a Huffman code is closer to the

aforementioned theoretical entropy bound compared to

any other statistical code. In practice, test sets have

many don‘t care (x) b its. In a good encoding strategy,

don‘t cares must be assigned such that the entropy

value H(T) is min imized. In other words, the

assignment of the test set‘s x values should skew the

occurrence frequencies of the distinct blocks as much

as possible. We note that the inherent correlation o f the

test cubes of T (test vectors with x values) favors the

targeted occurrence frequency skewing and,

consequently, the use of statistical coding. To generate

a Huffman code, we create a binary tree. A leaf node is

generated for each distinct block bi, and a weight equal

to the occurrence probability of block bi is associated

with the corresponding node. The pair o f nodes with

the smallest weights is selected first, and a parent node

is generated with weight equal to the sum of the

weights of these two nodes. The previous step is

repeated iteratively, selecting each time the node pair

with the s mallest sum of weights, until only a single

node is left unselected, i.e., the root (we note that each

node can be chosen only once). Starting from the root,

we visit all the nodes once, and we assign to each left-

child edge the logic 0 values and to each right-child

edge the logic 1 value. The codeword of b lock bi is the

sequence of the logic values of the edges belonging to

the path from the root to the leaf node corresponding to

bi. If c1, c2, . . . , ck are the codeword lengths of blocks

b1, b2, . . . , bk , respectively, then the average

codeword length is

http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Data_compression
http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Entropy_%28information_theory%29
http://en.wikipedia.org/wiki/Proportionality_%28mathematics%29
http://en.wikipedia.org/wiki/Logarithm

 A Compression & Encryption Algorithm on DNA 41

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

1

()
k

i i

i

C T PC

 (2)

Data Compression and ENCRYPTION: There is a

similarity between the process of data compression and

process of encryption. The goal for both the processes

is to reduce the redundancy in the source message.

According to Shannon [14], for perfect lossless

compression algorithm, the average bit rate is equal to

the source entropy. The redundancy of a source

message is the difference between average bit rate and

the source entropy of the message. The purpose of

reducing the redundancy in case of compression

algorithm is to conserver the storage space or

communicat ion bandwidth. The goal of reduction of

redundancy in case encryption process is to thwart the

different cryptanalysis attack based on statistical

property of the source message. If we combine both the

process of compression and encryption as shown in the

fig below, then we can utilize another property of the

compression algorithm that the decompression

informat ion are concentrated in a few portion o f the b it

stream, to selectively encrypt those portion of the bit

stream which has got more impact on the

reconstruction of the message during decompression

process, keeping the remaining uncompressed bit

stream in the clear.

For a perfect compression scheme, the plain text of

the unencrypted portion of the message is statistically

independent of the encrypted plain text message. So by

knowing the unencrypted plain text , cryptanalyst

cannot infer anything for the encrypted plain text.

Due to the combination of the process of

compression and the process of encryption, two

benefits are realized:

1. Conservation of storage space and communication

bandwidth

2. Encryption cost is reduced.

3. The attacks on the basis of statistical property of

the source bit stream are thwarted.

Client side decompression: We use compression &

selection encryption techniques for the general purpose

of sequence data delivery to the client. Existing DNA

search engines do not utilize DNA sequence

compression algorithms & encryption for high security

for client side decryption & decompression, i.e. where

encrypted compressed DNA sequence is decrypted &

decompressed at the client end for the benefit of faster

transmission & information security. Because most of

the existing DNA sequence compression algorithms

aim for higher compression ratios or pattern revealing,

rather than client side & decryption decompression,

their decompression times are longer than necessary

informat ion security. This makes these compression

techniques unsuitable for the ―on the fly‖

decompression. We use encrypted compression

technique designed for client side decrypted followed

by decompression in order to achieve faster sequence

secure data transmission to the client.

Fig. 1: Sender & receiver site encryption & Decryption process

If encrypted compressed sequence data is sent from

the data source to be decrypted decompressed at the

client end and the decryption to decompression time

along with the encrypted compressed file transmission

time is less than the transmission time for

uncompressed data transfer from the source to the

client, then efficiency is achieved. Fig. 1 illustrates the

situation. Note that the sequence data should be kept

pre-compressed within the data source.

A Sequence compression algorithm with reduced

decompression time and moderately high compression

rate is the preferred choice for efficient sequence data

delivery with faster data transmission. As our target is

to minimize decompression time and high information

security, we use similar compression techniques to

those used in [15], based on a ―Two phase‖ approach,

meaning, that the file is compressed followed by

encryption or decrypt followed by decompressed while

reading it. Unlike ―four phase‖ algorithms there is no

need to re-read the input file. Our compression

technique is essentially a symbol substitution

compression scheme that encodes the sequence by

replacing four consecutive nucleotide sequences with

ASCI characters. Our technique is to find the best

solution for a client side decompression.

Work already carried out : So many biological

compression algorithms is availab le in market as in

paper[100] where showing that Huffman‘s code also

fails badly on DNA sequences both in the static and

adaptive model, because there are only four kind

symbols in DNA sequences and the probabilit ies of

42 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

occurrence of the symbols are not very different. Here

this two phase technique solved this problem because

after the 1
st

 phase compression we get the 252 ASCII

characters‘ with nucleotide base pair a, t,g & c.

II. Flowchart:

Fig. 2: Process Diagram

III. Methods

3.1 File Format:

We will begin discussing file type is text file (file

extension is dot txt) contain a series of successive four

base pair (a,t,g and c) and end with blank space ahead

the end of file. Text file is the basic element to which

we consider in compression and decompression. The

output file also text file , contains the information of

both unmatched four base pair and a coded value of

ASCII character.

The coded valued are located in the encoded section.

The coded information is written into destination file

byte by byte. The file size depends on number of base

pair present in the input file and output file measured

by byte, i.e. File size (in byte)= number of base pair in

a file(in byte).As per example total no. o f base pair in a

file is n, so the file size is n byte. ASCII character also

required one byte for storing. On the basis of ASCII

code availability, we can take input as a lower case

letter of a,t,g and c, if upper case input are taken,

algorithm convert into upper case letter to lower case

letter.

3.2 The Four Bases Pair a,t,g and c

The four bases pair a,t,g and c possible orientation

4
3
=64. A ll sub-string has 3 bases long. The look-up

table describes a mapping relat ionship between DNA

segment and its corresponding characters. We assume

that every three characters in source RNA sequence

without N
2

will be mapped into a character chosen

from the character set which consists of 64 ASCII

characters.

Consider a string S= aaaaaagaacatgatcttccc ………n

where n is the length of string.

So, n=Length of the string = Total no. of base pair in

S = File size in byte (n>0)

Due to DLUT facility we can take input from four

base pair {a,t,g & c}in 24(Factorial of 4=24)

orientation and all times starting and ending ASCII

code range from 33(!) to 96(`) and vice versa. That

means DLUT variation are 24X2 i,e 48 no different

table. We can create 48 different LUT in this way. But

all times sub-string in a table is 64 (4
3
=64), 64 ASCII

code are sufficient to define the one particular LUT in

each encoding and decoding time.

2
N Refers to those not available base in DNA

sequence

3.3 Encoding steps:

First input file encoded by Look Up Table-I,

encoded data store on another output file.

Look up Table structure is

Table 1: Lookup Table

LUT INPUT Structure LUT Range of ASCII code A[j]

Sr. No. Input character Sr. No. Sub-string for LUT S[i] Start from(Increasing) Start from(Decreasing)

1 atgc 1 aaa 33/96 96/33

 3 aag .

 4 aac

 7 atg

 8 atc

 24 ttc

 33 gaa

 64 ccc 96/33 33/96

We match the input string with pre coded LUT. For

that purpose we have break the string S into (n-2) sub

string, each sub-string has length 3 bases long. n-2

because each sub-string length is 3.

Compression using DLUT

Input DNA sequence

Compression using Modified Huffman
Technique

Decompression

Key -I

Key -II

 A Compression & Encryption Algorithm on DNA 43

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

S[i]= 1 2 3 4 5 6 7 8 9 10 11 12 13 14 ……n

[1≤i≤n]

As for example: S = a a a a a a g a a c a t

g ………n

n = 1 2 3 4 5 6 7 8 9 10 11 12 13 14……n

Where S[i] array store each sub-string of S and i=1

to n-1.

S[1]=aaa,S[2]=aaa,S[3]=aaa,………………………..

S[n-2]ccc

Table 2: Sub Group press

Input string(S) LUT starting charecter Sub-string A[i] Match condition S[i]=A[j] ASCII code A[j] Output

aaaaaagaacatgatcttccc atgc aat S[1]=A[1] aat= - a

 att S[2]=A[2]

First match S[1] with A[1] to A[64] , if match occur

place ASCII character in 1
st

 position otherwise left one

character in left hand side in S, p lace 1
st

 character in

output file 1
st

 position. This left single character are

place output file in 1
st

 position. Progress one character

toward in right direction, take next sub-string and

match S[2] with A[1] to A[64], if match occur place

appropriate ASCII character in 2
nd

 place. This ASCII

character is put into the output file in 2
nd

 position. This

process will continue until and unless n-2 position

reaches.

The Encoding procedure mentioned this rule and

produce compression output file.

Match found then S[i]=A[j] ,place ASCII character

in the output file i
th

 position. Each matching cases the

value of i is incremented by i=no. of unmatched

character+ (no. of sub-string match X 3+1)

Otherwise S[i]≠A[j] p lace base pair in output file
ith

position. If unmatched occur, the value of i is

incremented by one and j is increased by one.

At the end, we can get the compress output file O

So, O= !!Ac'(8cc………….n1 where n1 is the length

of output file. Output file size is n1 byte

3.4 Decoding

Decoding time, first create LUT(fix base pair which

are use in encoding time for single case , its depends on

user authenticate value and decryption key and

authenticate ASCII code starting position otherwise

proper decoding are not possible.

On this basis of input character set and ASCII code

starting value, the actual LUT are crated. On this

particular value, the encoded output string is decoded

and produces the output original file.

