
I.J. Information Technology and Computer Science, 2012, 9, 1-8
Published Online August 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2012.09.01

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

Integrating Non-Functional Properties in

Model Driven Development:

A Stepwise Refinement View

Maryam Nooraei Abade

Department of computer engineering, Science and Research Branch, Islamic Azad University Tehran, Iran

S.Nooraei@gmail.com

Zeinab Rajabi

University of applied science and technology Tehran, Iran

rajabi.Ze@gmail.com

Abstract— Most of the refinement approach is about

functional property of systems. Non-functional

properties are as important as functional one. Without

an accurate approach for specifying and refining their

behaviors, software models will be regarded as

imperfect and imprecise, and as a result, software

systems cannot be generated correctly. Therefore, how

to model such behaviors and how to stepwise refine

these behaviors automatically, have become two critical

problems in Model Driven Development. In this paper

we present an approach for Non-functional refinement

in model driven development using high order

transformation languages and traceability property of

them. We extend the idea of model refinement to non-

functional properties of software and propose a

stepwise refinement framework with conformance

checking between abstract and concrete descriptions of

system model using model transformation. The

approach is extendable to all quantitative and

quantitative non-functional properties.

Index Terms—Model Driven Development, Non-

Functional Property, Refinement, Platform Independent

Model, P Specific Model

I. Introduction

There are several aspects to reach the desirable level

of maturity in software development. Although the

impact of non-functional properties (NFP) over

software systems has been widely mentioned, there is

still a lack of approaches that integrate this type

of requirements into the development process to

produce cost-effective software. In this paper we extend

the notion of model refinement to non-functional

properties of software and propose a model driven

based refinement framework that has the advantage of a

consistent interpretation of the extra-functional

properties found on different abstraction level

regardless of its usage context and that separates the

semantics and the syntax of each property between

abstract and concrete descriptions of components

during MDD [1]. It suggests distinctive models at the

different levels of abstraction and different phases of

development during system development. The process

of development will consist of the transformations and

refinement of models. Transformations serve as a mean

of progressive refinement of models from abstract,

platform independent, requirement centric towards

concrete, platform specific, implementation centric.

During the design of MDE, it is useful to model non-

functional properties of a system, like performance,

already in early stages of the development process.

Developers often see quality of service as a property of

software that is checked and corrected once the product

is completed. This ―fix-it-later‖ practice is, however, a

reason for quality problems in software development.

Just like testing is an integral part of the

implementation process that should be integrated from

the beginning, early NFR modeling enables the

developer of a system to make require design decision

based on analyses and simulations [2].

This paper is structured as follows: In Section 2, we

give a brief introduction into the background of MDE.

In Section 3, related work is discussed. The basis of

property-driven software engineering is discussed in

Section 4. The framework for non-functional model-

driven software certification and refinement are

presented in section 5 before the paper concludes with

Section 6.

II. Background

MDA is a development approach based on UML

models, in which business knowledge (Platform

Independent Models - PIMs) is maintained separately

from technical artefacts, such as design models

(Platform Specific Models PSMs) and source code. The

successful application of the MDA approach depends

on technologies and tools supporting flexible modeling

of diverse semantic domains (PIMs and PSMs), and

relationships and transformations between them

mailto:s.nooraei@gmail.com
mailto:rajabi.ze@gmail.com

2 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

(deployment of PIMs to PSMs). We use the UML

profile mechanism to define classes of analysis models,

design models and the mapping between the two.

Profiles are denoted using UML and may be injected

into any conforming tool, reducing tool tie-in [3].

Refinement is a technique used to transform the

abstract model of a software system into a more

concrete one. Without an accurate approach for

specifying and refining their behaviors, software

models will be regarded as incomplete and imprecise,

and as a result, software systems cannot be generated

automatically [4]. Therefore, how to modeling such

behaviors and how to stepwise refine these behavior

models automatically, have become two critical

problems in MDD.

We find that there is a further exploration worth

entering into on the matters of:

 Refining a diversity of non-functional

requirements (NFR), using term rewriting

augmented by pre/post conditions;

 Refining the functional requirements in

concert with the non-functional requirements;

 An applicable, formal and rigorous refinement

method which works efficiently, effectively

and correctly;

 Application and technology domain restriction.

