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Abstract— In this paper, a DNA based computing model 
for solving the star coloring problem is proposed. This 
model shows how to use DNA strands to construct solution 
space of molecules for the star coloring problem and how to 
apply the DNA algorithm to solve the star coloring problem 
using biological operations. The algorithm is highly parallel 
and has satisfactory fidelity. The time complexity of the 
algorithm is O (n2), where n is the number of vertices of the 
graph. 
 
Index Terms— NP-complete problem,  Star coloring 
problem,  DNA based parallel algorithm, parallel 
computing, Polynomial time algorithm, Time complexity. 

  
 
1. Introduction 
 

Through advances in molecular biology [1, 2], it is 
now possible to produce 1018 or more DNA strands in a 
tube. Those 1018 or more DNA strands can also be 
applied for representing 1018 or more bits of information. 
Biological operations can be used to simultaneously 
operate 1018 or more bits of information. Or we can say 
that 1018 or more data processors can be executed in 
parallel. Hence, it becomes obvious that biological 
computing can provide a very huge parallelism for 
dealing with problems in the real world. Especially, the 
problems from the NP-complete class are well known to 
be exponentially more difficult than evaluating 
determinants whose entries are merely numerical. It is 
very difficult to solve these kinds of problems even if 
very massive supercomputers are used when the problem 
size becomes large. 

On the other hand, DNA computers have full 
potential of high performance computing Technology. 
One test tube can be viewed as a processing unit like 
standard computer architecture. Furthermore, DNA 

algorithms using biological operations have natural 
parallelism because DNA strands are separated melted, 
annealed) in test tubes in parallel. 

Feynman [3] first proposed molecular computation in 
1961, but his idea was not implemented by experiment 
for a few decades. In 1994 Adleman [1] succeeded to 
solve an instance of the Hamiltonian path problem in a 
test tube, just by handling DNA strands. 
Lipton [4] demonstrated that the Adleman techniques 
could be used to solve the satisfiability problem. 
Adleman et al. [5] proposed sticker for enhancing the 
Adleman- Lipton model. In recent years methods for 
solving several well known NP- Complete problems 
[12,13,14,15,16,17,18,19,20] have been proposed. 

In this paper, we develop a DNA-based algorithm to 
solve the star coloring problem, which is a well known 
NP-complete problem, based on Adleman-Lipton model. 
we use DNA sequence to construct a solution space for 
the star coloring problem.  Furthermore, this work 
presents clear evidence of the ability of DNA based 
computing to solve NPcomplete 
problems.  

The rest of the paper is organized as follows. In 
section 2, the Adleman-Lipton model is introduced in 
detail. In section 3, the star coloring problem is defined 
and the construction of a solution space for the star 
coloring problem is introduced. In section 4, a DNA 
algorithm is proposed to solve the star coloring problem 
of any undirected graph with n vertices for a given three 
colors. The time complexity of the proposed algorithm is 
described and the correctness of the algorithm is 
discussed. In section 5, generalized algorithm is given to 
solve the star coloring problem of any undirected graph 
with n vertices for a given l colors, where l is a positive 
integer. 
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2. The Adleman-Lipton Model 
 

DNA is the major information storage molecule in 
living cells, and billions of years of evolution have tested 
and refined both this wonderful informational molecule 
and highly specialized enzymes that can either duplicate 
the information in DNA molecules or 
transmit this information to the other DNA molecules. 

A DNA (deoxyribonucleic acid) is a polymer, which 
is strung together from monomers called 
deoxyribonucleotide. Distinct nucleotides are detected 
only with their bases. Those bases are respectively, 
abbreviated  as A (adenine),  G (guanine),  C (cytosine) 
and T (thymine). Two single strands of DNA can form a 
double strand, if the respective bases are the Watson-
Crick complements of  each other - A matches T and C 
matches G; The length of the single stranded DNA is the 
number of nucleotides comprising the single strand. The 
length of the double stranded DNA is counted in the 
number of base pairs. 
 

The Adleman-Lipton model: The DNA operations 
in the Adleman-Lipton model [1, 4, 6, 7, and 8] are 
described below. These operations will be used for 
figuring out solution of the star coloring problem. 
        A test tube is a set of molecules of DNA (that is a 
multi-set of finite strings over the alphabet A, C, G, T). 
Given a tube, one can perform the following perations: 
 
1. Denaturation: Given a test tube T, Denaturation (T) 
dissociates each double strand in T into two single 
strands. 
 
2. Annealing: Given a test tube T, Annealing (T) 
produces all feasible double strands in T. (The produced 
double strands are still stored in T after annealing). 
 
