
I.J. Information Technology and Computer Science, 2012, 2, 56-64
Published Online March 2012 in MECS (http://www.mecs-press.org/)

DOI: 10.5815/ijitcs.2012.02.08

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

Diversity Through N-Version Programming:

Current State, Challenges and

Recommendations

Raphaël Khoury

Defence Research and Development Canada-Valcartier Research Center, Quebec, Canada
Email: Raphael.Khoury@drdc-rddc.gc.ca

 Abdelwahab Hamou-Lhadj

Department of Electrical & Computer Engineering, Concordia University, Montreal Canada
Email: abdelw@ece.concordia.ca

Mario Couture

Defence Research and Development Canada-Valcartier Research Center, Quebec, Canada, Email:

Mario.Couture@drdc-rddc.gc.ca

Robert Charpentier

Defence Research and Development Canada-Valcartier Research Center, Quebec, Canada Email:

Robert.Charpentier@drdc-rddc.gc.ca

Abstract—N-version programming is a software development

paradigm that draws upon the concept of diversity to increase the

reliability of software. The central idea is to independently produce

multiple functionally equivalent versions of a program, and

execute them in parallel. If the versions fail independently, then the

probability of multiple versions producing a faulty output on any

given input is very small; much lower than the failure probability

of any single version. In this paper, we examine and contrast

various experiments that have been performed to evaluate the

benefits of this approach and draw some conclusions. We find that

for diversity to be effective, it must be introduced in a targeted and

informed manner and encompass several phases of the software’s

development.

Index Terms—Software reliability, System design, N-version

programming, fault-tolerance

1. Introduction

Redundancy has long been used in engineering and

hardware to increase reliability and fault tolerance when

operating in an uncertain environment. The key insight is

that even if one instance fails, an alternative redundant

one is available to replace it.

This approach can also be adapted to the context of

software development. However, since every identical

instance of software will, in principle, behave in the

exact same manner when exposed to the same situation,

diversity, rather than simply redundancy, must be

employed to avoid having the defect that caused the

failure to propagate to other instances.

This idea of a diverse environment was first described

by Avizienis in
[1]

, and takes the form of N-version

programming. The guiding principle of this approach is

to produce several distinct versions of a given software,

and execute them in parallel with the same inputs. In

case of a discrepancy between the outputs of the various

instances, an output is chosen by majority voting. The

intuition behind this is that while it may be impossible to

produce a single flawless instance of any complex

system, multiple instances of this system would normally

exhibit different faults.

A recurrent goal in N-version programming is that

failure between versions should be independent.

Independence of failure can be formally defined in

several ways (see for e.g.
[2]

), and captures the intuition

that the faults occurring in each version are unrelated. In

the presence of statistical independence of failure, the

probability of two instances failing simultaneously (i.e.

on the same input) is substantially smaller than that of

the original programs, and the reliability of overall

architecture can always be improved by the

incorporation of additional diverse components
[3] a

.

Interestingly, it is, in principle, possible for an N-version

architecture to have better-than-independence failure

behavior if the incidence of failure between its

components is negatively correlated
[4]

.

While the study of software diversity for reliability

dates back to
[5]

, a new generation of researchers has

recently revisited the idea of software diversity, but in a

context of security rather than reliability and much work

has already been done on this topic. For example, Gao et

aIt is important to stress that considerable gains in reliability can be

achieved through N-version programming even in the absence of

independence of failure [14]. Independence of failure should then be
seen as a desirable goal in the development process, rather than an

essential property that must be met for N-version programming to be

valuable.

mailto:Raphael.Khoury@drdc-rddc.gc.ca
mailto:abdelw@ece.concordia.ca
mailto:Mario.Couture@drdc-rddc.gc.ca
mailto:Robert.Charpentier@drdc-rddc.gc.ca

 Diversity Through N-Version Programming: Current State, Challenges and Recommendations 57

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

al.
[6] [7]

 propose architecture for intrusion detection,

analogous to that of N-version programming, in which

multiple versions of a system are run in parallel. An

intrusion can then be detected by the abnormal

divergence in the behavior of the multiple instances. In

the same vein other researchers have also argued that

there are substantial benefits to the use of diversity in

anti-virus software
[8]

. Schneider
[9]

, and Littlewood et al.
[10]

 discuss some of the issues involved in using diversity

for security purposes. This line of research also

intersects the emerging idea of breaking the software

monoculture, defined as the tendency of having multiple

connected computers running the same software
[11]

.

Researchers drawing an analogy from biological systems

have argued that the presence of a monoculture in a

network exposes it to a substantial security risk, as

identical softwares can be compromised simultaneously

by the same attack vector. In this context, diversity can

also be employed to decrease the attacker’s knowledge

of the target system’s implementation details, thus

making it harder for him to engineer a successful

intrusion.

