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Abstract— Significant work has already been done for 

complex quadratics. However, the dynamics of rational 

functions and their properties are equally interesting. In 

this paper we have generated computer images from a 

C++ computer program. We have then developed an 

artificial neural network model using predictive 

modeling software based on RMS type of error out of 

two samples of points obtained from the generated 

images. The imaginary part of sample II was predicted 

by applied the real parts of sample I and sample II to the 

artificial neural network. The real part of sample II was 

more important than the real part of sample I in 

predicting the imaginary part of sample II. The predicted 

imaginary part of sample II was then imported to Matlab 

Signal Processing Tool (SPTool) via Matlab workspace. 

We have applied a stable band pass filter to the model to 

eliminate noise from it for its analysis.  A modulated 

signal produced reveals that the methodology used shall 

be applied to explore properties of computer generated 

images from the generated wavelet. We have further 

imported the predicted imaginary part of sample II to 

autoSIGNAL software for time and frequency range 

analysis of the continuous wavelet transform. 

 

Indexed Terms— ANN, AutoSIGNAL, Dynamics of 

Rational Functions, RMS Error, SPTool, Wavelet and 

Tiberius. 

 

 

I. Introduction 

Wavelet theory is based on analyzing signals to their 

components by using a set of basis functions. One 

important characteristic of the wavelet basis functions is 

that they relate to each other by simply scaling and 

translation. The original wavelet function, known as 

mother wavelet, which is generally designed based on 

some desired characteristics associated to that function, 

is used to generate all basis functions [1]. It is well 

known that the mother Morlet in Fig.1, is a modulated 

function composed of two quadrature components, 

characterized by the following equation: 
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and s and  represents the scale and translation of the 

windowed function  ,, ths 
respectively. The term 

s

1
in (1.1) is given for energy normalization at 

different scales [2].  For many applications, the most 

important parameters in spectral analysis are time 

localization and frequency resolution. These two 

parameters define the time-frequency window that is 

being produced. The selection of the wavelet and its size 

is determined by the time-frequency window 

specifications [3].  Fig.2 shows Mexican  hat wavelet. 

 

 

Fig.1. Morlet Wavelet 
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Fig.2 Mexican Hat Wavelet 

 

 

The wavelet has been shown to be a very efficient tool 

for local analysis of non stationary and fast transient 

signals due to its good estimation of time and frequency 

localizations. This feature can be used to distinguish 

cardiac signal points from severe noise and interferences 

[4]. Wavelets find applications and have significant 

impact in various scientific areas including geophysics, 

hydrodynamics, econometrics, data processing, image 

compression, detection of discontinuities, neural 

networks, etc [5]. One of the reasons wavelets have 

found so many uses and applications is that they are 

especially attractive from the computational point of 

view. Computational efficiency of wavelets lies in the 

fact that wavelet coefficients in wavelet expansions for 

functions in 0V (resolution subspace in  dRL2
 may be 

computed using matrix iteration, rather than by a direct 

computation of inner products: the latter would involve 

integration over
dR , and hence be computationally 

inefficient, if feasible at all. The deeper reason for why 

we can compute wavelet coefficients using matrix 

iteration is an important connection to the subband 

filtering method from signal/image processing involving 

digital filters, down-sampling and up-sampling. In this 

setting filters may be realized as functions 0m on a d-

torus, e.g., quadrature mirror filters [6]. It would be 

interesting to adapt and modify the Haar wavelet, and 

the other wavelet algorithms to the Julia sets [7] 

One of the applications of Iterated Functional Systems 

(IFSs), and their spectral theory, is to image processing 

[8] and [9]. IFSs include dynamical systems defined 

from a finite set of affine and contractive mappings 

in
dR , or from the branches of inverses of complex 

polynomials, or of rational mappings in the complex 

plane. A unifying approach to wavelets, dynamical 

systems, iterated function systems, self-similarity and 

fractals may be based on the systematic use of operator 

analysis and representation theory [10]. In terms of 

signal processing, what the two have in common, 

wavelets and IFSs, is that large scale data may be 

compressed into a few functions or parameters. In the 

case of IFSs, only a few matrix entries are needed, and a 

finite set of vectors in 
dR  must be prescribed. As is 

shown in [8], this can be turned into effective codes for 

large images. Similarly (see [11]) discrete wavelet 

algorithms can be applied to digital images and to data 

mining. The efficiency in these applications lies in the 

same fact: The wavelets may be represented and 

determined by a small set of parameters; a choice of 

scaling matrix and of masking coefficients, i.e., the 

coefficients ka  in the scaling identity Eqn. (1.3) below 

[12]. The scaling function  satisfies an important 

equation, called the scaling equation. This is obtained by 

considering the function  1A which lies in 01 VV  . 