Look Up

Table 3: ASCII staring ending point

INPUT LUT ASCII

Authenticate Input Sr. No. Sub-string for LUT S[i] Start from(Increasing/decreasing) A[j]

atgc 1 aaa 33

 . .

 3 aag

 4 aac

 7 atg

 8 atc

 24 ttc

 33 gaa

 64 ccc

O=!!Ac'(8cc ……………………n1 where n1 is the

length of output string (n>n1).

At the time of decoding each character match with

ASCII code that is A[j] with O[i] one by one. If match

occur in between A[1] to A[64] with O[1], p lace ASCII

equivalent sub-string in 1
st

 places in output file . The

value of i is incremented by one. If unmatched found in

between A[1] to A[64] with O[2], p lace base pair in 2
nd

position in output file. The value of i is incremented by

one. This process will continue until i=n1 position will

appear.

44 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 4: ASCII code decompression

Input string(O) LUT starting character Match condition A[j]=S[i] ASCII code A[j] Output

!!Ac'(8cc atgc O[1]=A[1] aat= - a

 O[2]=A[2]

The Decoding process mentioned this rule and

produce original output string.

Match found if O[i]=A[j] place ASCII character

equivalent sub-string in ith position. If match found,

the value of i is incremented by one.

Otherwise S[i]≠A[j] place base pair in
ith

 position in

output file. If unmatched occur , the value of i is

incremented by one.

For easy implementation, characters a,u,g,c will no

longer appear in pre-coded file and A,T,G,C will

appear in pre-coded file. For instance, if a segment

―aaaaaagaacatgatcttccc ……..n ‖ has been read, in the

destination file, we represent them as

―aDNc9txa…….n1‖.Obviously, the destination file is

case-sensitive

But at the end of file two base segments are

remain ing (ideal case where total number of base pair

are not divisible by 3), We cannot find any

arrangement in ASCII table. In these circumstances, we

just write the original segment into destination file.

We know that each character require 1 byte (8 bit)

for storing. Using lookup table compaction ration per

word is 3:1 when match is found.

In case of above example string length = 21 that

means 21 byte require for storing this string. After

encoding on the basis of lookup table of 3 sub string

length sizes , reduce string length 9, require 9 byte for

storing this string.

3.5 Huffman Encoding:

Consider the test set shown in column 1 of Table I,

which consists of four test vectors of length 16 (64 b its

overall). If we partition the test vectors into blocks of

length 4, we get 16 occurrences of five distinct blocks.

Columns 2 and 3 present those five blocks and their

frequencies of occurrence, respectively. Column 4

presents the codeword of Table-5

Table 5.1: Encoded data set

Encoded data set

10 0 110 0
110 10 0 1110
0 10 1111 0
10 0 10 0

Table 5: Huffman encoding example

Test set Block Frequency Code word

0000 1010 1111 1010
1111 0000 1010 0001

1010 0000 0010 1010
0000 1010 0000 1010

1010 7/16 0

0000 5/16 10

1111 2/16 110

0001 1/16 1110

0010 1/16 1111

Fig. 3: Left & right node

16/16

9/16

4/16

2/16

1/16 1/16 2/16
5/16

7/16

0

0

0
0

1

1

1

1
Block 1010 0000

1111
0001 0010

 A Compression & Encryption Algorithm on DNA 45

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Each b lock the corresponding Huffman tree and the

encoded data set are shown in Fig.2.3. The size of the

encoded data set is 31 bits, and the average codeword

length is

C(T)=1*(7/16)+2*(5/16)+3*(2/16)+4*(1/16)+4*(1/1

6) = 1.9375

Note that the entropy is equal to

H(T) = - [(7/16) * log2(7/16) + (5/16) * log2(5/16) +

(2/16) * log2(2/16) + (1/16) * log2(1/16) + (1/16) *

log2(1/16)] = 1.9218

The size of a Huffman decoder depends on the

number of d istinct blocks that are encoded. Increased

encoded-block volumes lead to big decoders due to the

big size of the corresponding Huffman tree. For that

reason, a selective Huffman approach was adopted in

our project, according to which only the most

frequently occurring blocks are encoded, whereas the

rest are not.

3.6 Proposed Methods

3.6.1 Methodology of Experiments PERFORMED:

We have conducted our experiments in normal text

files of different sizes and on the basis of the statistical

property generated by Huffman tree for each text files.

Since our objective is to find out the selective portion

i.e. R part (discussed previously) from the text message

we made swapping of the branches in the Huffman t ree

on at a particular level on the basic of a key and decode

the encoded symbols using the modified Huffman t ree

which are specified in scheme I and II. In scheme-I we

apply swapping method on two nodes at specified level

on Huffman tree, and in scheme -II we perform

swapping method between two specified nodes at

different level on Huffman tree. When we generate the

Huffman t ree using the statistical property of symbols,

first we consider each character o f input text message

as a symbol and later each word as a symbol.

Illustrating Huffman Code With Example: We take a

simple text containing alphabets A, B, C, D, E, F and

their frequencies 8, 3, 2, 4, 2, 1 respectively. The

Huffman tree in this case would be as in figure below

(fig. 4.1).

Table 6: Coding scheme

Char Codeword

A 0

C 100

B 101

F 1100

E 1101

D 111

20

12

5 7

3

8

A

2

C

3

B

4

D

1

F

2

E

0

0

0
0

0

1

1

1 1

Fig. 4: Binary coding scheme

Example: We take a simple test their frequencies

8,3,2,4,2,1 would be as in figure above

Suppose we take a string ―AABBC‖, for example,

would be encoded as ―00101101100‖. And when we

decompress it according to 0 and 1 , we traverse the

tree from root to left or right until we get child node.

E.g. the b it stream ―00101101100‖. The first two―0‖

will be decode traversing from root 208(A) [left

traversing since 0] and next ―1‖, then traversing from

root to left 2012, next ―0‖, then traversing from 12 to

left 125, next ―1‖, traversing from 5 to right 53(B)

and get leaf node B. Similarly we get original text

―AABBC‖. Thus the original text is decompressed

from compressed text.

3.6.2 Swapping Nodes at Specified Level (Scheme-I)

Our objective is to find out the selective portion i.e.

R part (discussed previously) from the text message.

We made swapping of the branches in the Huffman

tree on at a particular level on the basis of a key and

decode the encoded symbols using the modified

Huffman tree. Now for selecting the R part, my first

experiment is swapping two nodes at specified levels.

Here I exchange by left most nodes with right most

nodes at specified level. So only those nodes, which are

changed their positions after swapping, are affects and

also corresponding codes are also altered. Remaining

other nodes is kept unchanged. Hence selective b its are

altered.

 Let illustrate this with an example, Fig.4.2 is the

original tree and Huffman codes of W=00, X=01,

Y=10, Z=11.

Fig. 5: Code word

46 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Suppose we apply swapping at level 1 then we find

out A is single node i.e. root node at level 0 i.e. root

node at level 0. Then we interchange the position of

left and right child node with their sub tree as shown in

fig.4.3. So corresponding code of W, X, Y, Z are

totally changed. W=10, X=11, Y=00, Z=01. So if the

original text is ―WWXYXZ‖ then it will be encrypted

―101011001101‖. If we decode it without change the
level the text will be ―YYZWZX‖. D

SID
in this case is 6.

Fig. 6: Tree

Fig. 7: Tree

Table-7: Binary code

Character
Before
Encrypt

After Encrypt

Swapping at
Level 1

Swapping at
Level 2

W 00 10 11

X 01 11 01

Y 10 00 10

Z 11 01 00

Now we apply swapping at level 2(here B, C) then

we interchange the position of left child of B and right

child of C and with their sub tree as shown in fig.4.4.

In this case corresponding codes are selectively

changed. i.e. since in fig.4.4 we see on W and Z are

interchange their positions so code of Z and W are only

changed, other should be unchanged according to table

4.1. So if the original text is ―WWXYXZ‖ then it will

be encrypted ―111101100100‖. If we decode it without
change the level the text will be ―ZZXYXW‖. D

SID
in

this case is 3.

The results diverged from our expectations in some

simple cases due to the complexities in the alignments
of characters when calculating D

SID
. In our experiment,

when we measure Lavenstein distance and effectness

on actual text we face some minor problems.

Suppose we compress a text file -applying node

swapping method at particular level. But if we measure

effectness on actual text by decoding the encoded text

without any swapping method apply, then in some

cases all codes may not be retrieved, for e.g. suppose

frequency of A=2, B=1 and C=1 then tree will be

generate like

Fig. 8: Tree structure

Fig. 9: Tree structure

And their corresponding codeword A=0, B=10,

C=11.

And suppose the string ‗AABBC‘ would be encoded

as 00101011.

Now if we apply swapping method at level 0 then

the tree will generate like fig. 4.6

And their corresponding code A=1, B=00, C=01.

And same string then encoded as 11000001.

Now if we measure Lavenstein distance & % of

effectness on actual text then we must decode without

apply swapping method at level 0. Then that encoded

string is decoded using original tree (fig.4.5).

Table 8: Code Table

1 1 0 0 0 0 0 1

C C A A A A A -

The last 1 is left over because there is no such code

of only 1. So for measurement purpose the size of

original text is altered in these cases.

 A Compression & Encryption Algorithm on DNA 47

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

3.6.3 Swapping between Two Specified Nodes at

Different Level (Scheme-II)

In my second experiment we get another approach

for selecting the r part (discussed previously). In this

approach swapping can be perform at any specified

two nodes. By this approach we can interchange any

two nodes with its sub tree of the Huffman tree at any

level. Hence this scheme has flexibility to modify

Huffman t ree and also use more than one key so it

obviously increase security concern. In this scheme we

need to specify two level values of two nodes and two

binary values. Number of binary digit must be same

with level value with respect to nodes. If we consider

above specified two values as a key then security

concern is improved than before experiment. E.g.

Fig.4.7 is the original tree and Huffman codes of W=00,

X=01, Y=10, Z=11.