The renewed interest in N-version programming

motivates us to revisit earlier research on this topic.

Much of our knowledge about how to build effective N-

version architectures comes from experiments that have

been conducted in academic or industrial settings. In this

paper, we review some of these experiments and contrast

their conclusions. The object of this paper is to

synthesize the lessons learned from these experiments on

developing reliable software, rather than to exhaustively

survey all research related to software diversity. We

further identify open questions and remaining challenges

and suggest possible avenues of solution. While we

chose to focus specifically on experiments aimed at the

development of highly reliable systems as this was the

main object of most of the experiments conducted with

N-version architectures, we believe this study would be

useful to researchers and practitioners working in any of

the related fields of dependability, availability, reliability,

or security.

Throughout the remainder of this paper, we will use

the following terminology:

Reliability is defined as the probability of a system or

a component to perform its required functions under

stated conditions for a specified period of time. In other

words, reliability is the probability of failure-free

software operation for a specified period of time in a

specified environment
[12]

.

N-version programming is a programming paradigm

that consists in independently generating N functionally

equivalent programs. Each of the independently

generated programs is termed a version or an instance. A

system that contains an element of N-version

programming is N-version architecture.

A failure occurs when a resource does not deliver the

expected service
[13]

. The cause of a failure is a fault.

Fault tolerance describes the capacity of a system to

continue to provide correct service in the presence of

faults.

Of particular interest in the context of N-version

programming are coincident failures. Two failures

present in two different instances are coincident if they

both occur when the instances are fed the same input,

indicating the possible presence of a common fault

between the two instances. Observe that this definition

does not require that both instances return the same

erroneous output.

The remainder of this paper is organized as follows. In

Section 2, we survey several experiments that have been

conducted in an academic setting to evaluate the

feasibility of using N-version programming to increase

the reliability of systems. In Section 3, we analyze the

results of these experiments to uncover the challenges

and research opportunities. Concluding remarks are

given in Section 4.

2. Current State of the Art
We have reviewed several studies that focus on

diversity of N-version programming techniques. We

found that the proposed approaches can be categorized

based on the software layer in which diversity is

introduced. We distinguish between four main layers:

diversity of implementations, diversity of the

programming languages, design diversity, and finally

data diversity.

2.1 Diversity of Implementation

The choice of the layer or layers that are to be

diversified is the most central question arising when

developing an N-version architecture, as alternative

choices differ greatly with respect to both cost and the

level of failure independence that can be achieved.

Generally speaking, experiments have shown that the

earliest diversity is introduced in the development

process; the more likely it is that the final product will

exhibit independence of failure.

The most common strategy is to develop several

instances from the same specification, and using the

same programming language. This is, for instance, the

strategy used by NASA
[14]

, Campbell et al.
[15]

, Shimeall

et al.
[16]

 and Knight et al.
[17]

. In the former experiment,

a software that determines the acceleration of a vehicle

was coded 20 times by 20 teams of coders, in 4

universities. All teams proceeded using the same

specification and worked in isolation. Results were not

completely encouraging. For instance, in the NASA

experiment, despite the fairly low rate of occurrence of

failures of each version, the various instances exhibited a

higher rate of coincident failures than would have been

expected if failures were completely independent. As

the authors starkly conclude: “Coincident failures

occurred at rates that greatly exceed the rates expected

by chance under the assumption of independence.” And

furthermore: “The assumption if independence is clearly

not justified”.

Common faults leading to coincident failure between

two or more systems seemed to have two causes:

difficulties on the part of the programmers in

manipulating the complex mathematical objects needed

to solve the problem at hand, and misunderstandings of

58 Diversity Through N-Version Programming: Current State, Challenges and Recommendations

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

the specification. In the latter case, it must be stressed

that ambiguities in the specification cannot be faulted for

the coincident failures since in the worst case at most 6

of the 20 versions exhibited a given fault. Dissimilar

faults causing coincident failure were also observed.

Similar results were found by Knight et al. who

developed 27 versions of a launch interceptor, all in

Pascal, and from the same specification and subjected

the resulting programs to one million input tests. The

reliability of the 27 instances was very high, with 6

instances exhibiting no failure for any the one million

inputs tested, and every other being successful for over

99% of inputs. There were, however, a number of cases

in which multiple (up to 8) versions failed for the same

input. Using a statistical analysis, Knight et al. showed

that the occurrences of common failures were higher

than would have been expected under an assumption of

independence. They concluded categorically that: “the

assumption of independence of errors that is

fundamental to the analysis of N-version programming

does not hold” (emphasis in original). Indeed, about one

half of all failures involve at least two instances.