In particular for safety critical systems it is necessary

to make sure that the non-functional properties imposed

by a system architecture meet the related requirements

as early as possible. Therefore, appropriate architectural

transformations have to be applied in the design phase

in case the non-functional properties do not fulfill their

requirements. As the selection and application of

appropriate architectural transformations is a time

consuming task and demands for personal effort, there

is the idea to automate the architecture evolution

process. In this paper, we outline toward to introduce

the architecture evolution process and propose the

framework that proves the behavioral equivalence of

the architecture before and after implementation using

Platform Independent and Platform Specific

transformation respectively named PIT and PST.

Abstract NFR models can, however, also be used to

express requirements in the specification phase of

Model-based software development. As the

development proceeds, additional requirement models

are created to describe the properties of the design, and

eventually the implemented detail. In order to prove

that the NFRs are met in all these stages, a notion of

refinement for NFR is needed. By using this framework

in the development process, the developer can check at

any time if the requirements are still met and which

properties may be violated.

Even if the commissioned component is delivered

without NFR specification, it can be reconstructed by

reverse engineering methods such as static code

analysis and analyses of execution traces [5]. However,

as such a reconstructed NFR description can differ from

a manually specified one; the refinement calculus still

is needed to show the compliance.

2.1 State-Based Model Transformation

The notion of model transformation is an essential

element for MDA aiming at automated model

transformation. Transformations may be bi-directional.

Four different types of transformation are introduced in

MDA: PIM to PIM, PIM to PSM, PSM to PSM and

PSM to PIM to [6]. He refines the definition of

transformation by classifying transformations into two

categories: horizontal and vertical. Figure 1

summarizes the relationships of the different types of

transformations. It is hard to define a fixed number of

PIMs and PSMs for software systems. For example,

models may be written with various modeling

languages, e.g. UML and ADLs (Architecture

Description Language), resulting in several models at

the same level of abstraction and for several platforms

(e.g. Java and CORBA), which, leads to several PIMs

with low different level of abstraction.

Fig 1: Different levels of abstraction in model driven engineering

 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View 3

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

Domain-Specific Modeling (DSM) has become an

important part of Model-Driven Engineering (MDE) to

address the complexity of software systems. A Domain-

Specific Modeling can be used to declaratively define a

software system with specific domain parameter and

specific Non-functional requirements according to the

business problem. Various software artifacts (e.g., code,

simulation scripts and XML deployment description

files) can be generated automatically from the models.

By increasing the level of abstraction, DSM leads to

hold key rational assets from technology obsolescence,

resulting in low-level details to specify a given system,

which can lead toward improvements for supporting

end-user [7].

III. Related Work

Traditionally, there are two methods to model and

refine behaviors, including UML-based methods and

formal methods. Recently integrated methods have

received increasing attention by taking full advantage

of UML and formal methods. Some representatives are

reviewed as follows [8]:

3.1 UML-based methods

Based on the UML specifications, codes can be

generated automatically through stepwise model

refinement, using Model-Driven Architecture (MDA)

technology, and this process is measurable [9]. Many

researchers have worked on the refinement theory and

methodology for UML-based modeling. In [10] a tool

to support the refinement of non-functional constraints

in UML models has been provided [4]. It formally

defines the relationship between the behavior

inheritance consistency of a refined model and the

behavioral preservation of a refactored model according

to the original model.

Several authors have proposed to model NFRs using

UML extensions [1] [11], including the OMG standard

UML profiles MARTE [12] and QoS-Profile [13].

Others designed a specific meta-model to present NFRs

[14] [15].

3.2 Formal methods

Formal specifications can be used to provide a

precise supplement to natural language, and can be

validated and verified, so leading to the early detection

of software specification errors. From early research

about proving correctness of programs, such as [16]

and [17], a refinement calculus of specifications to

codes has developed. Such as the refinement of Z [18]

B [19], Event-B [20], ASM [21], etc has been proposed.