Since the translates of  form a basis for 0V then the 

scaling function is obtained: 
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is a sequence of complex numbers. 

 

Definition 1.1: Let  zRz  be a given polynomial. 

Let P be a finite set of distinct polynomials each of 

degree less than the degree of R. Let  PRK ,
2

be a 

space of functions F in   RJH 2
. We say that F is in 

 PRK ,2
iff there are functions  zFp in   RJH

2
 

indexed by P such that 
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It is easy to see that each  PRK ,2
 is a closed 

subspace in   RJH 2
 , so in particular it is a Hilbert 

space. The finite family P that enters Eqn. (1.4) is a 

family of generalized filters. It depends on the particular 

polynomial  zRz  , and we can expect to find 

solutions to Eqn.(1.4)  in Definition 1.1 from the kind of 

representations of the Cuntz algebras the authors studied 

in their work on wavelets on fractals [9].  

In this paper we will deal with the complex iteration 

systems which generate Julia sets in the Riemann sphere. 

If  
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is a rational function with QP,  polynomials Cz , 

and )deg,max(deg QPN  then )()(: RXRXR  is 

1 toN except at the singular points of R. The Julia 

set   RXX   is the complement of the largest open 

subset of C where 
nR is a normal family. 

Let CCR : be an analytic self-map of the 

complex plane to itself. We will assume that it is either 

the Riemann sphere or the complex plane. In our 

investigation we have only concentrated on complex 

plane. For the notations and the relevant definitions cf. 

[13]. We will be considering as a discrete dynamical 

system [14] on the phase space, so we are interested in 

the behavior of the iterations of the said function by 

itself, that is, the n-fold compositions of with itself. 

Much work has been done for complex quadratics [14].  

A. Beardon [15] has investigated the iterations of 

rational functions and its properties.  

But we have tried to study the complex valued 

rational function which arose out of the solution of 

Classical Yang- Mills equation by Witten [16]. Self- 

Dual and Anti Self Dual solutions of classical Yang- 

Mills Equations correspond to solutions of the 

electromagnetic field tensor  
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Explicitly, the contravariant and covariant of the 

electromagnetic field tensor are: 
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here cba ,, are SU(2) (i.e. Special Unitary Group)  

indices. Witten in [16] has chosen a cylindrically sym-

metrical gauge field A [16]. The solutions are given by, 
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where ia  is the zero of the function )(zG and it is 

arbitrarily chosen complex number with the only 

restriction that .0Re ia  
*a  is the pole of the same 

function. Witten in [15] has imposed the restriction 

on ia . Here we attempt to relax the said condition and 

consider any ,Cai  where C is the complex plane. In 

this present work we have made an attempt to study the 

dynamics of the following class of rational functions in 

Eqn. (1.9). Here k  is the topological index cf. [16]. 

Throughout our study we have used C++ program [17] 

to construct the images. We have tried to investigate the 

images for the functions )(zG for  

..1 eik 
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Computation of some Julia sets of rational maps having 

the same number of poles and zeros was discussed [18]. 

In [19] we have statistically analyzed the image obtained 

out of complex valued rational functions having single 

Pole. In this paper we have used Tiberius (Predictive 

Modeling Software) [20] as well as Matlab signal 

processing tool for generating wavelet based predicted 

imaginary part of sample II.  

The present paper has the following sections: section 

2 provides neural network model based on RMS type of 

error, section 3 presents the analysis of the ANN model 

using Matlab SPTool, section 4 , discuss the analysis of 

the model with autoSIGNAL,and we will wind with the 

conclusion.  

 

Fig.3. Computer Generated Image for c= (1, 0.1) int maxIterations = 

10; double thresh = 10.0 
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Fig.4. Computer Generated Image for c= (1,0.1) int maxIterations = 

100; double thresh = 10.0 

 

II. Artificial Neural Networks Model 

Artificial Neural networks are mathematical entities 

that are modeled after existing biological neurons found 

in thebrain. All the mathematical models are based on 

the basic block known as artificial neuron. A neural 

network is formed by layers of neurons. Fig.5. and Fig.6 

show a simple neuron and One-Layer Network 

Architecture.  A layer includes the inputs p, the weights 

matrix W , the summers, the bias vector b, the transfer 

function f and the network output vector a.  