Fig. 10: Binary Tree

Suppose I want to swap between two nodes B and Z

then we need to specify first, level number, in this case

1 and binary dig it 0 fo r B node and level number for Z,

in this case 2 and binary digit 11. Then new tree will

generate like

Fig. 11: Binary Tree

After interchanging the position of left and right

child node with their sub tree as shown in fig.4.8 so

corresponding codes of W, X, Y, Z are totally changed

according to table 4.2. So if the orig inal text is

―WWXYXZ‖ then it will be encrypted

―110110111101110‖. If we decode it without change

the level the text will be decrypt like ―ZXYZZXZ‖.
D

SID
in this case is 6.

Table 9: Character corresponding code word

Character Before Encrypt

After Encrypt

Swapping
between

B and Z

Swapping
between

C and X

W 00 110 00

X 01 111 1

Y 10 10 010

Z 11 0 011

3.7 Random String Generation Method:

We have generate a string of four symbols (a,t,g and

c) of any arbitrary length, it is user requirement.

This method simply uses random function in C++

language.

3.8 Reverse, Complement and Reverse

Complement Method

Suppose the original string is

S = aaaaaagaacatgatcttccc ………n

Reverse string is R=n......…….cccttctagtacaagaaaaa

Complement string is =tttttcttgtctagaggg…………n

Reverse Complement is RC=n….gggaagatgttgttttt

Where n is the length of the string.

3.9 We Have Develop Four Algorithms

First: encoding (compression) algorithm, Second:

decoding(decompression) algorithm, Third : Random

string generator algorithm and Fourth is Reverse,

complement and Reverse complement algorithms.

IV. Following Algorithm Are:

4.1 Algorithm for Random String Generator

Procedure Generate

do

 Integer i,j;

 character A[]="atcg";

 Input("%ld",&j);

 FILE * fp;

 fp=Open_file("input.txt","w");

 for(i=0;i<j;i++)

 do

 Write_charcter(A[generate_random_num(4)],

fp);

 end

 fclose(fp);

end

48 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

4.2 Reverse, Complement and Reverse

Complement the String Algorithm:

Procedure comp(Character x,Integer p)

do

 switch(x)

 do

 case 'A':

 if(p=0)

 return 'T';

 else

 return 'U';

 case 'T':

 return 'A';

 case 'U':

 return 'A';

 case 'C':

 return 'G';

 case 'G':

 return 'C';

 end

 return x;

end

Procedure REVERSE_FILE

do

 clrscr();

 FILE* fin,*fout[3];

 Character * in,*out;

 Character c1,c2,c3,c4;

 Character p;

 Integer count:=1,point:=1;

 Display("\n Enter Source File:");

 Input("%s",in);

 Display("\n The generated files are

 rev.txt,r_comp.txt,comp.txt");

 Display("\n\n File type ? 0 -DNA / 1 -RNA :");

 Input("%d",&p);

 system("mkdir out");

 fin:=Open_file(in,"r");

 if(fin=NULL)

 do

 Display("\n Could not open Source

File.");

 wait_for_keypress();

 exit(1);

 end

 fout[0]:=Open_file(".//out//rev.txt","w");

 if(fout=NULL)

 do

 Display("\n Could not open reverse

File.");

 wait_for_keypress();

 exit(1);

 end

 fout[1]:=Open_file(".//out//r_comp.txt","w");

 if(fout=NULL)

 do

 Display("\n Could not open reverse

complement File.");

 wait_for_keypress();

 exit(1);

 end

 fout[2]:=Open_file(".//out//comp.txt","w");

 if(fout=NULL)

 do

 Display("\n Could not open complement

File.");

 wait_for_keypress();

 exit(1);

 end

 c1:=fgetc(fin);

 while(c1<>EOF)

 do

 Put_Char_in_File(comp(c1,p),fout[2]);

 c1:=fgetc(fin);

 count++;

 end

 point:=count-1;

 dodo

 point--;

 fseek(fin,point,SEEK_SET);

 c1:=fgetc(fin);

 (c1>90)?c1-:=32:c1-:=0;

 Put_Char_in_File(c1,fout[0]);

 Put_Char_in_File(comp(c1,p),fout[1]);

 endwhile(point);

 close_file(fin);

 close_file(fout[0]);

 close_file(fout[1]);

 close_file(fout[2]);

end

4.3 Algorithm for DLUT

4.3.1 DLUT Encoding algorithm

Integer : eger : parse(Character : *tx);

Procedure check (Character : ch)

 do

 if (ch < 97 AND ch > 64)

 return ch+32;

 return ch;

 end;

Character : cod[4][4][4];

Character : LUT[4],vbx[20];

Real : ibytes,obytes;

Procedure ret_pos(Character : x)

 do

 Integer : eger : i;

 for(i:=0;i<4;i++)

 if(LUT[i]=x)

 break;

 return i;

 end;

Procedure isin(Character ch)

do

 if (ch>= 33 && ch<=96)

 return 1;

 else

 A Compression & Encryption Algorithm on DNA 49

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

 return 0;

end;

Procedure parse(Character : *tx)

do

 Integer : eger : p,q,r;

 p:=ret_pos(tx[0]);

 q:=ret_pos(tx[1]);

 r:=ret_pos(tx[2]);

 return cod[p][q][r];

end;

Procedure Compress_Input()

do

struct time st,sp;

Real : cr1,cr2,crate;

FILE *fp,*ip,*op;

Character : BUT[3];

Integer : i,p,q,r,order,rorder;

Character : ch;

Integer : match,t1,t2;

Display " Input 3 LUT initializing Character : acters:

(a,t,c,g)";

Display " 1:";

LUT[0]:=get_character();

Display " 2:";

LUT[1]:=get_character();

Display " 3:";

LUT[2]:=get_character();

if(LUT[0]<>'a' AND LUT[1]<>'a' AND

LUT[2]<>'a')

 LUT[3]:='a';

if(LUT[0]<>'t' AND LUT[1]<>'t' AND

LUT[2]<>'t')

 LUT[3]:='t';

if(LUT[0]<>'g' AND LUT[1]<>'g' AND

LUT[2]<>'g')

 LUT[3]:='g';

if(LUT[0]<>'c' AND LUT[1]<>'c' AND

LUT[2]<>'c')

 LUT[3]:='c';

Display " 4:"<<LUT[3];

do

Display " LUT ordering (33/96)";

Get_User_Input order;

while(order<>33 AND order <>96);

if(order=33)

 rorder:=96;

else

 rorder:=33;

for(i:=0;i<64;i++)

do

 p:=i/16;

 q:=(i-p*16)/4;

 r:=i-p*16-q*4;

 cod[p][q][r%4]:=(order=33)?order+i:order-

i;

end;

Display "LUT generated:";

fp:=fopen("LUT.txt","w");

for(i:=0;i<64;i++)

do

 p:=i/16;

 q:=(i-p*16)/4;

 r:=i-p*16-q*4;

 Write_to_FIle :

(fp," %d %c%c%c : %c",i+1,LUT[p],LUT[q],LUT[r]

,cod[p][q][r]);

end;

Close_File (fp);

Display " Enter input file:";

Get_User_Input vbx;

ip:=fopen(vbx,"r");

if(ip=NULL)

do

 Display " Unable to open input file.";

 exit(1);

end;

Display " Enter name for output file:";

Get_User_Input vbx;

op:=fopen(vbx,"w");

if(op=NULL)

do

 Display " Unable to open output file.";

 exit(1);

end;

ibytes:=obytes:=match:=0;

gettime(&st);

gettime(&sp);

gettime(&st);

Display (" Start time

is : %d:%d:%d.%d",st.ti_hour,st.ti_min,st.ti_sec,st.ti_h

und);

do

ch:=fgetc(ip);

ch:=check(ch);

if(ch=EOF)

 break;

if(ret_pos(ch)>2)

 do

 Put_Char_to_File(ch,op);

 end;

else

 do

 BUT[0]:=ch;

 if(ch=EOF)

 break;

 BUT[1]:=fgetc(ip);

 BUT[1]:=check(BUT[1]);

 if(BUT[1]=EOF)

 do

 Put_Char_to_File(ch,op);

 break;

 end;

 BUT[2]:=fgetc(ip);

 BUT[2]:=check(BUT[2]);

 if(BUT[2]=EOF)

 do

 Put_Char_to_File(ch,op);

50 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

 Put_Char_to_File(BUT[1],op);

 break;

 end;

 Put_Char_to_File(parse(BUT),op);

 match++;

 end;

while(ch<>EOF);

gettime(&sp);

Display (" Completed

at : %d:%d:%d.%d",sp.ti_hour,sp.ti_min,sp.ti_sec,sp.ti

_hund);

t1:=st.ti_hund+st.ti_sec*100+st.ti_min*6000+st.ti_

hour*360000;

t2:=sp.ti_hund+sp.ti_sec*100+sp.ti_min*6000+sp.t

i_hour*360000;

ibytes:=ftell(ip);

obytes:=ftell(op);

Close_File (op);

Close_File (ip);

cr1:=((ibytes-obytes)/ibytes*100);

crate:=(obytes*8)/ibytes;

cr2:=((1-crate/2)*100);

Display " Input Size: "<<ibytes<<"bytes";

Display " output Size: "<<obytes<<"bytes";

Display " Total words matched from

LUT :"<<match;

Display " Compresstion ratio: "<<cr1;

Display " Biological compression ratio : "<<cr2;

Display " Compresstion rate :"<<crate;

Display " Total Time taken : "<<(t2-t1)<<"

hundreths seconds";

end;

4.3.2 DLUT Decoding algorithm

Character: LUT[4],vbx[20];

Procedure Decompress ()

do

struct time st,sp;

FILE *fp,*ip,*op;

Integer : i,p,q,r,order,rorder;

Integer : t1,t2;

Character : ch;

Display " Input 3 LUT initializing Characters:

(a,t,c,g)";

Display " 1:";

LUT[0]=get_character();

Display " 2:";

LUT[1]=get_character();

Display " 3:";

LUT[2]=get_character();

if(LUT[0]!='a' && LUT[1]!='a' && LUT[2]!='a')

 LUT[3]='a';

if(LUT[0]!='t' && LUT[1]!='t' && LUT[2]!='t')

 LUT[3]='t';

if(LUT[0]!='g' && LUT[1]!='g' && LUT[2]!='g')