3. Synthesis: Synthesis (to produce) a DNA of a desired 
strand. 
 
4. Amplification: To make copies of the given DNA 
strands. 
 
5. Cutting: Cut a DNA at a particular place in the strand. 
 
6. Ligation: Ligate DNA strands with complementary 
sticky ends. 
 
7. Extract: Given a tube T and a short single strand of 
DNA, S, the operation extract produces two tubes + (T, 
S) and − (T, S). + (T, S) is all of the molecules of DNA 
in T which contain the strand S as a sub-strand and      − 
(T, S) is all of the molecules of DNA in T which do not 
contain the short strand S. 
 
8. Detect: Given a tube T, the answer is ‘yes’ if T 
includes at least one DNA molecule, and the answer is 
‘no’ if it contains none. 
 

9. Discard: Given a tube T, the operation will discard 
the tube T. 
 
10. Read: Given a tube T, the operation is used to 
describe a single molecule, which is contained in the 
tube T. Even if T contains many different molecules 
each encoding a different set of bases, the operation can 
give an explicit description of exactly one of them. 
 
11. Copy (T, Ti): In parallel, this operation produces a 
number of copies, Ti of the set T. 
 
12. Union (Ti, T): This operation in parallel creates the 
set T which is the set union of the sets Ti. 
 
13. Length-Separate: Given a tube T and an integer n, 
produce the tube (T, ≤ n) consisting of all strands in T 
with length less than or equal to n. 
 
3. The Star Coloring Problem 
 
    Given a graph G = (V, E), where V is the set of 
vertices and E is the set of edges with |V | = n and |E| = 
m. A proper coloring of a graph G is called the star 
coloring if no path of length three in G is bicolored. A 
proper coloring of a graph G is an assignment of colors 
such that no two adjacent vertices receive the same color. 
For a given graph G determining any assignment of 3 
colors to G is a star coloring of G or not is an NP-
complete problem [9]. 
 

3.1 Construction of solution of DNA sequence for the 
Star Coloring Problem 

 
In the Adleman-Lipton model, their main idea is to 

first generate solution space of DNA sequences for those 
problems resolved. Then, basic biological operations are 
used to select legal solutions from the solution space. 
Therefore, the first step of resolving the 
star coloring problem is to produce a test tube which 
contains all possible assignment of colors to the vertices 
of the graph. The input is an undirected graph G = (V, E), 
where V is the set of vertices and E is the set of edges.  
|V | represents the number of vertices in V and |E| 
represents the number of edges in E. Let |V | = n, |E| = m 
and the three colors be c1, c2, c3. 

The initial set which contains an assignment of 
colors to the vertices of the graph of the form 
GGGNip1csp1NiCCCGGGNip2csp2NiCCC...GGGNipncspn
NiCCC, where s = 1,2,3, pi represents the position of the 
vertex vi which is a 4-mer DNA sequence, Ni is a 5-mer 
DNA sequence represents the ith assignment of colors to 
the given graph where 1 ≤ i ≤ 3n. For different coding of 
Ni, 1 ≤ i ≤ 3n , the DNA strand 
GGGNip1csp1NiCCCGGGNip2csp2NiCCC...GGGNipncspn
NiCCC represents different assignment of colors to the 
given graph G. The numbers of vertices are more, use 
different length of oligonucleotide. An edge from a 
vertex vi to vj is encoded in two ways as 
Pi

CNi
CGGGCCCNi

CPj
C and Pj

CNi
CGGGCCCNi

CPi
C for 
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all i = 1 to 3n. We encode every edge in two ways to give 
the effect of the undirected nature of the given graph. 
The edge vi to vj is viewed as vi to vj and vj to vi. The 
initial set of DNA molecules encoding all candidate 
solution to the star coloring problem is synthesized using 
ABI3948 nucleic acid synthesis and purification system 
[10, 11]. 
 
Illustration: 
Consider the following graph. 