The refinement calculus, developed independently by

Morgan [22] [23] and Morris [24], provides a uniform

method for deriving programs from specifications.

Actually automatism is not one of the traditional

focuses in the researches of formal modeling and

refinement. Besides, there are too many possible

directions for each refinement step, and thus it is

difficult to achieve efficient automatics for refinement

without context and constraints.

3.3 Hybrid ethods

Given a set of NFRs, [14] proposes a set of patterns

that satisfy QoS requirements through model

transformation.

In [25], the proposed patterns consider architectural

aspects. Other examples are [26] and [27]. In these

approaches each kind of NFR may be seen as a whole

dimension of the software. [28] and [29] propose

analyzing each NFR type separately and also to use

different abstraction levels for NFRs (at CIM, PIM and

PSM levels). As a conclusion, we may say that

although several valuable approaches have been

proposed that deal with NFRs in the MDD process,

none of them propose a stepwise integrated refinement

view, which is the goal of this paper.

IV. Non-Functional Property-Driven Software

Engineering Approach

The approach we propose in this paper originates

from, and contributes to, a broader research framework,

which we refer to as a Non-Functional Property-Driven

Software Engineering Approach. The roadmap in fact

defines an enhanced model-driven software engineering

approach where, among the others, models of non-

functional properties become first-class entities beside

functional properties. The considered non-functional

properties describe both characteristics owned by a

software system or by parts of it and non-functional

requirements the developed software system must

satisfy. Figure 2 graphically illustrates the approach by

showing the process underlying it. In the figure 2,

boxes represent different levels of abstractions, inspired

by four layers MOF architecture, bold arrows labeled

with meaning ‖conform to‖ represent the conformance

relation between the models and the relative meta-

model; and, finally, simple arrows show the control

flow of the process.

The process in Figure 2 is divided into three parts or

integrated field: i) Property Modeling; ii) Improvement-

based Software Engineering; iii) Model-Driven

Software Engineering.

In the sub-process of property modeling the non-

functional properties, include descriptive and

prescriptive. Also a non-functional property can be

quantitative or qualitative. The former needs to specify

the metrics used to quantify it and qualitative properties

are related to the concept like security that cannot be

measured exactly [30].

4 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

Fig 2: quality-driven model driven engineering

Several attempts have been made to define common

non-functional property definition formalism, but the

most promising is the upcoming UML MARTE profile.

The NFP package of the profile contains a generic

meta-model for the definition of NFPs; including

qualitative and quantitative ones (Figure 3). The Non-

Functional Property has three optional attributes that

NFP type, NFP Value Specification and Unit. These

properties can be instantiated and attached to any model

element of the system model in order to express new

aspects of non-functional characteristics.

Fig 3: A customized non-functional meta-model

There are two sides to develop systems with non-

functional properties: Component developers must

implement components in such a way that they have

determinable non-functional properties and application

designers and the runtime system must use these

components so that the non-functional properties

required from the application can be guaranteed.

 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View 5

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

We are not primarily interested in how components

must be implemented. Instead, we assume a model-

driven development approach with determinable and

first entity non-functional properties to be available.

Based on this, we provide a framework, which allows

 Component developers to describe the non-

functional properties of the components they

have developed, and

 Application designers to describe how these

components are used to provide guaranteed non-

functional properties of an application.

4.1 Refinement of NFR using model transformation

Figure 5 illustrates refinement as a process of

transforming an abstract model into a specified design

using a sequence of design decision. This is a mapping

process between a high-level, abstracted representation

and its successive specified descriptions. In the

computational refinement of the class of designs,

inheritance can be employed as a technique to maintain

class characteristics. One of choice to trade off between

different NFR at architecture level is using ATAM.

Architecture Trade-off Analysis Method (ATAM) [31]

is a scenario-based software architecture evaluation

method. The goals of the method are to evaluate an

architecture level design that takes into account

multiple quality properties and to gain insight to

whether the implementation of the architecture will

meet its requirements.

A rule-based formalism provides computational

means to achieve refinement. This is illustrated in

figure 5 which is a rule-based representation of the

refinement.