 LUT[3]='g';

if(LUT[0]!='c' && LUT[1]!='c' && LUT[2]!='c')

 LUT[3]='c';

Display " 4:"<<LUT[3];

do

Display " LUT ordering (33/96)";

Get_User_Input order;

while(order!=33 && order !=96);

if(order==33)

 rorder=96;

else

 rorder=33;

Display " Enter compressed file:";

Get_User_Input vbx;

ip=fopen(vbx,"r");

if(ip==NULL)

do

 Display " Unable to open file.";

 exit(1);

end;

Display " Enter name for output file:";

Get_User_Input vbx;

op=fopen(vbx,"w");

if(op==NULL)

do

 Display " Unable to open output file.";

 exit(1);

end;

gettime(&st);

gettime(&sp);

gettime(&st);

Display (" Start time

is : %d:%d:%d.%d",st.ti_hour,st.ti_min,st.ti_sec,st.ti_h

und);

do

ch=fgetc(ip);

if(ch==EOF)

 break;

if(!isin(ch))

 do

 Put_Char_to_File(ch,op);

 end;

else

 do

 rorder=Integer : (ch);

 rorder=rorder-order;

 if(rorder<0)

 rorder*=-1;

 p=rorder/16;

 q=(rorder-p*16)/4;

 r=rorder-p*16-q*4;

 Put_Char_to_File(LUT[p],op);

 Put_Char_to_File(LUT[q],op);

 Put_Char_to_File(LUT[r],op);

 end;

end;

while(ch!=EOF);

gettime(&sp);

Display (" Completed

at : %d:%d:%d.%d",sp.ti_hour,sp.ti_min,sp.ti_sec,sp.ti

_hund);

 A Compression & Encryption Algorithm on DNA 51

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

t1=st.ti_hund+st.ti_sec*100+st.ti_min*6000+st.ti_h

our*360000;

t2=sp.ti_hund+sp.ti_sec*100+sp.ti_min*6000+sp.ti

_hour*360000;

Display " Total Time taken : "<<(t2-t1)<<"

hundreths seconds";

Close_File (op);

Close_File (ip);

end;

4.4 Huffman Algorithm:

This algorithm recursively find a weighted binary

tree with n given weights w1, w2, ….wn. (Here weights

mean frequency of n characters in text).

1. Arrange the weights in increasing weights.

2. Construct two leaf vert ices with min imum weights,

say wi and wj in the given weight sequence and parent

vertex of weight wi + wj.

3. Rearrange remaining weights (excluding wi and wj

but including parent vertex of weight wi + wj) in

increasing order.

4. Repeat step 2 until no weight remains.

5. To find out Huffman code for each given weights

(i.e . frequency of characters) traversing tree from root

assign 0 when traverse left of each node & 1 when

traverse right of each node.

4.5 Proposed Algorithm for Scheme-I:

This algorithm recursively find a weighted binary

tree with n given weights w1, w2, ….wn. (Here weights

mean frequency of n characters in text). LEVEL is the

input where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vert ices with min imum weights,

say wi and wj in the given weight sequence and parent

vertex of weight wi + wj.

3. Rearrange remaining weights (excluding wi and wj

but including parent vertex of weight wi + wj) in

increasing order.

4. Repeat step 2 until no weight remains.

5. Find out left most nodes and right most nodes at

specified LEVEL and interchange their position with

respect to their parent node.

6. To find out code for each given weights (i.e.

frequency of characters) traversing tree from root

assign 0 when traverse left of each node & 1 when

traverse right of each node.

4.6 Proposed Algorithm for scheme-II:

This algorithm recursively find a weighted binary

tree with n given weights w1, w2, ….wn. (Here weights

mean frequency of n characters in text). LEVEL is the

input where the tree is altered.

1. Arrange the weights in increasing weights.

2. Construct two leaf vert ices with min imum weights,

say wi and wj in the given weight sequence and parent

vertex of weight wi + wj.

3. Rearrange remaining weights (excluding wi and wj

but including parent vertex of weight wi + wj) in

increasing order.

4. Repeat step 2 until no weight remains.

5. Find out two nodes at specified LEVEL by binary

digits and interchange their position with respect to

their parent node.

6. To find out code for each given weights (i.e.

frequency of characters) traversing tree from root

assign 0 when traverse left of each node & 1 when

traverse right of each node.

4.7 Algorithm for file mapping

• Step1 : frame_size=LENGTH(String_1);

• Step2 : Repeat step 3 to 5 while String_1 is NULL.

• Step3 : Index=MISMATCH-

INDEX(String_1,String_2).

• Step4 : IF Index>Length(String_1)-1 then goto step

6.

• Step5 : IF Index=Length(String_1)-1

then String_1=NULL.

ELSE

String_1=SUBSTRING(String_1,(Index+1)).

String_2=SUBSTRING(String_2,(Index+1)).

• Step6 : Error_no=Error_no + 1.

• Step7 : Percentage = ((Frame_size-

Error_no)/Frame_size)*100.

• Step8 : Return Percentage.

V. Algorithm Evaluation

5.1 Accuracy

As to the DNA sequence storage, accuracy must be

taken firstly in that even a single base mutation,

insertion, deletion or SNP would result in huge change

of phenotype as we see in the sicklemia. It is not

tolerable that any mistake exists either in compression

or in decompression. Although not yet proved

52 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

mathematically, it could be infer from DLUT that our

algorithm is accuracy, since every base arrangement

uniquely corresponds to an ASCII character.

5.2 Efficiency

You can see that the pre-coding algorithm can

compress original file from 3 characters into 1

character for any DNA segment and destination file

uses less ASCII character to represent successive DNA

bases than source file.

5.3 Time Elapsed

Today many compression algorithms are highly

desirable, but they require considerable t ime to execute.

As our algorithm is based on a DLUT rather than

sequence statistics, it can save the time of obtaining

statistic information of sequence, and more, after the

pre-coding routine, the character number is 1/3 of

source one. You can see the elapsed time of our

algorithm is in fraction of second.

5.4 Space Occupation

Our algorithm reads characters from source file and

writes them immediately into destination file. It costs

very small memory space to store only a few characters.

The space occupation is in constant level. In our

experiments, the OS has no swap partition. All

performance can be done in main memory which is

only 512 MB on our PC.

VI. Experimental Results

We tested DLUT on standard benchmark data used

in [17]. For testing purpose we use two types of data

sets. These standard sequences come from a variety of

sources and include the complete genomes of two

mitochondria: MPOMTCG, PANMTPACGA (also

called MIPACGA), two chloroplasts: CHNTXX and

CHMPXX (also called MPOCPCG); five sequences

from humans: HUMGHCSA, HUMHBB,

HUMHDABCD, HUMDYSTROP, HUMHPRTB; and

finally the complete genome from two viruses:

VACCG and HEHCMVCG (also called

HS5HCMVCG).

These tests are performed on a computer whose CPU

is Intel P-IV 3.0 GHz core 2 duo(1024FSB), Intel 946

original mother board, IGB DDR2 Hynix, 160GB

SATA HDD Segate.

The definit ion of the compression ratio
1
 is the same

as in [18-19]; i.e.,1− (|O|/2| I|), where |I| is number of

bases in the input DNA sequence and |O| is the length

(number of bits) of the output sequence, other

compression ratio
2
 which is defined as 1− (|O|/ |I|),

where |I| is the length(number of byte) number of bases

in the input DNA sequence and |O| is the length

(number of byte) of the output sequence. The

compression rate, which is defined as (|O|/| I|), where

|I| is number o f bases in the input DNA sequence and

|O| is the length (number o f bits) of the output sequence.

The improvement[9] over gzip-9, which is defined as

(Ratio_of_gzip -9 – Rat io_of_LUT-3)/Ratio_of_gzip-9

*100 or Improvement =((Ratio_of_HUFFLUT-

Ratio_of_DLUT)/ Rat io_of_HUFFLUT).The

compression ratio and compression rate are presented

in Table-10 & Table-11. Our result compared with

gzip-9[20] in the same table.

Compression ratio and Compression rate and speed

for the DNA sequences shown in Table I to Tab le-IV.

From top to bottom, each row d isplays the result for an

algorithm showing average compression and

decompression speed in seconds per input byte

(average computed over five runs for each

sequence).―encode‖ means compression while

―decode‖ mean decompression. Each operation is

evaluated in two units, CPU clock and second.

Using Scheme-I

Table 14: Encryption using following levels

File size
(byte)

Weighted
Frequency
for input

file

level
Weighted
frequency

output file

7550 162

2 20

3 20

4 19

11358 183

2 26

3 25

4 25

26655 434

2 59

3 59

4 58

59890 778

2 124

3 124

4 123

We measure weighted frequency for different input

and output text shown in table-14. We can conclude

that weighted frequency of an input text and encrypted

text are maintain ing approx 8:1 ratio. That mean in

case of input text and output text, number of characters

having same frequency maintains the ratio nearly 8:1.

So the chance of frequency analysis attack is reduced.