 
The given graph has 7 vertices. The position of the seven 
vertices of the graph and colors c1, c2, c3 are encoded as 
follows: 

P1: ATGC 
P2: AATG 
P3: GCTA 
P4: CGAA 
P5: TTCG 
P6: TATC 
P7: GACT 

                                    c1: gtat 
                                    c2: gatt 
                                    c3: tatt        
Our DNA model involves a long single strand which 
made of number of sub strands, and each sub strand 
represents the position of a vertex with an assigned color. 
The algorithm 1 uses three colors c1, c2, and c3 to color 
the given graph. Single strand in the form 
GGGNip1csp1NiCCC are used to encode one possible 
coloring of each vertex in the graph.The sequence Ni is 
used to find the ith assignment of color to the given 
graph. An assignment of colors to the given graph is of 
the form 
GGGNip1csp1NiCCCGGGNip2csp2NiCCC...GGGNipncspn
NiCCC. For different coding of Ni, i = 1 to 3n, this strand 
represents all possible encoding of the given graph. The 
middle sequence CCCGGG is recognizable by restriction 
endonuclease SmaI which can split it at 
the middle site. For the above given graph, we can 
generate all possible assignment of colors to the given 
graph using the DNA codes given above. Thus, all the 37 
DNA strands which encode the assignments of colors to 
the graph can be synthesized using ABI 3948 
nucleic acid synthesis and purification system. 
 

4. The DNA Algorithm for Solving the Star 
Coloring Problem 
 

The proposed DNA-based algorithm to solve the star 
coloring problem is described in this section. It can be 
applied to solve the star coloring problem of any 
undirected graph with n vertices for a given three colors. 
 
Algorithm.1. 
1. Input (T), where the tube T, includes solution space of 

DNA sequences which are encoding of all    possible 
assignments of three colors to the vertices of the 
given graph G. 

2. For j = 1 to n 
3.          For s = 1, 2, 3 and all k such that (j, k) ∈E 
4.                   T1 ← + (T, pjcspj) 
5.                   T2 ← − (T, pjcspj) 
6.                   T3 ← + (T1, pkcspk) 
7.                   T4 ← − (T1, pkcspk) 
8.                  discard (T3) 
9.                  T =T2 ∪  T4 
10.         EndFor 
11. EndFor 
12. If Detect (T) = yes then 
13. Copy (T, (T′, T′′)) 
14. Add multiple copies of DNA strands GGGCCC to 

the test tube T′, which in turn produces partial double 
stranded DNAs with restriction site 

GGGCCC
CCCGGG  

15. Add the restriction enzyme SmaI to the test tube T′, 
it cuts the restriction site 

GGGCCC
CCCGGG , giving rise to the 

proper coloring of the vertices of the given graph. 
16. Add DNA strands that represent the edges of the   

graph to the test tube T′. 
17. Generate all possible walks of different length in the 

test tube T′. 
18. T′← (T′, = 112) 
19. If Detect (T′) = yes then 
20. For 1 ≤ j, k, l, m ≤ n, j ≠  k ≠  l ≠  m 
21.       T′ ← + (T′, vj)  
22.       T′← + (T′, vk) 
23.       T′← + (T′, vl) 
24.       T′← + (T′, vm) 
25. EndFor 
26. Copy (T′, (U1, U2, U3) 
27. U1 ← − (U1, c1) 
28. U2 ← − (U2, c2) 
29. U3 ← − (U3, c3) 
30. Union ((U1, U2, U3), T′) 
31. If Detect (T′) = No then 
32. Every proper coloring of the given graph G in T′′ is 

the star coloring of the given graph G. 
33. else 
34. The surface is attached with the complement of Ni, 1 

≤ i ≤ 3n, pass the content of the test tube T′ through 
this surface. The paths of length 3 which are 
bicolored will attach to the complements of Ni. The 
sequence  Ni , which are free from hybridization are 
separated from the surface and pour into the test 
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tube T′′ which contains all proper coloring to the 
given graph G. By PCR, keep all double stranded 
DNA in the test tube T′′. 

35. If Detect (T′′) = yes 
36.       Proper colorings in T′′ are star coloring of G. 
37. else 
38.       Star coloring is not possible 
39. else 
40.        Every proper coloring in T′′ is a star coloring 
41. else 
42.        No coloring is proper coloring.   
 
4.1 Implementation of the Algorithm 
 
This section describes the implementation of the 
algorithm. 
 
• Start with all the DNA sequences that represent the 
assignments of colors to the given graph G. 
 