Transformations should be developed along a cycle

ranging from platform-independent transformations

down to platform-specific transformations. Platforms

here should be understood as the tools that allow the

specification, design and execution of transformations.

Such tools may provide various languages to express

platform-specific transformations such as J, Visual

Basic, or XSLT [32]. This is in line with the separation

of concerns between PIM and PSM in the MDA, and

leads to the concepts of platform independent

transformation (PIT) and platform specific

transformation (PST). Platform independent

transformations are models of the transformation

program, relying on a generic library of simpler

transformations and transformation primitives. They

will be refined to the point where they can be used as

the source to generate platform specific transformations.

Then if UML is the language of PIT, PSTs are models

of tool specific formalisms or API. For example, while

XSLT is a textual language, it is possible to consider a

MOF-compliant meta-model of XSLT; the PST is then

an XSLT model which is serialized out of sight to its

XML representation.

The transformation template in figure 4 demonstrates

that existing transformation language rules convert one

pre-pattern to one post-pattern. However, an extension

is required to support selection between consequent

patterns based on an input NFP policy specification.

This also shows that the transformation can be defined

concisely and largely in a declarative manner, with a

complex formal specification of component and

connector behavior contained separately in the different

ADL repository. Source and target of a transformation

rule may be any two levels of the refinement schema in

figure 4.

The tracing of transformation between different level

results back to a Trace link(S,T) relation. These are

applications of tracing technique in MDE. This has to

be taken into account when transforming a PIMNF into a

PSMNF.

Fig 4: Customizable model to model transformation

V. Non-Functional Requirement Model-Driven

Development

The proposed framework to integrate non-functional

property in model driven development has been shown

in the figure 5. It has four levels of abstraction:

PIMNF: Non-Functional Platform Independent

Model is a representation of the business logics of the

system along with estimates of non-functional

characteristics, such as the amount of resources that the

logic needs to be executed. The model must be

expressed through a notation that allows the specific

type of analysis) e.g., Queuing Networks for

performance analysis, or Bayesian Belief Networks for

reliability analysis (In some cases, it is not possible to

obtain numerical values for platform independent non-

functional analysis. This is due to the relation between

typical non-functional metrics (such as response time)

and platform characteristics (such as network latency)

that are not available in a PIMNF. Therefore, within the

6 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

PIMNF class we intend to represent models that permit

to estimate certain metrics with an acceptable degree of

approximation. Relying on the measured metrics and on

the data available about the model parameters, a PIMNF

evaluation can represent a good support to early

development decisions.

Domain experts can specify a system's usage in

terms of workload, user behavior and parameters (i.e.,

abstract characterizations of the parameter instances

users utilize). Software architects may also construct

usage models from requirements documents.

This pure abstract behavior model is at the top of its

refinement process, which cannot be the refinement

model of any other behavior models; an

implementation model is at the bottom of its refinement

process, which cannot be refined by any other behavior

models.

Fig 5: The approach for non-functional model-driven architecture framework

PIMNF/PSMNF: The value of this layer is twofold:

firstly, it makes easy analysis, communication and

understanding of the system design at a higher level

than detail of platform and code. Secondly, in the

transformation from PSM to code, the PSM can act as a

PIM (independent of programming language

abstractions), allowing multiple mappings from model

to code. This level makes the approach more flexible.

Since the Non-functional property implementation of a

component is influenced by many factors according to

the architectural design decision and trade off between

requirements (using methods like ATAM), the

refinement framework should take this into account by

offering several levels of refinement. The model may

be constructed from the description of the behavioral

requirement expressed in the architecture models. This

model mixes PIM and PSM levels that specifies some

functionality satisfying the NFRs.

 The PIT takes PIMNF as input and produces

PIMNF/PSMNF, stands for those NFRs that concern the

architecture.

PSMNF: A Non-Functional Platform Specific Model

contains variables and parameters that represent the

software structure and dynamics, as well as the

platform where the software will be deployed. In a

classical MDA approach a platform is represented by a

set of subsystems and technologies that provide a

coherent set of functionalities through interfaces and

clear usage patterns (e.g. J2EE, CORBA, etc.). In a

non-functional context a platform must also include the

characteristics of the underlying hardware architecture,

such as the CPU speed and the failure probability of a

hardware connection. The results of the analysis of a

PSMNF can be used as a target for comparison to the

actual system metrics. This model can then be used to

explore the system behavior in the real world (e.g.

extremely heavy workloads).