In subsequent work
[18]

, Brilliant et al. re-examined the

results of this experiment and try to identify, amongst the

possibilities listed above, the main cause of coincident

failures. They found that there are a number of cases of

faults that are not logically related (in the sense that they

reflected the same or similar mistakes, and occurred in

the processing of the same part of the problem), and yet

produce coincident failures. This is explained by the fact

that in these cases, both faults involve mishandling

inputs that share a certain specific characteristic. It is not

so much that the same mistakes were made in

programming as that the inputs creates conditions which

the programmers did not anticipate. Rather than

logically related faults, the authors propose reasoning

about input domain related faults, which occur when a

given input value triggers certain execution paths. The

extent of failure correlation thus depends on the

proportion of inputs which lie inside the failure region.

This result argues in favor of data-based diversity as

seen in
[19]

.

A similar experiment was conducted by the University

of Iowa and the Rockwell/Collins Avionics Division
[20]

.

12 programming teams of graduate students

independently designed, coded, and tested 12

computerized airplane landing systems in C, from a

single specification. The purpose of this experiment was

to test a software development paradigm specifically

tailored to the development of highly diverse N-version

software. The results showed great benefits to using

this development paradigm. Despite extensive testing,

only two pairs of common faults were found between the

12 instance programs. Furthermore, 3-version

architectures with output voting exhibited, on average a

seven-fold improvement in reliability compared with

single version, while deploying these same 12 programs

in 5-version architectures yielded an average

improvement in reliability by a factor of 7. When the

architecture considered the timing of the occurrence of a

failure, rather than simply contrasting outputs, the

benefits of diversity where even more evident, with the

3-version architectures being on average 12 times more

reliable than single versions, and no coincident failures

detected in the 5 version architecture.

The final experiment in N-version programming at the

implementation layer which we will examine is that

performed by Shimeall et al.
[16]

. The goal of this

experiment was to compare the efficiency of N-version

programming against that of other fault-detection

techniques, and determine if the cost incurred by

developing multiple instances of the same software

could be offset by a reduction in the costs of verification

and validation.

Their experiment was performed using eight programs

coded in Pascal from the same specification of a system

that models the movements of military units. Each of

the versions was subjected to five different fault

detection or fault tolerance techniques, namely: code

reading by step-wise abstraction, data flow analysis,

runtime-assertions, functional testing and 3-version

voting. The 3-version voting was conducted by

subjecting each instance to 10 000 randomly generated

inputs and checking the behaviour of the architecture for

each of the 56 possible triplets.

Interestingly, the authors found that faults that were

tolerated were not the same as those that were detected

using traditional fault detection techniques. A total of 67

distinct faults were tolerated (by at least one triplet) but

not detected (the total number of faults was not given).

Conversely, only 24 of the 103 faults that caused

coincident failures were detected by any of the fault

detection techniques used. These results strongly suggest

that N-version programming and fault detection should

be seen as complementary tools rather than alternatives.

The authors also hypothesize that this result indicates

that the faults that cause coincident failures are amongst

the most difficult to detect.

Taken together, these experiments seem to play in

favor of using multiple instances to increase reliability,

despite the observed absence of failure independence.

However, the absence of statistically verified failure

independence is troublesome, as it indicates that the

reliability gains associated with N-version programming

are not as great as we could have hoped. It is thus

necessary to investigate whether or not introducing

diversity at another layer of software development would

provide better results.

2.2 Diversity of Programming Languages

Since diversifying only at the level of the

implementation alone is insufficient to ensure

independence of failure between the instances, an added

measure of diversity can be introduced by diversifying

both the implementation and the programming language

i.e., developing each instance in a different programming

language. This is the strategy taken by Gmeiner et al.
[21]

,

Avizienis et al.
[22] [23]

 and Adams et al.
[24]

. In the latter

case, N-version architectures built using the same

programming languages were compared to architectures

 Diversity Through N-Version Programming: Current State, Challenges and Recommendations 59

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

built using different programming languages.

In the experiment conducted by Avizienis et al., six

teams of two developers each produced a flight simulator.

Every team was working from the same specification,

written in English, and each team was assigned a

different programming language. The six programming

languages chosen for the experiment were C, Pascal,

Ada, Modula-2, Prolog and T. These six languages

cover a broad spectrum of programming paradigms since

two are procedural languages, two are object-oriented,

one is logic programming and one is functional

programming. A similar experiment had been

performed by Gmeiner and Voges
[21]

 in 1979. In this

experiment, safety-critical software, a reactor safety

system, was coded in three instances, from a single

specification, using three different programming

languages, namely IFTRAN, Pascal and PHI2.

While the hypothesis of failure independence was not

formally tested, these experiments show that substantial

improvements in reliability can occur through the use of

this type diversity. Coincident failures were rooted in

misunderstandings or ambiguities of the specification.