• Eliminate all the DNA strands that do not represent the 
proper coloring of the graph. For each edge (j, k) ∈  E, 
remove the strands from a test tube T, that contain 
subsequences pjcspj, pkcspk, where s = 1, 2, 3. 
 
• If the test tube T does not contain DNA strands, then 
conclude no coloring is a proper coloring. If not copy the 
content of the test tubes into two test tubes T′ and T′′. 
 
• Add multiple copies of DNA strands GGGCCC to the 
test tube T′, which in turn Produces partial double 
stranded DNAs with restriction site 
 
• Add the restriction enzyme “SmaI” to the tube T′, it 
cuts the restriction site, giving rise to the proper coloring 
of the vertices of the given graph G. 
 
• Add multiple copies of all the DNAs encoding the 
edges of the graph in the test tube T′ along with the 
ligation enzyme. All possible walks in the given graph 
are generated. 
 
• Form the tube T′, keep only the DNA strands of length 
112 and discard the rest. This is done by the step T ′ 
← ( T′, =112). Each vertex is encoded by a DNA 
sequence of the form GGGNiP1CsP1NiCCC. The position 
Pi of the vertex vi is a 4-mer DNA sequence and Ni is a 
5-mer DNA sequence and the color of the vertex is 
encoded by 4-mer DNA sequence. Every vertex in the 
graph with color is encoded by 28-mer 
DNA sequence. A path of length 3 contains 4 vertices. 
Therefore, every path of length three is encoded by 
28*4= 112 – mer DNA sequence. The step T ′ ←  ( T′, 
=112) selects all walks of length 3 for every proper 
coloring of the graph without any confusion. This is 
accomplished by gel electrophoresis technique. 
 
• If the test tube T′ contains a DNA strand then proceed 
to step 20. Otherwise every proper coloring in T′′ is a 
star coloring. 

• Checking the distinctness of the vertices of the walks 
obtained in steps 20-25: produce multiple copies of 
complement of the vertex v1 and pour into a test tube 
T′, complement of v1 anneal to the vertex v1. In a test 
tube T′, we have three different types of DNA strands. 
The vertex v1 either occur twice or once or no 
occurrence in the DNA strands. Remove all DNA 
strands in which v1 occurs twice using gradient 
centrifugation process. Denature all the remaining 
strands in the test tube T′ to get the single stranded DNA. 
Repeat this process to all the remaining vertices. After 
completing this process the test tube T′ contains 
all paths of length 3. 
 
• Copy the content of the test tube T′ into three test tubes 
U1, U2, U3. The test tube U1 retains all the DNA strands 
that do not contain c1 as a substring, the test tube U2 
retains all the DNA strands that do not contain c2 as a 
substring, and the test tube U3 retains all the DNA 
strands that do not contain c3 as a substring. This 
step can be accomplished by the operation separation. 
 
• Pour the content of the test tubes U1, U2, U3 into a 
single test tube T′. If the test tube T′ does not contain a 
DNA strand every proper coloring of the given graph G 
is a star coloring of G. Otherwise the surface is attached 
with the complement of Ni, 1 ≤ i ≤ 3n, pass the content of 
the test tube T′ through this surface. The paths of length 
3 which are bicolored will attach to the complements of 
Ni. The sequences Ni, which are free from hybridization 
are separated from the surface and pour into the test tube 
T′′ which contains all proper coloring to the given graph 
G. By PCR, keep all double stranded DNA in the test 
tube T′′. If Detect (T′′) = yes, then the proper colorings 
in T′′ are star coloring of G. 
Otherwise star coloring is not possible. 
 
4.2 The Complexity of the DNA Algorithm 
 

The star coloring problem with three colors for any 
undirected n-vertex graph G can be solved with O (n2) 
biological operations in the Adleman-Lipton model. 