As an example of the approach, consider a

performance analysis tool like AnyLogic developed by

XJ Technologies. This technology is a leading provider

of dynamic simulation tools, technologies and

consulting services for business applications using

multi-method simulation tool, and allows combining

different methods in one model. The object-oriented

model design paradigm supported by AnyLogic

provides modular and incremental construction of large

models. The simulation engine is based on Java

technology (platform specific), which makes it possible

to use the functionality provided by the Java runtime

library in simulation models.

One of the shortcomings of current approaches in

this area is the lack of formalisms that provide

foundations for automated architecture synthesis. This

certainly sounds like an interesting direction to explore.

Transformations have the potential for encoding

development knowledge, so this may be useful. There

is already some work out there that uses

transformations for ensuring non-functional properties

to explore this literature.

 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View 7

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

VI. Conclusion And Future Work

Non-functional properties of software should be

specified early in the development process. In a

distributed process of software development, this

means that non-functional requirements must be taken

into account in the specification, and the developing

party of a component needs to deliver the implemented

component with the precise description of its non-

functional properties and a conformance checking that

guarantees the satisfying of implemented component

requirements. Round-trip mapping between architecture

design decision and implementation is also an

interesting area of research (to pass from PIMNF to

PIMNF/PSMNF), which aims at keeping architecture and

implementation in sync.

The proposed development process brings together

two techniques that are used to ensure the quality of

model-driven software: Non-functional engineering and

software refinement. The novelty of this approach is the

integrated refinement view of non-functional properties

based on the standard description of MDA. Using

sophisticated NFR language descriptions like the

RDSEFF formalism of the Palladio Component Model

[33] or CQML+, developers can make NF predictions at

early stages of the development process, but also

checking if the Non-functional requirements are met by

the final product or not, need suitable measures.

The future work will focus on using different formal

methods like finite automata and the resource demand

calculus, which make it possible to prove valid NFP

refinement on different levels of abstraction.

References

[1] Wada, H., Suzuki, J., and Oba, K. A Model-Driven

Development Framework for Non-functional

Aspects in Service Oriented Architecture. Int. J. of

Web Services research, 2008, 5(4):1-31.

[2] Zhu, L., and Liu, Y., Model Driven Development

with Non-Functional Aspects. EA @ ICSE, 2009.

[3] OMG. UML 1.4 Specification, OMG Document

formal/04-07-02, 2002.

[4] Straeten, R.V.D., Jonckers, V., and Mens, T. A

formal approach to model refactoring and model

refinement. Software and System Modeling, 2007,

6 (2) 139–162.

[5] Kugele, S., Haberl, W., Tautschnig, M., and Wechs.

M. ,Optimizing Automatic Deployment Using

Non-functional Requirement Annotation‖. ISoLA,

2008.

[6] Ramljak, D., Puksec, J., Huljenic, D., Koncar, M.

and Simic, D. ,Building enterprise information

system using model driven architecture on J2EE

platform. In: Proceedings of the 7th international

conference on telecommunications, ConTEL, 2003.

[7] Thomas, D. , MDA: Revenge of the modelers or

UML utopia? IEEE Software, 2004, 21 (3) 15–17.

[8] Back, R.J., Correctness Preserving Program

Refinements: Proof Theory and Applications,

Mathematical Center Tracts 131, Mathematical

Centre, Amsterdam, The Netherlands, 1980.

[9] Röttger, S., and Zschaler, S. Model-Driven

Development for Nonfunctional Properties:

Refinement through Model Transformation. In:

Proc. <<UML>> Conf. , 2004.

[10] Röttger, S., Zschaler, S. ,Tool support for

refinement of non-functional specification.

Software and System Modeling, 2007, 6 (2): 185–

204.

[11] Fatwanto, A., and Boughton, C., Analysis,

Specification and Modeling of Non-Functional

Requirements for Translative Model-Driven

Development. ICCIS, 2008.