A layer whose output is the network output is named 

the output layer. All the other layers are called hidden 

layers.  

Among the biologically inspired computing models 

are artificial neural networks (ANN). ANN does not 

approach the complexity of the brain, but both of them 

have two key similarities: the building blocks are simple 

computational devices and the connections between 

neurons determine the function of the network [21].  In 

Fig.7, we have developed the model using predictive 

modeling software known as Tiberius [20]. The neural 

network model has two inputs, thirteen hidden neurons 

and one output linear neuron. The two input variables 

are 1w and 3w , that is, the real parts of sample I and 

sample II respectively. The actual imaginary part of 

sample II and its predicted model are shown in Fig.8.  
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Fig.5. Simple Neuron 

 

 

 

Fig.6. One-Layer Network Architecture 

 

 

 
Fig.7. Artificial Neural Network Configuration 
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Fig.8. Actual and Modelled Values of 4w

 

 

 

Fig.9. Smoothed Errors (for Time Series) 

 

III. Model Analysis Using Matlab 

Researchers in Applied Mathematics, 

Communications and Signal/Image Processing areas 

have developed many different wavelet systems and 

some are still actively working in designing even newer 

wavelets with specialized characteristics [1] but in many 

fields scientists are faced with the problem of recovering 

a true signal from incomplete, indirect or noisy data. 

Wavelets can help in solving the problem through a 

technique called wavelet shrinkage and thresholding 

methods that David Donoho has worked on for many 

years [22]. The technique consists of decomposing a 

data set utilizing wavelets by applying filters that act as 

averaging filters and others that produce details [23]. 

Some of the resulting wavelet coefficients correspond to 

details in the data set. In this section we are interested in 

the effect of band pass filter on artificial neural network 

model whose configuration is shown in Fig 7. We have 

first imported the model from Tiberius software to 

Matlab workspace then from Matlab workspace to signal 

processing tool with the sampling frequency of 8192Hz. 

This tool has three main components: signal section 

view, filter section view and edit as well as spectra 

section. These are used to visualize waveforms and 

spectra of several signals and make a qualified filter 

design. Therefore, characteristic properties and desired 

parameters of signals have been estimated. In order to 

use a signal under these processes the signal was 

imported as a vector.  The modeled imaginary part is 

plotted in Fig.10.   

In our experiment we have considered two samples 

each of 249 data points from data points of the picture 

shown in Fig.3. 1w  and 3w are the real parts of sample I 

and sample II respectively whereas 2w and 4w are the 

imaginary parts of sample I and sample II respectively. 

We now propose to model the imaginary part 4w of 

sample II in terms of real parts 1w and 3w as shown on 

the neural network in Fig.7. The predicted imaginary 

part 4w of sample II has 249 patterns and the Tiberius 

software has shown that the real part 3w  of sample II is 

more important than the real part 1w of sample I in 

predicting the imaginary part 4w  of sample II. The 

predicted imaginary part 4w  of sample II was then 

imported as a vector of 249 patterns to Matlab 

workspace.  

Let us consider the column data vector M of predicted 

imaginary part 4w of sample II, 
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Let  )(...)()()( 24921 txtxtxtX    be the 

sampling vector signal with the sample frequency 

mentioned above. 

Let )(4 tw be the sampled predicted imaginary 

part 4w of sample II with the same sampling frequency. 

Let us perform the vector multiplication on column 

vector M and row vector ),(tX then we get: 
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A stable band pass filter has been designed to analyze 

in this frequency range the predicted imaginary part of 

sample II. Fig.12 indicates the pole–zero plot of the 

filter. Magnitude, phase response, step response, group 

phase delay and other properties of the same filter are 

shown in Fig.13. The filtering process has eliminated 

noise successfully as indicated by power spectral 

densities (PSDs) of pre-filtering and post-filtering.  The 

power spectral density of the predicted imaginary part of 

sample I is shown in Fig. 11 with minimum frequency 

equal to half of the sampling frequency. The PSD of the 

filtered predicted imaginary part of sample I is shown in 

Fig.15.  