The algorithm described in section 4 can be applied 
for solving the star coloring problem for any undirected 
n-vertex graph G with given three colors. This 
Algorithm 
includes three main steps. The steps 2-11 are mainly 
used to determine the proper coloring of G and to 
remove illegal coloring of G from all of the 3n possible 
assignment of colors to the given graph G. The steps 20-
25 select all paths of length 3. The steps 26-30 are used 
to check the bicoloredness of the path of length 3. For 
each vertex vi ∈  V , 1 ≤ i ≤ n and the three colors c1, c2, 
c3, the steps 4 and 5 take 3n extraction operations. Since 
every vertex vi∈V , has at most n−1 adjacent vertices, 
the steps 6 and 7 take 3n×3(n−1) extraction operations. 
The step 8 takes 3n discard operations. The steps 12-19 
take one step each to perform cutting the restriction site, 
adding DNA strands that represent the edges of the 
graph and to generate all possible walks. The steps 20-25 
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need 4n biological operations to detect the path of length 
3. The steps 26 and 30 take one step each to copy and 
union of the content of the DNA strands. The steps 27, 
28 and 29 take one step each to detect the DNA strands 
in which only two colors are used. The steps 31 and 35 
take one step each to detect the content of the test tube. 
Hence, the time complexity of Algorithm is O (n2) 
biological operations in the Adleman-Lipton model. 
 
4.3 Correctness of the Algorithm 
 

The star coloring problem with three colors for any 
n-vertex undirected graph can be resolved using the 
algorithm proposed in section 4.  

The input of the algorithm is a test tube, which 
contains all 3n possible assignment of colors to the given 
n- vertex undirected graph G.  

First the algorithm detects all possible proper 
coloring of G by repeating the steps 2 to 11 for n number 
of times. The first test tube T1 contains all the DNA 
strands in which the first vertex v1 has the color c1, the 
second test tube T2 contains all the DNA strands in 
which the first vertex v1 has the color c2 or c3. The third 
test tube T3 contains all the DNA strands in which the 
vertex v1 and its adjacent vertices have the color c1. The 
fourth test tube T4 contains all the strands in which the 
vertices adjacent to the vertex v1 have the colors c2 or c3. 
Therefore the test tube T3 collects all the strands in 
which the vertices adjacent to v1 and the vertex v1 have 
the same color and the test tube T4 collects all the strands 
in which the vertices adjacent to v1 and the vertex v1 
have different colors. Step 8 uses the “discard operation” 
to remove all the illegal coloring to the vertex v1 and its 
adjacent vertices for the color c1. Step 9 merges the 
content of the tubes T2 and T4. Now the test tube T 
contains the DNA strands in which the first vertex v1 has 
the color c2 or c3 and the DNA strands in which the first 
vertex v1 has the color c1 and its adjacent vertices have 
different colors c2 or c3. By repeating the same procedure 
for the vertex v1 with the remaining two colors c2 and c3, 
the test tube T contains all the DNA strands in which the 
vertex v1 and its adjacent vertices have different colors. 
The steps 2-11 are repeated for all the remaining n−1 
vertices. If the test tube T does not contain a DNA strand, 
no coloring is a proper coloring otherwise copy the 
content of the test tube T into two test tubes T′ and T′′. 
Add multiple copies of DNA strands GGGCCC to the 
test tube T′, which in turn produces partial double 
stranded DNAs with restriction site. Now, the algorithm 
checks the star coloring for each proper coloring of the 
given graph G. Add the restriction enzyme “SmaI” to the 
tube T′, which in turn cuts the restriction site, giving rise 
to the coloring of the vertices of the graph. Add DNA 
strands that represent the edges of the graph to the tube 
T′. By ligation reaction all the walks of different length 
are generated in the tube T′. In coding, the 3n assignment 
of colors to the graph is distinguished by the sequence Ni, 
the edges are encoded with all the sequences Ni, 
1 ≤ i ≤ 3n , by ligation reaction all walks are generated 
for different assignment of colors without confusion. 

Next the test tube T′ retains all the DNA strands of 
length 112 (that is a walk of length 3). If the test tube T′ 
contains no strand then every proper coloring in T′′ is a 
star coloring. Otherwise, the steps 20-25 are used to find 
all the paths of length 3. Now the test tube T′ contains all 
the path of length 3. Copy the content of T′ into three 
test tubes U1, U2 and U3. The test tube U1 collects all the 
strands which have the colors c2 and c3. The test tube U2 
collects all the strands which have the colors c3 and c1. 
The test tube U3 collects all the strands which have the 
colors c1 and c2. The step 30 uses “union operation” to 
merge the contents of the test 
tubes U1, U2 and U3 into one test tube T′. If the test tube 
T′ does not contain a DNA strand every proper coloring 
of the given graph G is a star coloring of G. Otherwise 
the surface is attached with the complement of Ni, 1 ≤ i ≤ 
3n, pass the content of the test tube T′ through this 
surface. The paths of length 3 which are bicolored will 
attach to the complements of Ni. The sequences Ni, 
which are free from hybridization are separated from the 
surface and pour into the test tube T′′ which contains all 
proper coloring to the given graph G. By PCR, keep all 
double stranded DNA in the test tube T′′. If Detect (T′′) 
= yes, then the proper colorings in T′′ are star coloring of 
G. Otherwise star coloring is not possible. 
 