 A Compression & Encryption Algorithm on DNA 53

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 10: Compression Ratio & Rate are shown in the Table for first data set

S
eq

u
en

ce

B
as

e
p

ai
r

F
il

e
S

iz
e

b
y

te

Cellular DNA Artificial DNA

N
o

rm
al

S

eq
u

en
ce

s

R
ev

er
se

S

eq
u

en
ce

s

C
o

m
p

le
m

en
t

se
q

u
en

ce
s

R
ev

er
se

C
o

m
p

le
m

en
t

S
eq

u
en

ce

A
v

er
ag

e
S

p
ee

d
(i

n
 s

ec
o

n
d

)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t

A
v

er
ag

e
S

p
ee

d
(i

n

se
co

n
d

)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e

(
b

it
s

/b
as

e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e

(
b

it
s

/b
as

e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e

(
b

it
s

/b
as

e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e

(
b

it
s

/b
as

e)

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

M
T

P
A

C
G

A

1
0

0
3

1
4

1
0

0
3

1
4

-4
5

.5
9

8
8

1

2
.9

1
1

9
7

-4
5

.5
9

8
8

1

2
.9

1
1

9
7

-4
8

.3
1

8
2

7

2
.9

6
6

3
6

-4
8

.3
2

6
2

5

2
.9

6
6

5
2

<
1

0
0

<
1

0
0

4
0

1
4

6

-6
0

.0
8

1
3

3

3
.2

0
1

6
2

4
.6

2
6

0
5

0
.3

7
0

9
6

<
1

0
0

<
1

0
0

M
P

O
M

T
C

G

1
8

6
6

0
8

1
8

6
6

0
8

-5
6

.0
6

6
1

9

3
.1

2
1

3
2

-5
6

.0
6

6
1

9

3
.1

2
1

3
2

-5
6

.7
1

3
5

3

3
.1

3
4

2
7

-5
6

.7
1

3
5

3

3
.1

3
4

2
7

.0
5

.0
3

7
4

4
7

2

-5
9

.6
3

3
0

3

3
.1

9
2

6
6

<
1

0
0

<
1

0
0

C
H

N
T

X
X

1
5

5
8

4
4

1
5

5
8

4
4

-5
3

.7
1

7
81

3
.0

7
4

3
5

-5
3

.7
1

7
81

3
.0

7
4

3
5

-5
2

.7
5

2
75

3
.0

5
5

0
5

-5
2

.7
5

2
75

3
.0

5
5

0
5

<
1

0
0

<
1

0
0

6
2

2
5

4

-5
9

.7
8

5
42

3
.1

9
5

7
0

<
1

0
0

<
1

0
0

C
H

M
P

X
X

1
2

1
0

2
4

1
2

1
0

2
4

-4
5

.2
8

6
8

8

2
.9

0
5

7
3

-4
5

.2
8

6
8

8

2
.9

0
5

7
3

-4
5

.4
9

8
4

2

2
.9

0
9

9
6

-4
5

.4
9

8
4

2

2
.9

0
9

9
6

.0
5

.0
2

4
8

4
2

4

-6
0

.0
4

7
5

9

3
.2

0
0

9
5

<
1

0
0

<
1

0
0

H
U

M
G

H
C

SA

6
6

4
9

5

6
6

4
9

5

-6
0

.3
4

2
8

8

3
.2

0
6

8
5

-6
0

.3
5

4
9

1

3
.2

0
7

0
9

-6
0

.2
9

4
7

5

3
.2

0
5

8
9

-6
0

.2
9

4
7

5

3
.2

0
5

8
9

<
1

0
0

<
1

0
0

2
6

7
3

3

-6
0

.8
1

2
0

9

3
.2

1
6

2
4

<
1

0
0

<
1

0
0

H
U

M
H

B
B

7
3

3
0

8

7
3

3
0

8

-5
3

.7
6

2
2

1

3
.0

7
5

2
4

-5
3

.7
7

3
1

1

3
.0

7
5

4
6

-5
4

.5
1

5
1

4

3
.0

9
0

3
0

-5
4

.5
0

4
2

8

3
.0

9
0

0
8

<
1

0
0

<
1

0
0

2
9

3
2

8

-6
0

.0
2

6
1

9

3
.2

0
0

5
2

<
1

0
0

<
1

0
0

H
U

M
H

D
A

B
C

D

5
8

8
6

4

5
8

8
6

4

-6
0

.4
3

7
6

1

3
.2

0
8

7
5

-6
0

.4
3

7
6

1

3
.2

0
8

7
5

-6
2

.7
0

7
2

5

3
.2

5
4

1
4

-6
2

.6
9

3
6

6

3
.2

5
3

8
7

<
1

0
0

<
1

0
0

2
3

5
9

6

-6
0

.3
4

2
4

8

3
.2

0
6

8
5

<
1

0
0

<
1

0
0

H
U

M
D

Y
S

T
R

O
P

3
8

7
7

0

3
8

7
7

0

-5
2

.5
9

2
2

0

3
.0

5
1

8
4

-5
2

.6
1

2
8

4

3
.0

5
2

2
5

-5
1

.7
0

4
9

3

3
.0

3
4

0
9

-5
1

.6
8

4
2

9

3
.0

3
3

6
8

<
1

0
0

<
1

0
0

1
5

4
9

4

-5
9

.8
5

5
5

5

3
.1

9
7

1
1

<
1

0
0

<
1

0
0

H
U

M
H

P
R

T
B

5
6

7
3

7

5
6

7
3

7

-5
4

.9
3

9
4

6

3
.0

9
8

7
8

-5
4

.9
3

9
4

6

3
.0

9
8

7
8

-5
5

.2
3

5
5

6

3
.1

0
4

7
1

-5
5

.2
3

5
5

6

3
.1

0
4

7
1

<
1

0
0

<
1

0
0

2
2

6
5

3

-5
9

.7
0

5
3

0

3
.1

9
4

1
0

<
1

0
0

<
1

0
0

V
A

C
C

G

1
9

1
7

3
7

1
9

1
7

3
7

-4
8

.2
8

0
1

9

2
.9

6
5

6
0

-4
8

.2
8

0
1

9

2
.9

6
5

6
0

-4
8

.2
9

6
8

8

2
.9

6
5

9
3

-4
8

.2
9

6
8

8

2
.9

6
5

9
3

<
1

0
0

<
1

0
0

7
6

7
8

9

-6
0

.1
9

6
5

1

3
.2

0
3

9
3

<
1

0
0

<
1

0
0

H
E

H
C

M
V

C
G

2
2

9
3

5
4

2
2

9
3

5
4

-
5

9
.7

18
16

3
.1

9
4

3
6

-

5
9

.7
14

67

3
.1

9
4

2
9

-
6

0
.2

30
91

3
.2

0
4

6
1

-
6

0
.2

30
91

3
.2

0
4

6
1

<
1

0
0

<
1

0
0

9
1

7
9

4

-
6

0
.0

91
38

3
.2

0
1

8
2

<
1

0
0

<
1

0
0

A
v

er
ag

e

3
.0

7
4

0
7

3
.0

7
4

1
4

3
.0

8
4

1
1

3
.0

8
4

0
5

3
.0

8
4

0
5

54 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 11: Compression Ratio & Rate are shown in the Table for second data set

S
eq

u
en

ce

B
as

e
p

ai
r

F
il

e
S

iz
e
 b

y
te

Cellular DNA Artificial DNA

N
o

rm
al

S
eq

u
en

ce
s

R
ev

er
se

S

eq
u

en
ce

s

C
o

m
p

le
m

en
t

se
q

u
en

ce
s

R
ev

er
se

C
o

m
p

le
m

en
t

S
eq

u
en

ce

A
v

er
ag

e

S
p

ee
d

(i
n

 s
ec

o
n

d
)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t

A
v

er
ag

e
S

p
ee

d
(i

n
 s

ec
o

n
d

)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

C
o

m
p

re
ss

io
n

 r
at

io

co
m

p
re

ss
io

n
 r

at
e(

 b
it

s
/b

as
e)

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

at
at

sg
s

9
6

4
7

9
6

4
7

-5
0

.3
0

5
7

9

3
.0

0
6

1
1

-5
0

.3
0

5
7

9

3
.0

0
6

1
1

-5
1

.8
8

1
4

0

3
.0

3
7

6
2

-5
1

.8
8

1
4

0

3
.0

3
7

6
2

<
1

0
0

<
1

0
0

3
8

1
9

-5
8

.3
4

9
7

3

3
.1

6
6

9
9

5

4
.6

2
6

0
5

0
.3

0
9

5
8

<
1

0
0

<
1

0
0

at
ef

1
a2

3

6
0

2
2

6
0

2
2

-5
1

.3
1

1
8

6

3
.0

2
6

2
3

-5
1

.1
7

9
0

1

3
.0

2
3

5
8

-5
4

.6
3

3
0

1

3
.0

9
2

6
6

-5
4

.6
3

3
0

1

3
.0

9
2

6
6

<
1

0
0

<
1

0
0

2
3

7
0

-5
7

.4
2

2
7

8

3
.1

4
8

4
5

6

<
1

0
0

<
1

0
0

at
rd

n
af

1
0

0
1

4

1
0

0
1

4

-5
6

.1
8

1
3

4

3
.1

2
3

6
2

-5
6

.1
8

1
3

4

3
.1

2
3

6
2

-6
4

.5
6

9
6

0

3
.2

9
1

3
9

-6
4

.5
6

9
6

0

3
.2

9
1

3
9

<
1

0
0

<
1

0
0

4
0

0
6

-6
0

.0
1

5
9

7

3
.2

0
0

3
2

<
1

0
0

<
1

0
0

at
rd

n
ai

5
2

8
7

5
2

8
7

-5
2

.7
5

2
0

2

3
.0

5
5

0
5

-5
2

.9
0

3
3

4

3
.0

5
8

0
6

-6
3

.1
9

2
7

3

3
.2

6
3

8
5

-6
3

.0
4

1
4

2

3
.2

6
0

8
2

<
1

0
0

<
1

0
0

2
1

1
9

-6
0

.3
1

7
7

5

3
.2

0
6

3
5

5

<
1

0
0

<
1

0
0

ce
lk

0
7

e1
2

5
8

9
4

9

5
8

9
4

9

-5
2

.2
6

0
4

2

3
.0

4
5

2
0

-5
2

.2
4

6
8

5

3
.0

4
4

9
3

-4
8

.9
2

1
9

5

2
.9

7
8

4
3

-4
8

.9
0

8
3

7

2
.9

7
8

1
6

<
1

0
0

<
1

0
0

2
3

5
8

9

-6
0

.0
6

3
7

7

3
.2

0
1

2
7

6

<
1

0
0

<
1

0
0

h
sg

6
p

d
g

en

5
2

1
7

3

5
2

1
7

3

-6
3

.4
4

8
5

2

3
.2

6
8

9
7

-6
3

.4
6

3
8

5

3
.2

6
9

2
7

-6
1

.6
0

8
4

9

3
.2

3
2

1
7

-6
1

.6
0

8
4

9

3
.2

3
2

1
7

<
1

0
0

<
1

0
0

2
0

8
7

9

-6
0

.0
7

5
1

4

3
.2

0
1

5
0

3

<
1

0
0

<
1

0
0

m
m

zp
3

g

1
0

8
3

3

1
0

8
3

3

-5
9

.6
2

3
3

7

3
.1

9
2

4
6

-5
9

.6
9

7
2

2

3
.1

9
3

9
4

-6
3

.0
9

4
2

4

3
.2

6
1

8
8

-6
3

.0
9

4
2

4

3
.2

6
1

8
8

<
1

0
0

<
1

0
0

4
3

7
7

-6
0

.6
1

7
2

7

3
.2

3
2

3
6

<
1

0
0

<
1

0
0

x
lx

fg
5

1
2

1
9

3
3

8

1
9

3
3

8

-5
6

.1
6

9
2

0

3
.1

2
3

3
8

-5
6

.2
1

0
5

6

3
.1

2
4

2
1

-5
6

.9
9

6
5

8

3
.1

3
9

9
3

-5
6

.9
5

5
2

1

3
.1

3
9

1
0

<
1

0
0

<
1

0
0

7
7

2
0

-5
9

.6
8

5
5

8

3
.1

9
3

7
1

2

<
1

0
0

<
1

0
0

A
v

er
ag

e

3
.1

0
5

1
2

3
.1

0
5

4
6

3
.1

6
2

2
4

2
.7

6
9

3
3

Using modified Huffman algorithm Scheme-I and Scheme-II, the result are shown in below Table-12 &13