Let )(tf be the impulse response of the band pass 

filter,  

Let )(ty be the response of the band pass filter, then 
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From Eqn. (3.2) we get 
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The filtered predicted imaginary part of sample II 

)(ty  is shown in Fig. 14. The filtered signal is 

obviously a modulated signal. Hence we have 

successfully generated analog continuous wavelet 

transform from the model of imaginary part of sample II. 

The Matlab signal processing tool shows that the 

modulated signal generated out of the imaginary part of 

sample II is a real signal. Its expression can be easily 

derived from the equation of mother Morlet equation 

given in Eqn. (1.1) by equating the imaginary part to 

zero. Hence we get 
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We therefore realize that the filter effect has generated 

a real wavelet transform whose magnitude is equal to the 

magnitude of the windowed function. 

Fig.10. Predicted Imaginary Part 4w
of Sample II 

 

 

 

 

Fig.11. PSD of the Imaginary Part 4w
 

 

 

 

 

Fig.12. Filter Pole-Zero Plot 
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Fig.13. Filter Viewer 

 

 

 

Fig.14. Filtered Predicted Imaginary Part 4w
 

 

 

 

Fig.15. PSD of the Filtered Predicted Im. Part 4w
 

 

 

IV. Model Analysis UsinAutoSIGNAL 

Finally we have imported the predicted values of the 

imaginary part 4w of sample II to autoSIGNAL, this is a 

cutting edge signal analysis software.  We have been 

able to produce the Paul, Gaussian and Morlet mother 

wavelets using that computer tool. The mother 

wavelets mentioned above are ordered according to their 

time localization properties. The Paul wavelet has the 

best time localization capability amongst the three 

different mother wavelets, but at the same time it has the 

worst frequency localization. This makes the Paul 

mother wavelet more suitable for demodulating fringe 

patterns that exhibit high signal to noise ratio and rapid 

phase variations. On the other hand, the Morlet wavelet 

has better localization in the frequency domain than the 

Paul wavelet and it is more suitable for demodulating 

fringe patterns with slow phase variations and low signal 

to noise ratios [24]. In our work, we have selectively 

explored the properties of the generated wavelet 

transform based on Paul wavelet using autoSIGNAL, 

but the same analysis can be carried out on Morlet and 

Gaussian Derivative wavelets. The results obtained in 

this section confirm the results obtained in the previous 

section where we concluded that the modulated signal in 

Fig.14 is a wavelet. In addition to what the Matlab signal 

processing tool provides, autoSIGNAL provides the 

frequency and time range analyses of the integrated 

power contain in Paul wavelet as per Fig.19 and Fig.20. 

Paul wavelet Smoothing and Denoising as well as 

Filtering and Reconstruction are shown in Fig.21and 

Fig.22 respectively. 

 

 

Fig.16. Wavelet of the Predicted Imag. Part 4w
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Fig.17. Magnitude of the CWT of the Predicted 4w
 

 

 

 

Fig.18. Phase of the CWT of the Predicted Im. Part 

 

 

 
Fig.19. Integrated Power for Time Range Analysis  

 

 

Fig.20. Integrated Power for Frequency Range Analysis  

 

 

 
Fig.21. Wavelet Smoothing and Denoising 

 

 

 
Fig.22. Wavelet Filtering and Reconstruction 

 

V. Conclusion 

This research aimed at proving analogue wavelet 

transform generation in the dynamics of rational maps. 

The information from the computer generated picture is 

hidden in the corresponding continuous wavelet. We 

have modeled  the imaginary part of sample II using the 

real part of sample I and sample II as the inputs  to the 

artificial neural network with thirteen  hidden nodes. We 
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have first imported the ANN model from Tiberius 

Predictive modelling software to Matlab workspace then 

from the latter to Matlab SPTool. The filtering process 

has eliminated noise successfully and generated a 

modulated signal representing a continuous wavelet. We 

have also found that the filtered imaginary part of 

sample II has dominating frequency at half of the 

sampling frequency.  We have explored the continuous 

wavelet generated using autoSIGNAL software. The 

model has generated Morlet, Paul and Gaussian 

derivative mother wavelets. Wavelet Transform provides 

multiscale information and thus is an efficient tool for 

local analysis of non stationary signals, especially for 

processing biomedical signals.  
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