5.  The DNA Algorithm for Solving the Star 
Coloring Problem with l Colors 
 
We can extend Algorithm1 to solve the star coloring 
problem with l colors. The following DNA algorithm is 
proposed to solve the star coloring problem of any 
undirected graph with n vertices for a given l colors, 
where l is a positive integer. 
 
Algorithm.2. 
 
1. Input (T), where tube T, includes solution space of 
DNA sequences to encode all ln possible assignment of 
colors to the vertices of the given graph G. 
2. For j = 1 to n 
3.       For s = 1, 2, 3, ... , l and all k such that (j, k) ∈  E 
4.              T1 ← + (T, pjcspj) 
5.              T2 ← − (T, pjcspj) 
6.              T3 ← + (T1, pkcspk) 
7.              T4 ← − (T1, pkcspk) 
8.             discard (T3) 
9.             T =T2 ∪  T4 
10.      EndFor 
11. EndFor 
12. If Detect (T) = yes then 
13. Copy (T,( T′,T′′)) 
14. Add multiple copies of DNA strands GGGCCC to 

the test tube T′, which in turn produces partial double 
stranded DNAs with restriction site 

GGGCCC
CCCGGG  

15. Add the restriction enzyme SmaI to the test tube T′, 
it cuts the restriction site 

GGGCCC
CCCGGG , giving rise to the 

proper coloring of the vertices of the given graph. 
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16. Add DNA strands that represent the edges of the 
graph to the test tube T′. 

17. Generate all possible walks of different length in the 
test tube T′. 

18. T′← (T′,=112) 
19. If Detect (T′) = yes then 
20. For 1 ≤ j, k, l, m ≤ n, j  ≠ k ≠  l  ≠ m 
21.            T′← + (T′, vj) 
22.            T′← + (T′, vk) 
23.            T′← + (T′, vl) 
24.            T′← + (T′, vm) 
25. EndFor 
26. For r = 1 to l 
27.         For s ≠  r, 1 ≤ s ≤ l 
28.                T′← + (T′, cr) 
29.                T′← + (T′, cs) 
30.                For t = 1 to l, t ≠  r, s 
31.                      T′← + (T′, ct) 
32.                EndFor 
33.           EndFor 
34. EndFor 
35. If Detect (T′) = No then 
36. every proper coloring of the given graph G in T′′ is   

the star coloring of the given graph G. 
37. else 
38. The surface is attached with the complement of Ni, 1 

≤ i ≤ 3n, pass the content of the test tube T′ through 
this surface. The paths of length 3 which are 
bicolored will attach to the complements of Ni .The 
sequence Ni , which are free from hybridization are 
separated from the surface and pour into the test 
tube T′′ which contains all proper coloring to the 
given graph G. By PCR, keep all double stranded 
DNA in the test tube T′′. 

39. If Detect (T′′) = yes 
40.         Proper colorings in T′′ are star coloring of G. 
41. else 
42.         Star coloring is not possible 
43. else 
44.         Every proper coloring in T′′ is a star coloring 
45. else 
46.         No coloring is proper coloring. 
  
6. Conclusion 
 

DNA computing is a computational paradigm that 
provides advantages over conventional electronic 
computing techniques. 1 μmol of DNA in 1 liter of water 
contains about 1018 strands. If we consider every strand 
as a processor and that operations takes several 
minutes, 1000s, then such a DNA based computing 
would execute 1015 operations per second. If the ligation 
of two DNA molecules is considered as a single 
operation, the number of operations per second during 
the ligation step would exceed that of current super 
computer by more than thousand fold. The major 
advantage of DNA computing lies in its high parallelism. 
      In this paper, we present DNA based algorithm for 
solving star coloring problem based on biological 
operations in Adleman-Lipton model. Our algorithm can 

determine not only the star coloring but also all the star 
coloring of the given graph in polynomial time. The 
efficiency of our method can be seen from the time 
complexity of our algorithm O (n2). 
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