Adams et al.’s experiment is particularly revealing

since it contrasted diversity introduced at the layers of

implementation and programming language in a

controlled setting and tested the hypothesis of

independence. In effect, Adams et al. repeated the

experiment from
[17]

 using two sets of programs coded

using two different programming languages, namely

Modula-2 and PROLOG. As was the case in the

experiments conducted by Avizienis et al. and Gmeiner

et al., it was hypothesized that a high level of diversity

could be achieved using these two languages since they

are based upon different programming paradigms.

 The experiment was conducted using six

Modula-2 programs and 5 PROLOG programs, coding

the same launch interceptor as was used in
[17]

. These

programs were then subjected to 9878 input tests and in

each case the output of each version was contrasted

against that of a gold version to determine its level of

reliability.

Adams et al.’s data shows that the hypothesis of

independent failure is not warranted if two versions are

coded using the same programming languages, with

common failure occurring between one and two order of

magnitudes more frequently than would be the case if

failure was independent. However, their analysis shows

that using two versions written using different

programming languages increases the chances to achieve

true independence of failure.

A recent investigation by van der Meulen et al.
[25]

adds

credibility to these results. Their research was

conducted with upwards of 36,000 programs submitted

by students to a contest website. The programs were

written in C, C++ and Pascal and computed a well

known mathematical formula. The programs were tested

using a 2-Version approach with randomly selected pairs

of programs. A failure is detected if the two instances

returned different result. In a second phase, the same

experiment was repeated for 61 different problems, with

a combined total of 89,402 programs, in order to

generate a statistically significant dataset. Interestingly,

the authors found that the size of the pool of programs

from which those in a 2-version architecture were drawn

does not affect reliability. Van der Meulen et al. found

that the effectiveness of this approach for the more

unreliable programs is close to the independence of

failure assumption. For more reliable programs, the 2-

version architecture still brought improvements in

reliability in the order of 100 on average. The authors

also found that different programmers using different

programming languages did tend to make different faults,

leading to lower rate of coincident failures.

2.3 Diversity of Specification and Design

In several of the experiments discussed above, the

principal causes of common faults were

misunderstandings of the specification or outright errors

in the specification. It is thus natural to ask if better

results could be obtained by introducing diversity in the

design phase of software development. This is the

strategy that was used by Avizienis et al.
[25], [5]

 and
[26]

 in

an experiment conducted at UCLA and by the PODS

project on diverse software
[27]

, a collaborative research

project aimed, amongst other objectives, at evaluating

the effectiveness of N-version programming.

In the UCLA experiment, a single specification for an

airport scheduler was written in English, and in the

specification languages OBJ and PDL. 18 programs

were then produced in PL/1, of which seven were

constructed from the OBJ specification, five from the

PDL specification and six from the English specification.

The programs were tested with 100 inputs.

The percentage of good outputs ranged from 35% to

98%. 21 common faults have been identified. Of these,

five were rooted in common specification errors; seven

resulted from logic errors made by the programmers and

nine from implementation errors. The 18 instances were

then arranged into the 816 possible combinations of

three programs, and execution in a 3–version

architecture with majority voting.

 The results of this experiment do not indicate

that 3-versions built from three programs written from

different specifications are more reliable than those built

from programs written using the same specification. The

authors did not advance an explanation of this somewhat

surprising result. One possibility is that this results from

the fact that specification errors, which were the most

frequent source of common faults between the instances

in other experiments, were in this case the rarest source

of common faults.

The experiment conducted as part of the PODS project
[27]

 was even more thorough in introducing diversity in

every step of the development process simultaneously.

Three instances of a reactor over-consumption protection

system were developed independently. Each

development team produced its own software

specification from a customer-supplied requirement

specification, and then produced an implementation

accordingly. Two teams used Fortran and the third used

60 Diversity Through N-Version Programming: Current State, Challenges and Recommendations

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

assembly code. Yet another layer of diversity was

introduced by supplying each team with one of two

possible power consumption calculation algorithms.

Finally, the programs also differed with respect to the

kind of testing that was applied to them during a

verification phase.

The three programs were then tested against each

other to detect residual faults by comparing outputs

values. The three versions contained a total of seven

faults, of which six were attributable to mistakes in the

original customer specification, and the last related to

ambiguity in one of the software specifications (written

by the development team). There were two common

faults, both of which arose from the customer

specification.

Experiments in 3-version voting show substantial

improvement in reliability over a single version

architecture. Indeed, the failure rate of the N-version

architecture was substantially lower failure rate than any

of the single versions composing it, thought the rate of

coincident failures is not reported.

Another interesting conclusion of the approach is that

iteratively improving the component comprised in a N-

version architecture does not result in correspondingly

monotonic gains in reliability for the overall system.

Instead, the majority vote failure rate seems to reach a

series of “plateaux”, and does not improve until several

corrections have been brought to every version.