[12] The OMG. UML Profile for MARTE, Beta 2, 2008.

[13] Gallotti, S., Ghezzi, C., Mirandola, R., and

Tamburrelli, G.2008. Quality Prediction of Service

Compositions through Probabilistic Model

Checking. QoSA, 2008.

[14] Solberg, A., Oldevik, J., and Aagedal, J., A

Framework for QoS-aware Model Transformation

using a Pattern-based Approach. DOA, 2004.

[15] Gogolla, M., Büttner, F., and Richters, M. USE: a

UML-based specification environment for

validating UML and OCL. Science of Computer

Programming, 2007, 69 (1–3): 27–34.

[16] Hoare, C.A.R., An axiomatic basis for computer

programming, Communications of the ACM 12

1969, (10): 576–583.

[17] Dijkstra, E. ,A Discipline of Programming,

Prentice Hall,1976.

[18] Woodcock, J., and Davies, J. Using Z:

Specification, Refinement and Proof, Prentice Hall,

1996.

[19] Abrial, J. ,The B-Book – Assigning Programs to

Meanings, Cambridge University Press, 1996.

[20] Abrial, J.R., Cansell, D., and Méry, D. Refinement

and reachability in Event_B, in: Proceedings of the

2005 Formal Specification and Development in Z

and B (ZB), Springer-Verlag, 2005, pp. 222–241.

[21] Borger, E. ,The ASM refinement method. Formal

Aspects of Computing, 2003,15 (2): 237–257.

[22] Morgan, C., and Robinson, K., Specification

statements and refinement. IBM Journal of

Research and Development, 1987, 31 (5): 546–555.

[23] Morgan, C., and Vickers, T. On the Refinement

Calculus, Springer-Verlag, 1993.

8 Integrating Non-Functional Properties in Model Driven Development: A Stepwise Refinement View

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 9, 1-8

[24] Morris, J.M., A theoretical basis for stepwise

refinement and the programming calculus, Science

of Computer Programming, 1987, 9 (3): 287–306.

[25] Sterritt, A., and Cahill, V. Customisable Model

Transformations based on Non-functional

Requirements. IEEE Congress on Services, 2008.

[26] Ardagna, D., Ghezzi, C., and Mirandola, R.

Rethinking the use of Models in Software

Architecture. QoSA , 2008.

[27] Rodrigues, G., Rosenblum, D., and Uchitel, S.

2005. Reliability Prediction in Model-driven

Development. MoDELS.

[28] Cortellessa, V., Marco, A. Di., and Inverardi, P.

Non-Functional Modeling and Validation in

Model-Driven Architecture. WICSA , 2007.

[29] Ameller, D., Dealing with Non-Functional

Requirements in Model-Driven Development.

Requirements Engineering Conference (RE), 18th

IEEE International, 2010.

[30] Monperrus, M., equel, J.-M. J ́ ez .́, Baudry, B.,

Champeau,J., and Hoeltzener, B. ,Model-driven

generative development of measurement software.

Software and Systems Modeling (SoSyM), 2010.

[31] Kazman, R., Klein, M., Barbacci, M., Longstaff, T.,

Lipson, H., and Carriere, S., The Architecture

Tradeoff Analysis Method. Proc. 4th IEEE

International Conference on Engineering of

Complex Computer Systems, pp. 68-78, 1998.

[32] B ézivin, J. From object-composition to model-

transformation with the MDA. In Proceedings of

TOOLS-USA , 2001.

[33] Becker, S., Koziolek, H., and Reussner, R. The

Palladio component model for model-driven

performance prediction, Journal of Systems and

Software 82 pp. 3–22, 2009.

M.Nooraei is a Ph.D. Candidate in Computer

Engineering Department, at Islamic Azad University

Science and Research Branch, Tehran, Iran. She is a

faculty member in the department of Computer

Engineering of Islamic Azad university. Her research

interests include model driven development issues,

model synchronization, and change propagation.

Z.Rajabi received her BS at Isfahan University of

Technology in 2005 and MSc in Information

Technology Engineering (eCommerce) at Nooretuba

University in 2012.