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

 A Compression & Encryption Algorithm on DNA 55

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 12: Comparison Compression Ratio & Rate are shown in the Table for first data set

S
eq

u
en

ce

B
as

e
p

ai
r

F
il

e
S

iz
e

b
y

te

Using LUT algo. Using HUFF algo. Using LUTHUFF algo.

Im
p

ro
v

em
en

t
o

v
er

 L
U

T
(%

)

Im
p

ro
v

em
en

t
o

v
er

 H
U

F
F

(%
)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t

S
p

ee
d

(i
n

se

co
n

d
)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

C
o

m
p

ar
e

w
it

h
 g

zi
p

-9

Im
p

ro
v

em
en

t

S
p

ee
d

(i
n

se
co

n
d

)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t

S
p

ee
d

(i
n

se

co
n

d
)

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

M
T

P
A

C
G

A

1
0

0
3

1
4

1
0

0
3

1
4

3
6

5
1

4

-4
5

.5
9

8
8

1

2
.9

1
1

9
7

4
.6

2
6

0
5

0
.3

3
5

4
8

<
1

0
0

<
1

0
0

2
4

3
7

3

0
.0

2
8

1
3

1

1
.9

4
3

7
3

6

4
.6

2
6

0
5

0
.5

7
0

1
0

9

0
.1

0
9

0
.1

0
9

2
3

9
6

0

0
.0

4
4

5
9

9

1
.9

1
0

8
0

0

4
.6

2
6

0
5

0
.5

7
1

8
8

8

0
.1

0
9

0
.2

1
9

-0
.5

5
2

1
9

5

-0
.4

1
5

4
0

7

M
P

O
M

T
C

G

1
8

6
6

0
8

1
8

6
6

0
8

7
2

8
0

8

-5
6

.0
6

6
1

9

3
.1

2
1

3
2

.0
5

.0
3

4
6

6
5

3

-2
.1

4
4

E
-0

5

2
.0

0
0

0
4

2

0
.2

7
4

0
.3

8
4

4
6

7
8

0

-0
.0

0
2

7
4

3

2
.0

0
5

4
8

7

.0
1

6
4

0
.3

8
4

C
H

N
T

X
X

1
5

5
8

4
4

1
5

5
8

4
4

5
9

8
9

0

-5
3

.7
1

7
8

1

3
.0

7
4

3
5

<
1

0
0

<
1

0
0

3
8

9
6

2

-2
.5

6
7

E
-0

5

2
.0

0
0

0
5

1

0
.2

1
9

0
.3

2
9

3
9

0
1

1

-0
.0

0
1

2
8

3

2
.0

0
2

5
6

6

0
.1

0
9

0
.3

2
9

C
H

M
P

X
X

1
2

1
0

2
4

1
2

1
0

2
4

4
3

9
5

8

-4
5

.2
8

6
8

8

2
.9

0
5

7
3

.0
5

.0
2

2
9

2
0

8

0
.0

3
4

6
37

76

1
.9

3
0

7
2

4

0
.1

6
4

0
.2

7
4

2
8

4
3

2

0
.0

6
0

2
8

5

1
.8

7
9

4
2

8

0
.1

0
9

0
.2

1
9

H
U

M
G

H
C

SA

6
6

4
9

5

6
6

4
9

5

2
6

6
5

5

-6
0

.3
4

2
8

8

3
.2

0
6

8
5

<
1

0
0

<
1

0
0

1
6

6
2

5

-7
.5

1
9

E
-0

5

2
.0

0
0

1
5

0

0
.0

5
4

0
.1

6
4

1
6

6
6

1

-0
.0

0
2

2
4

0

2
.0

0
4

4
8

1

0
.0

5
4

0
.1

0
9

H
U

M
H

B
B

7
3

3
0

8

7
3

3
0

8

2
8

1
8

0

-5
3

.7
6

2
2

1

3
.0

7
5

2
4

<
1

0
0

<
1

0
0

1
8

3
2

8

-5
.4

5
6

E
-0

5

2
.0

0
0

1
0

9

0
.1

0
9

0
.1

6
4

1
8

2
2

6

0
.0

0
5

5
1

0

1
.9

8
8

9
7

8

0
.0

5
4

0
.1

0
9

H
U

M
H

D
A

B
C

D

5
8

8
6

4

5
8

8
6

4

2
3

6
1

0

-6
0

.4
3

7
6

1

3
.2

0
8

7
5

<
1

0
0

<
1

0
0

1
4

7
1

7

-6
.7

9
5

E
-0

5

2
.0

0
0

1
3

5

0
.0

5
4

0
.1

0
9

1
4

9
2

6

-0
.0

1
4

2
7

0

2
.0

2
8

5
4

0

0
.0

5
4

0
.1

0
9

H
U

M
D

Y
S

T
R

O
P

3
8

7
7

0

3
8

7
7

0

1
4

7
9

0

-5
2

.5
9

2
2

0

3
.0

5
1

8
4

<
1

0
0

<
1

0
0

9
6

9
4

-0
.0

0
01

54
8

2
.0

0
0

3
0

9

0
.0

5
4

0
.1

0
9

9
6

1
8

0
.0

0
7

6
8

6

1
.9

8
4

6
2

7

0
.1

0
9

0
.1

0
9

H
U

M
H

P
R

T
B

5
6

7
3

7

5
6

7
3

7

2
1

9
7

7

-5
4

.9
3

9
4

6

3
.0

9
8

7
8

<
1

0
0

<
1

0
0

1
4

1
8

6

-0
.0

0
0

1
2

3
4

2
.0

0
0

2
4

6

0
.0

5
4

0
.1

0
9

1
4

2
4

3

-0
.0

0
4

1
4

1

2
.0

0
8

2
8

3

0
.0

5
4

0
.0

5
4

V
A

C
C

G

1
9

1
7

3
7

1
9

1
7

3
7

7
1

0
7

7

-4
8

.2
8

0
1

9

2
.9

6
5

6
0

<
1

0
0

<
1

0
0

4
7

9
3

6

-3
.6

5
1

E
-0

5

2
.0

0
0

0
7

3

0
.2

1
9

0
.3

8
4

4
6

8
7

5

0
.0

2
2

0
9

7

1
.9

5
5

8
0

4

0
.1

6
4

.0
4

3
9

H
E

H
C

M
V

C
G

2
2

9
3

5
4

2
2

9
3

5
4

9
1

5
8

0

-5
9

.7
1

8
1

6

3
.1

9
4

3
6

<
1

0
0

<
1

0
0

5
7

3
4

0

-2
.6

1
6

E
-0

5

2
.0

0
0

0
5

2

0
.3

2
9

0
.4

9
4

5
7

8
0

1

-0
.0

0
8

0
6

6

2
.0

1
6

1
3

2

0
.2

1
9

0
.4

9
4

A
v

er
ag

e

3
.0

7
4

0
7

1
.9

8
8

6
9

3

1
.9

8
0

4
6

6

56 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 13: Table shown the comparative result for second data set

S
eq

u
en

ce

B
as

e
p

ai
r

F
il

e
S

iz
e
 b

y
te

Using LUT algo. Using HUFF algo. Using LUTHUFF algo.

Im
p

ro
v

em
en

t
o

v
er

 L
U

T

Im
p

ro
v

em
en

t
o

v
er

 H
U

F
F

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t S
p

ee
d

(i

n
 s

ec
o

n
d

)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

C
o

m
p

ar
e

w
it

h
 g

zi
p

-9

Im
p

ro
v

em
en

t S
p

ee
d

(i
n

 s
ec

o
n

d
)

R
ed

u
ce

 f
il

e
si

ze
 b

y
te

C
o

m
p

re
ss

io
n

 r
at

io

C
o

m
p

re
ss

io
n

 r
at

e(
 b

it
s

/b
as

e)

co
m

p
ar

e
w

it
h

 g
zi

p
-9

Im
p

ro
v

em
en

t S
p

ee
d

(i

n
 s

ec
o

n
d

)