2.4 Data Diversity

As a final alternative, diversity can be introduced at the

level of the data manipulated by software. This strategy

was suggested by Ammann et al.
[19]

. For most complex

systems, any given input can be expressed in a number

of different but equivalent ways. For instance, the

specifications have some tolerance when it comes to

input values. Experiments show that for many faults, a

given input will cause an error to occur even though

another equivalent input value will not. Faults can thus

be detected by inputting multiple re-expressions of the

same value and correlating the results.

Each input is passed through a rewriting algorithm to

generate a series of equivalent inputs. Alternatively, if it

is not possible to find an equivalent input, the input

could be distorted, and the distortion removed on the

output. The set of input values for which a given

program returns an invalid value is called the failure

domain of this program. The possibility of using data

diversity to increase reliability or tolerate faults is thus

contingent on the capacity to generate alternative input

values that lie outside of a given failure domain, even if

the original input does not. Since failure regions vary

greatly in size, the difficulty of successfully using this

technique varies accordingly.

Ammann et al. conducted an experiment to evaluate

the efficiency of this technique on a program that

simulates the decision procedure of a hypothetical

antimissile missile launch system. The experiment was

performed for both 3-copies and 5-copies diversity, with

voting performed by majority vote. Input data

associated with seven known faults was used. In both

cases, four faults were successfully tolerated and three

were not.

An open question that deserves future attention is to

identify exactly which faults are more likely to be

tolerated using data diversity. Unfortunately, this method

seems ill-suited to tolerate faults arising from

misunderstandings of the specification, which is the

main cause of coincident failure in other diversity based

architectures.

One of the main benefits of introducing diversity at the

level of the data is that multiple copies of the same

program can be used (N-copies instead of N-versions).

This greatly reduces the costs associated with the method.

Furthermore, since the alternate inputs are automatically

generated, it should be possible to experiment with a

very high number of diverse instances without incurring

prohibitive overhead costs. However, voting can be

problematic since the various inputs may return different

acceptable (equivalent) outputs, with no clear majority.

This strategy is not mutually exclusive with the other

design diversity approach discussed above, and they

could be used complementarily. It remains to be seen if

the complementarily between these approach can be

used to successfully tolerate faults that resist to either

approach when they are used independently.

2.5 Summary of the Techniques

Table 1 summarizes how the experiments surveyed in

this paper can be classified with respect to the following

criteria. The level of communication allowed between

development teams is not shown in this table since in

every experiment, teams where allowed the same

minimal level of communication.

 The layer where diversity is introduced: As

can be seen in the discussion above, diversity

can in principle be introduced at any layer of a

program’s development or usage. This choice is

consequential in several respects, but most

importantly w.r.t. whether or not failure

independence between the instances is achieved.

 The number of instances present in each

diversified layer: In the context of increasing

reliability, N-version programming can be

constructed for any value of N greater than two.

Different Ns have been used as shown in the

table.

 The method used to correlate the instances:

This refers to the way instances of a diverse

architecture are compared including

input/output correlation and comparing a

running instance with a gold version.

 The method by which diversity is introduced

in the development: We distinguish between

two methods by which diversity can be

introduced in a given architecture. Random

diversity occurs as a result of the unique

experience and intuition of each programmer.

If this path is taken, then the specifications and

programming instructions given to the

developers of each instance should be minimal,

thus giving maximal leeway to each developer

 Diversity Through N-Version Programming: Current State, Challenges and Recommendations 61

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

or developing team to make design decisions. This is contrasted with required diversity, in

which the developers of each instance are

purposefully given different instructions, with

the object of maximizing diversity between the

instances.

 The level of isolation of the teams developing

the various instances: In all experiments, a

fairly rigid protocol was used to prevent any

kind of collaboration between the developers of

the various instances. Only form of

collaboration was generally allowed: requests

for clarifications about the specification were

broadcast to all developers. In principle, other

channels of communications could be

considered permissible.

Table 1: Summary of the experiments in diversity for reliability

Experiment Layer Source of

diversity

Correlation Number of

Instances

Main Conclusions

Gmeiner and

Voges [21]

Programming

languages

Random Input/output &

intermediate steps

3 The faults detected by correlating the N-versions are not the same as

those detected using traditional fault detection techniques.

The Design

Diversity

Experiment
[26],[5]

Specification Random Input/output 18, arranged in

816

combinations
of 3-versions

There was no noticeable gain from introducing diversity at the level of

the specification, rather than at the implementation. However, the

number of common faults rooted in the specification seems diminished.

PODS [28] Specification,

programming
language,

algorithm and
testing

Random Input/output 3 N-version is effective at reducing the rate of failure.

Improvements to the instances of an N-version architecture do
immediately result in corresponding gains in reliability for the overall

system. Instead, the failure rate reaches a series of “plateaux”, and does

not improve until several corrections have been brought to every
version.