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

E
n

co
d

e

D
ec

o
d

e

at
at

sg
s

9
6

4
7

9
6

4
7

3
6

2
5

-5
0

.3
0

5
7

9

3
.0

0
6

1
1

4
.6

2
6

0
5

0
.3

2
8

7
7

<
1

0
0

<
1

0
0

2
4

1
3

-0
.0

0
0

5
1

8

2
.0

0
1

0
3

7

4
.6

2
6

0
5

0
.5

6
7

4
3

5

0
.0

5
4

<
1

0
0

2
3

7
1

0
.0

1
6

8
9

6

1
.9

6
6

2
0

7

4
.6

2
6

0
5

0
.5

6
7

6
8

5

0
.0

5
4

0
.0

5
4

-0
.5

5
2

6
3

2

-5
.8

0
0

2
6

9

at
ef

1
a2

3

6
0

2
2

6
0

2
2

2
2

7
8

-5
1

.3
1

1
8

6

3
.0

2
6

2
3

<
1

0
0

<
1

0
0

1
5

0
7

-0
.0

0
0

9
9

6

2
.0

0
1

9
9

3

<
1

0
0

<
1

0
0

1
4

8
3

0
.0

1
4

9
4

5

1
.9

7
0

1
1

<
1

0
0

<
1

0
0

at
rd

n
af

1
0

0
1

4

1
0

0
1

4

3
9

1
0

-5
6

.1
8

1
3

4

3
.1

2
3

6
2

<
1

0
0

<
1

0
0

2
5

0
5

-0
.0

0
0

5
9

9

2
.0

0
1

1
9

8

<
1

0
0

0
.0

5
4

2
5

4
5

-0
.0

1
6

5
7

7

2
.0

3
3

1
5

4

<
1

0
0

<
1

0
0

at
rd

n
ai

5
2

8
7

5
2

8
7

2
0

1
9

-5
2

.7
5

2
0

2

3
.0

5
5

0
5

<
1

0
0

<
1

0
0

1
3

2
3

-0
.0

0
0

9
4

6

2
.0

0
1

8
9

1

<
1

0
0

0
.0

5
4

1
3

2
9

-0
.0

0
5

4
8

5

2
.0

1
0

9
7

<
1

0
0

<
1

0
0

ce
lk

0
7

e1
2

5
8

9
4

9

5
8

9
4

9

2
2

4
3

9

-5
2

.2
6

0
4

2

3
.0

4
5

2
0

<
1

0
0

<
1

0
0

1
4

7
3

9

-0
.0

0
0

1
1

9

2
.0

0
0

2
3

7

0
.0

5
4

0
.1

0
9

1
4

6
2

8

0
.0

0
7

4
1

3

1
.9

8
5

1
7

4

0
.0

5
4

0
.1

0
9

h
sg

6
p

d
g

en

5
2

1
7

3

5
2

1
7

3

2
1

3
1

9

-6
3

.4
4

8
5

2

3
.2

6
8

9
7

<
1

0
0

<
1

0
0

1
3

0
4

5

-0
.0

0
0

1
3

4

2
.0

0
0

2
6

8

0
.1

0
9

0
.1

0
9

1
3

1
4

4

-0
.0

0
7

7
2

4

2
.0

1
5

4
4

9

0
.0

5
4

0
.1

0
9

m
m

zp
3

g

1
0

8
3

3

1
0

8
3

3

4
3

2
3

-5
9

.6
2

3
3

7

3
.1

9
2

4
6

<
1

0
0

<
1

0
0

2
7

1
0

-0
.0

0
0

6
4

6

2
.0

0
1

2
9

2

<
1

0
0

0
.0

5
4

2
7

1
3

-0
.0

0
1

7
5

4

2
.0

0
3

5
0

8

0
.0

5
4

<
1

0
0

x
lx

fg
5

1
2

1
9

3
3

8

1
9

3
3

8

7
5

5
0

-5
6

.1
6

9
2

0

3
.1

2
3

3
8

<
1

0
0

<
1

0
0

4
8

3
6

-0
.0

0
0

3
1

2
.0

0
0

6
2

1

0
.0

5
4

0
.0

5
4

4
8

7
0

-0
.0

0
7

3
4

3

2
.0

1
4

6
8

6

<
1

0
0

0
.0

5
4

A
v

er
ag

e

3
.1

0
5

1
2

2
.0

0
1

0
6

7

1
.9

9
9

9
0

7

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

 A Compression & Encryption Algorithm on DNA 57

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Table 15: Percentage of encryption

Input file
size (byte)

Compress
(%)

Swapping
at Level

Lavenstein
Dist.

% effect on
actual text

% of
encryption

71077 58

1 64471 94.58 100

2 64278 93.893 60.3

3 64178 93.685 51.85

4 63985 93.049 44.32

43958 60

1 45365 94.22 100

2 45123 93.717 58.17

3 44930 93.52 52.93

4 44838 92.78 47.67

36514 61

1 28499 93.897 100

2 28432 93.7 62.44

3 28350 93.329 51.33

4 28087 92.251 44.48

14790 62

1 16266 93.85 100

2 16242 93.62 61.14

3 16238 92.8 55.67

4 16204 91.9 48.95

7550 67

1 8582 93.65 100

2 8508 93.525 58.33

3 8482 92.588 50.02

4 8462 91.48 44.16

From the above table-4 we can conclude with the

ratio of encryption of about 45% to 60%, we could

achieve the ratio of damage to the file of nearly 94% in

some cases.

We also observe that if we change at the top level (1)

then Lavenstein Distance is at highest point & % of

damage is highest. When we change at lower level

Lavenstein Distance is decrease & % of damage also

decrease. According to above results we draw two

graphs for five different real text cases; one is

effectiveness on the output text by different input file

size at different level (Graph-I) and other is

effectiveness on the output text file by increasing

encryption. From fig. a, we observe if the file size is

decreased then %of modification from the actual text is

decreased and from Graph-II; if %of encryption is

increased then %of modification from the actual text is

also increased.

Effectiveness on the output text by different input

size at different level.

Fig. 12: (% modification for the actual text vs. file size)

58 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

Fig. 13: (% modification from the original file vs. % of encryption)

Using Scheme-II

From the table 16 we observe that if we apply

swapping at lower level then percentage of encryption

is also reduced but original text will affect minimum

85%. This also provides higher security if we consider

two binary values as a key and encrypt them.

According to above results we draw graph for three

different real text cases. From Graph-III; if %of

encryption is increased then %of modificat ion from the

actual text is also increased.

Table 16: Effect using level charge

Input file

size (byte)
Compress (%)

Specification of two nodes
Lavenstein

Dist.

% of

encryption

% effect on

actual text
1

st
node 2

nd
 node

Level Binary value Level Binary value

71077 58

3 110 4 0100 64182 51 92.13

6 111111 4 0010 60985 47.19 89.049

4 0101 5 11111 63116 49.3 90.6

5 00001 6 111111 61089 46.5 87.69

43958 60

5 10100 4 0001 41545 49.8 90.15

2 11 3 000 44838 53.13 93.125

3 001 4 1110 44797 51.06 91.98

2 00 2 10 45790 54.68 94.02

36514 61

4 1000 3 101 27997 51 93.65

5 00101 3 101 28087 47.98 91.051

2 01 2 10 29502 53.39 94.65

4 0000 4 1111 28511 49.35 91.47

Fig. 14: (% modification from the original file vs. % of encryption)

Table 17:

Sequence Base pair/File size GZIP BZIP2

atatsgs 9647 2.1702 2.15

atef1a23 6022 2.0379 2.15

atrdnaf 10014 2.2784 2.15

atrdnai 5287 1.8846 1.96

celk07e12 58949

hsg6pdgen 52173 2.2444 2.07

mmzp3g 10833 2.3225 2.13

xlxfg512 19338 1.8310 1.80

Average

Table 18:

Sequence
Base pair
/File size

GZIP BZIP2

MTPACGA 100314 2.2919 2.12

MPOMTCG 186609 2.3288 2.17

CHNTXX 155844 2.3345 2.18

CHMPXX 121024 2.2818 2.12

HUMGHCSA 66495 2.0648 1.31

HUMHBB 73308 2.2450

HUMHDABCD 58864 2.2389 2.07

HUMDYSTROP 38770 2.3618 2.18

HUMHPRTB 56737 2.2662 2.09

VACCG 191737 2.2518 2.09

HEHCMVCG 229354 2.3275 2.17

The results from Table 12 & 13 show our algorithms

to be the best solution for client side decryption -

decompression with the shortest and linearly increasing

decompression time. However, our algorithm doesn‘t

compress sequences as much as others for many of the

cases in the compression ratio table 17 & 18 but it

provide high information security. Th is is because our

algorithm uses less than 2 bits to represent one

nucleotide

http://www.cs.tut.fi/~tabus/genml/sequences/atatsgs
http://www.cs.tut.fi/~tabus/genml/sequences/atef1a23
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnaf
http://www.cs.tut.fi/~tabus/genml/sequences/atrdnai
http://www.cs.tut.fi/~tabus/genml/sequences/celk07e12
http://www.cs.tut.fi/~tabus/genml/sequences/hsg6pdgen
http://www.cs.tut.fi/~tabus/genml/sequences/mmzp3g
http://www.cs.tut.fi/~tabus/genml/sequences/xlxfg512

 A Compression & Encryption Algorithm on DNA 59

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

In order to compare the overall performance, we

conducted further studies involving sending actual

sequence files of varying sizes (without compression)

to measure the calculated time (Tc) needed for the

transmission from the source to the destination. Then

we compressed those files using both compression &

encryption algorithms. The total time T, defined as the

sum of the encryption compressed file transmission

time (Tec) plus the client side decompression time (Tdd),

is measured by both these methods.

VII. Result Discussion

We can feel the time of program running since they

are in second level. Some ones even cost minutes or

hours of time to run. But our algorithm runs almost 10
3

times faster. Our algorithm performances is better than

it in both compression ratio and elapsed time. Our

algorithm is very useful in database storing. We can

keep sequences as records in database instead of

maintaining them as files. By just using the pre-coding

routine, users can obtain original sequences in a time

that can‘t be felt. Additionally, our algorithm can be

easily implemented while some of them will take you

more time to program.

From these experiments, we conclude that pre

coding matching patter are same in all type of sources

and pre coding Look up Table plays a key role in

finding similarities or regularit ies in DNA sequences.

Straight line graph declared that compression rate are

same in all type of sources. Output file contain ASCII

character with unmatched a,u,g and c so, it can provide

informat ion security which is very important for data

protection over transmission point of view. Also, at the

time of encoding require authenticate input base pair

(from a,t,g and c) and ASCII character starting position

for derivate LUT table, produce original sequence

which is encode by this techniques. These techniques

provide the high security to protect nucleotide

sequence in a particular source. Not necessary to derive

all combinational result because this method created

24X2 =48 different types of LUT but total sub-string

are same in all cases but their position is different only.