Knight and

Leveson [17]

Implementation Random Input/output 27 copies,

tested in 3-
versions

Common failure occurred at a rate far higher than would be expected

under the assumption of independence.

“[T]he assumption of independence of errors [...] programming does

not hold.”

6-language

Experiment
[22]

Programming

languages

Random Input/output 6, tested in

both 3- and 5-

versions

Substantial improvements can occur through the use of N-version

programming.

Reliability is increased by using a higher value of N.

NASA [14] Implementation Random Consistency
Relation

20 “Coincident failures occurred at rates that greatly exceed the rates
expected by chance under the assumption of independence.” “The

assumption if independence is clearly not justified”.

Nonetheless, the use of N-version programming seems justified to

increase reliability.

Shimeall and
Levenson[16]

Implementation Random Input/output and a
gold version

8, tested in 3-
versions

The faults causing common failure are not the same as those which
are easier to detect using other fault detection methods. Conversely,

faults that are tolerated may not be detected.

Adams and
Taha [24]

Programming
Language and

Programming

paradigm

Requiere
d

Input/output 7 versions
coded in 2

programming

languages.

Independently written programs written using the same programming

language do not exhibit independence of failure.

Using two versions written using different programming languages is

sufficient to achieve true independence of failure.

Data
Diversity [19]

Data N/A Input/output N/A Exhibits a substantially lower cost compared with the other layers
where diversity may be introduced.

Lyu and He
[20]

Implementation Random Input/output, and

time of occurrence

of the fault

12 versions,

arranged in

both 3- and 5-
versions

Average improvements in reliability on the order of 7-fold for 3-

version architectures with output voting and 12-fold for 5-version

architecture.

Event greater gains in reliability occur when the timing of a fault is

taken into consideration.

Van der
Meulen and

Revilla[25]

Implementation
and Language

Random Input/output 2-versions,
chosen from a

pool of 36,123

programs

The failure rate exhibited by the 2-versions is close to independence
of failure for unreliable programs, and the approach exhibits substantial

improvements even for the more reliable ones.

The use of different programming languages is an effective way to
increase the rate of coincident failures between the versions.

62 Diversity Through N-Version Programming: Current State, Challenges and Recommendations

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

3. Challenges and Recommended Solutions

In this section, we elaborate on the main conclusions

that can be drawn from surveying the various

experiments that have been performed in using diversity

and suggest perspectives for future research.

First, independence of failure has been seen by

multiple authors as an important goal in the development

of multiple versions. However, the experiments detailed

above disagree with respect to whether or not

independence of failure is achieved through independent

development. Unfortunately, most of the experiments do

not provide data about whether or not failure

independence has been achieved. Table 2 summarizes

the only results that are given.

Table 2: Independence of failure in experiments

Experiment Layer Independence of
failure achieved

NASA [14] Implementation No

Adams and Taha [24] Programming

Language

Yes

Adams and Taha [24] Implementation No

Knight Leveson [17] Implementation No

As is clear from this table, different development

teams working from the same specification may not

achieve independence of failure. The use of alternative

specifications and programming languages is thus clearly

warranted. Introducing diversity at different layers

however would also affect the cost and the risks due to

the difficulty of the approach. There is therefore a need

to study the tradeoffs between accuracy of the approach,

cost, and associated risks.

The sources of coincident failures are another

important topic of discussion. In Table 3, we list the

main causes of coincident failures that have been

identified. The table also shows the experiments in

which has been reported.

Table 3: Main causes of coincident failures

Source of Coincident failures Experiment

Misunderstanding of the
specification

[14], [22]

Ambiguous or erroneous

specification

[21], [27]

Common programming error or

unexpected input case

[14], [17], [24], [16]

Each of these elements should be tackled

independently. In the first two cases (misunderstanding

and erroneous specifications), the number of faults

arising in the specification could be effectively reduced

through the use of formal specification languages and

other formal methods. Tackling the third may prove

more difficult and necessitates that every instance be

developed with care. In fact, this result indicates that N-

version programming, while useful to increase the

reliability of systems, is not a substitute for good

programming practices.

Another central question in any N-variant architecture

is the number of instances that should be developed (i.e.

the value of N). As discussed above, only one study,

that of Avizienis et al.
[22]

, experimented with several

possible values. The choice of N raises several

interesting questions: is increasing the value of N an

effective way to increase the reliability of the overall

architecture or to reduce the number of coincident

failures? If this is the case, how can we balance the

increase in reliability with the increase in costs

associated with developing more instances of the desired

software?

Partial answers to these questions are given in a

theoretical study by Eckhardt et al.
[2]

. They show that in

the presence of common faults, a higher number of

instances are required to achieve the same reliability than

would be the case if failures between the instances were

completely independent. Furthermore, if the number of

coincident failures is high, then there exists an optimal

value of N, and increasing the number of instances in the

system above N will lead to a decrease in reliability.

This result indicates that preliminary research suggesting

that highly reliable systems could be built from

unreliable components simply by multiplying the

number of components does not bear out. Instead, every

instance comprised in an N-version architecture must be

built with care if the overall architecture is to exhibit a

high reliability. This confirms the result of
[27]

 to the

effect that improving the reliability of an N-version

architecture necessitates improvement to every

component.

In all cases which we have studied, the multiple

instances were developed in isolation, with an

expectation this would increase the amount of diversity

between them. While this hypothesis is intuitive, it, like

any other, must stand the test of experiment before it is

validated and adopted. In this respect it is important to

recall that the main causes of common faults in several

experiments were misunderstandings of the specification,

and difficulty in dealing with unexpected conditions of

the input value. Allowing discussions between the

programmers with respect to these points would reduce

the occurrences of such faults while not unduly

restricting the amount of diversity between the instances.

It is clear from the experimental data that enforced

diversity achieves better results than random diversity.

Indeed, even when given broad liberty as to how to

implement a given specification, programmers often

made similar design choices, thus leading to a reduction

in the amount of diversity of the overall architecture, and

often to an absence of failure independence. A higher

level of diversity is thus achieved by imposing different

choices (such as alternative programming languages or

algorithms) on each development team. The experiments

surveyed above indicate that diversity at the level of the

specification and algorithms are particularly desirable.

Pushing this conclusion further, the results of the

experiments we surveyed strongly argue in favor of

 Diversity Through N-Version Programming: Current State, Challenges and Recommendations 63

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

tailored diversity
[10]

, in which the different

specifications given to the developers of each instance

are calculated so that one instance is more likely to fail

in those cases where another is more likely to succeed.

Such an approach to the design and selection of diverse

components has been longstanding practice in hardware

fault tolerance, and should be applied to software

diversity as well.

Throughout this paper, we have discussed the issue of

“increasing the amount of diversity” between instances,

echoing similar language in present in the original

articles we surveyed. However, very little headway has

been made in quantifying objectively how much

diversity exists between two instances. Lyu et al.
[28]

,

propose to use software metrics such as number of lines

of code and number of modules as a rough guide to how

different two instances of the same software are.

However, these techniques do not take into account the

control flow of the running instances, which reveals

important insights in the way the instances behave. A

future direction should therefore be correlating the

behavior of instances based on execution traces and

other types of run-time information. We believe that this

would allow a more objective comparison.

While this paper is chiefly concerned with research

aimed at developing reliable software, concurrent thread

of research has sought to harness the potential of

diversity to improve the security of software
[10]

. There

are several parallels between these two problems. For

instance, faults causing reliability failures can also be

exploited by an attacker to gain unauthorized access to

the system. However, several important distinctions

must also be stressed, for instance, as observed in
[9]

,

important security attributes such as confidentiality

cannot be improved by replication. Adapting the

paradigm of N-version programming to the issue of

security will thus necessarily involve the development of

an alternative reasoning framework, more suited to

achieving security goals.
Another useful avenue for future research is to

develop a reasoning framework that will allow us to

evaluate objectively how much reliability is gained by

the introduction of diversity in an architecture in

different manners. How can we compare, for example,

an N-version architecture consisting of N instances, built

from the same specification, but using different

programming languages with another architecture in

which the versions are developed from different

specifications but using the same programming language?

To answer this question, we first need to investigate

pragmatic ways to measure how much diversity exists

between two instances of an N-version architecture. In

this respect, it is important to note that only some aspects

of an architecture are diversified. For example, the

instances may share the same specification or the same

operating system, but differ on the level of the source

code and system libraries. Diversity metrics would

guide further research in determining the optimal layers

where diversity should be injected.

5. Conclusion

In this paper, we discussed the various strategies for

implementing the N-version programming paradigm to

inject diversity in a software system. The surveyed

studies vary mainly depending on the software layer in

which diversity is introduced. Though an important

objective of diversity is to achieve independence of

failure, most surveyed studies did not clearly show that

this objective was attained. We also discussed in this

paper the main challenges along with research

opportunities of N-version programming including the

necessity to study ways to select an optimal N for

diversity to be effective, the challenges related to the

method by which diversity is injected, the ways various

instances of a diversified environment need to be

correlated, and the need to conduct cost-effectiveness

analysis of a diversity solution. Despite these challenges,

we believe that N-version programming has good

potential of becoming the design solution of choice for

making critical systems more reliable.

We would also like to point out that reliability is just one

of several attributes describing two interconnected goals

of dependability and security. The other attributes are

availability, safety, integrity maintainability and

confidentiality. Each of these attributes imposes

constraints and objectives to system developers, and

diversity may play a role in all cases. It is certain that the

lessons learned in studying the use of diversity in the

context of reliability can be transferred to the use of

diversity to ensure the other attributes mentioned above.