Here we can get better security than static LUT. In

static LUT encode/decode does not depends on LUT

sub-string input value from a,t,g and c, but dynamic

LUT must depends on LUT sub-string input value from

a,t,g and c. In that situation authentication is very

important.

Encoding time ―Sub-sequence size-1‖ base segment

are remaining, (if at the end of file segment are not

match exactly with pre -coded table)We cannot find any

arrangement in table -I or table-II. In these

circumstances, we just write the orig inal segment into

destination file. To increase the probability of

compaction we match the sequence in other orientation

such as reverse , complement and reverse complement

the input file. But experimental result showing no

meaningful changes are found using other orientation

taking as input.

The ratio of decompression time to orig inal

transmission time of the uncompressed sequence file

(Tdd / Tc), reduces with increasing file size. This means

our client side decryption decompression technique

with our algorithm is a better choice for larger

sequence files. Our client side decryption

decompression technique can be implemented by a

genome search agent and decryption decompression

time can be estimated by two empirical equations

according to our experiments.

The graph of compression time versus sequence file

length is somewhat non-linear, because of the

complexity that arises when the sequence length is not

divisible by 4, which means that not all the bit pairs in

the last byte of the compressed file may represent valid

nucleotides. One solution to this problem is to add an

extra byte at the end of compressed file which is the

count (1-4) of the number of valid nucleotides in the

previous byte.

Our algorithm combines moderate encryption

compression with reduced decryption decompression

time to achieve the best performance for client side

sequence delivery compared with existing techniques.

Its linearity in decompression time and close linearity

in compression time make it an effect ive compression

tool for commercial usage. Given, for a part icular

connection speed, the efficiency achieved using our

algorithm; this compression technique is recommended

for transmission of queried sequence files.

VIII. Conclusion

In this article, we discussed a new DNA

compression algorithm whose key idea is dynamic

LUT. This compression algorithm gives a good model

for compressing DNA sequences that reveals the true

characteristics of DNA sequences. The compression

results of dynamic LUT for DNA sequences also

indicate that our method is more effective than many

others. Dynamic LUT is able to detect more regularity

in DNA sequences, such as mutation and crossover,

and achieve the best compression results by using this

observation. Dynamic LUT fails to achieve higher

compression ratio than others standard method, but

dynamic LUT has provide very high information

security and high authentication user.

In this work we have performed computational

experiments to selectively encrypt the compressed text

of different sizes generated through static Huffman

encoding technique and compare the effectiveness in

terms of d issimilarity from the original file if one has

to decrypt without the key and the resistance of the

cipher text from the attacks based on statistical

property of the plain text . We have used two different

schemes; in scheme-I swapping of nodes is done at

60 A Compression & Encryption Algorithm on DNA

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

specified level based on key and in scheme-II

swapping is done between two specified nodes at

different levels. We have found from our experiments,

the effectiveness of the encryption system increases as

the level at which swapping is done, increases. We

have achieved in the both the scheme with 45% to 60%

encryption of orig inal text , near about 90% to 93% of

damage in original file.

We have also measures the redundancy on the basis

of weighted frequency. We have observed weighted

frequency of an input text and encrypted text are nearly

8:1 ratio. That mean in case of input text and output

text, number of characters having same frequency

maintain the ratio approx 8:1. So the probability of

frequency analysis attack is low.

In our experiments of selective encryption of text, on

the basis of statistical property of words therein, we

have found that to get 90% effectness on actual text

then %of encryption should be more than 60, since

number of distinguishable words are huge and their

frequency is much less than number of frequency of

characters. This approach has a good scope as a

selective encryption scheme because of the fact that in

a text of any language the articles, verbs, and

prepositions have a higher frequency compared to the

other words relevant to the core content of the text.

The problem s mall key space has to be sorted out to

effectively apply this encryption system in real world.

IX. Future Work

We are trying to do more, such as combining our

dynamic LUT pre-coding routine with other

compression algorithms, to revise our algorithm in

order to improve its performance. We are t rying to

build a fin ite LUT which implements the mapping

relationship of our coding process.

Here in this work, we have taken into consideration

the statistical property of a character or a word while

doing compression. Instead, one can consider the

statistical property of any number characters or b its, the

number of bits may be provided by the user depending

on the application or may be chosen automatically on

the basis of entropy. In that case this encryption

technique may be extended to any type of media. The

effectiveness of selective encryption may be studied for

the other statistical compression algorithms available.

Acknowledgements

Above all, author is gratefu l to all our co lleagues for

their valuable suggestion, moral support, interest and

constructive criticism of this study.

References

[1] M. Li and P. Vitányi, An Introduction to

Kolmogorov Complexity and Its Applications,

2nd ed. New York: Springer-Verlag, 1997.

[2] R. Curnow and T. Kirkwood, ―Statistical analysis

of deoxyribonucleic acid sequence data-a review,‖

J. Royal Statistical Soc., vol. 152, pp. 199-220,

1989.

[3] S. Grumbach and F. Tahi, ―A new challenge for

compression algorithms: Genetic sequences,‖ J.

Inform. Process. Manage., vol. 30, no. 6, pp. 875-

866, 1994.

[4] É. Rivals, O. Delgrange, J.P. Delahaye,

M.Dauchet, M.O. Delorme et al., ―Detection of

significant patterns by compression algorithms:

the case of Approximate Tandem Repeats

inDNAsequences,‖ CABIOS, vol. 13, no. 2, pp.

131-136,1997.

[5] K. Lanctot, M. Li, and E.H. Yang, ―Estimating

DNA sequence entropy,‖in Proc. SODA 2000, to

be published.

[6] D. Loewenstern and P. Yianilos, ―Significantly

lower entropy estimates for natural DNA

sequences,‖ J. Comput. Biol., to be published

(Preliminary version appeared in a DIMACS

workshop, 1996.)

[7] Two algorithms for constructing efficient

huffman-code based reversible variable length

Codes Chia-Wei Lin; Ja-Ling Wu; Yuh-Jue

Chuang

[8] Bentley J. L., Sleator D.D., Tarjan R.E., and Wei

V., "A locally adaptive data compression scheme",

Communicat ions of the ACM, 29(4), 320-330,

1986.

[9] J. G. Cleary and I. H. Witten. Data compression

using adaptive coding and partial string matching.

IEEE Trans. Comm., COM-32(4):396–402, April

1984.

[10] C. E. Shannon, ―A mathemat ical theory of

communicat ion,‖ The Bell System Technical

Journal, vol. 27, 1948.

[11] D. A. Huffman, ―A method for the construction of

minimum-redundancy codes,―Proc. IRE, vol. 40,

pp. 1098-1101,1952.

[12] On the competitive optimality of Huffman codes

by Thomas. M. Cover.

[13] Guaranteed Synchronization of Huffman Codes

with Known Position of Decoder Marek Tomasz

Biskup, Wojciech Plandowski,

[14] C. E. Shannon, ―Communication theory of

secrecy systems,‖ Bell Systems Technical Journal,

v. 28, October 1949, pp. 656-715.

 A Compression & Encryption Algorithm on DNA 61

Sequences Using Dynamic Look up Table and Modified Huffman Techniques

Copyright © 2013 MECS I.J. Information Technology and Computer Science, 2013, 10, 39-61

[15] Chen, L., Lu , S. and Ram J. 2004. ―Compressed

Pattern Matching in DNA Sequences‖.

Proceedings of the 2004 IEEE Computational

Systems Bioinformatics Conference (CSB 2004)

[16] Toshiko Matsumoto, Kunihiko Sadakane and

Hiroshi Imai. ― Bio logical Sequence Compression

Algorithms‖, Genome Informatics 11 : 43-52

(2000)

[17] S. Grumbach and F. Tahi, ―A new challenge for

compression algorithms: Genetic sequences,‖ J.

Inform. Process. Manage., vol. 30, no. 6, pp. 875-

866, 1994.

[18] Xin Chen, San Kwong and Mine Li, ―A

Compression Algorithm for DNA Sequences

Using Approximate Matching for Better

Compression Ratio to Reveal the True

Characteristics of DNA‖, IEEE Engineering in

Medicine and Bio logy,pp 61-66,July/August 2001.

[19] Adam Drozdek ― Elements of Data Compression‖,

Vikas Publishing House (2002)

[20] T. Matsumoto,K.Sadakame and H.

Imani, ‖Bio logical sequence compression

algorithm‖, Genome Informatics 11:43-52 (2000).

[21] ASCII code. [Online]. Available:

http://www.asciitable.com

[22] National Center for Biotechnology Information,

http://www.ncbi.nlm.nih.gov

Author’s Profiles

Syed Mahamud Hossein is

perusing Ph.D for Computer

Science in Vidyasagar University.

He had received his post graduate

degree in Computer Applications

from Swami Ramanand Teerth

Marathawada University, Nanded

and Master of Engineering in

Information Technology from West Bengal University

of Technology, Kolkata. He has worked as the Senior

Lecturer in Haldia Institute of Technology, Haldia,

Lecturer on contract basis in Panskura Banamali

College, Panskura and Lecturer in Iswar Chandra

Vidyasagar Polytechnic, Govt. of West Bengal,

Jgargram. Presently he is working as a District Officer,

Regional Office, Kolaghat, Directorate of Vocational

Educational & Training, West Bengal since 2010. His

research interests includes Bioinformatics,

Compression Techniques & Cryptography, Design and

Analysis of Algorithms & Development of Software

Tools. He is a member of professional societies like

Computer Society of India & Indian Science Congress

Association.

How to cite this paper: Syed Mahamud Hossein, S.Roy,"A

Compression & Encryption Algorithm on DNA Sequences

Using Dynamic Look up Table and Modified Huffman

Techniques", International Journal of Information

Technology and Computer Science(IJITCS), vol.5, no.10,
pp.39-61, 2013. DOI: 10.5815/ijitcs.2013.10.05

http://www.asciitable.com/
http://www.ncbi.nlm.nih.gov/