References

[1] A. Avizienis. The N-Version Approach to Fault-Tolerant

Software. 1985, IEEE Transactions on Software Engineering

11 (12), pp. 1491--1501.

[2] D. E. Eckhardt, Jr. and L. D. Lee. A theoretical basis for

the analysis of redundant software subject to coincident errors.

NASA Technical Memorandum 86369, 1985.

[3] B. Littlewood, P. Popov and L. Strigini. Modelling

software design diversity - a review. ACM Computing Surveys.

ACM, June 2001, 33(2), pp. 177-208.

[4] D. Partridge and W. Krzanowski. Distinct Failure Diversity

in Multiversion Software. University of Exeter, U.K., 1997.

[5] A. Avizienis. The N-Version Approach to Fault-Tolerant

Software. 1985, IEEE Transactions on Software Engineering

(TSE) 11(12), pp. 1491-1501.

[6] D. Gao, M. K. Reiter and D. Song. Behavioral Distance

Measurement Using Hidden Markov Models. In Proceedings

of the 9th International Symposium on Recent Advances in

Intrusion Detection (RAID 2006), Hamburg, Germany,

September 2006

[7] D. Gao, M. K. Reiter and D. Song. Behavioral Distance

for Intrusion Detection. In Proceedings of the 8th International

Symposium on Recent Advances in Intrusion Detection (RAID

2005), Seattle, WA, USA, September 2005

64 Diversity Through N-Version Programming: Current State, Challenges and Recommendations

Copyright © 2012 MECS I.J. Information Technology and Computer Science, 2012, 2, 56-64

[8] I. Gashi, et al. An Experimental Study of Diversity with

Off-the-Shelf AntiVirus Engines. In Proceedings of The Eighth

IEEE International Symposium on Networking Computing and

Applications (NCA). Cambridge, Massachusetts , USA. 2009.

pp. 4-11.

[9] F. B. Schneider. Beyond traces and independence.

Dependable and Historic Computing. Essays Dedicated to

Brian Randell on the Occasion of His 75th Birthday, Lecture

Notes in Computer Science, Vol. 6875 (Cliff Jones and John

Lloyd, eds). Springer Verlag, 2011, 479--485.

[10] B. Littlewood and S. Lorenzo. Redundancy and Diversity

in Security. In Proceedings of the 9th European Symposium on

Research in Computer Security (ESORICS 2004), Sophia

Antipolis, France, September, pp. 423-438, Springer-Verlag,

Lecture Notes in Computer Science 3193, 2004.

[11] D. Williams et al. Security through Diversity: Leveraging

Virtual Machine Technology. IEEE Security & Privacy. 2009,7

(1), pp. 26--33.

[12] ANSI/IEEE. Standard Glossary of Software Engineering

Terminology. STD-729-1991, 1991.

[13] A. Avizienis and J. Kelly. Fault Tolerance by Design

Diversity: Concepts and Experiments. 1984, Computer 17(8),

pp. 67 - 80.

[14] D. E. Jr. Eckhardt et al. An experimental evaluation of

software redundancy as a strategy for improving reliability.

NASA, 1990.

[15] R. Campbell et al. Preliminary design of the redundant

software experiment. NASA, 1985.

[16] T. Shimeall and N. Levenson. An Empirical Comparison

of Software Fault Tolerance and Fault Elimination 1991, IEEE

Trans. Software Eng. 17(2), pp. 173-182.

[17] J. Knight, and N. Leveson. An Experimental Evaluation

of the Assumption of Independence in Multiversion

Programming. 1986, IEEE Trans. Software Eng.

[18] S. Brillant, J. C. Knight, and N. Levenson. Analysis of

Faults in an N-Version Software Experiment. 1990, IEEE

Transactions on Software Engineering (TSE), 16(2), pp. 238-

247.

[19] P. Ammann, and J. C. Knight. Data Diversity: An

Approach to Software Fault Tolerance. 1988, IEEE Trans.

Computers, pp. 418--425.

[20] M. R. Lyu and Y. He. Improving the N-Version

Programming Process Through the Evolution of a Design

Paradigm. IEEE Transactions on Reliability. 1993, Vol. 42, 2,

pp. 179-189.

[21] L. Gmeiner, L. U. Voges Software diversity in reactor

protection systems: an experiment. In Proceedings of the

IFAC Workshop SAFECOMP 1979.

[22] A. Avizienis, M. R. Lyu and W. Schutz. In Search Of

Effective Diversity: A Six-Language Study Of Fault-Tolerant

Flight Control Software. Tokyo, Japan. Proceedings of the 18th

International Symposium on Fault-Tolerant Computing (FTCS-

18) 1998. pp. 15-22.

[23] M. R. Lyu, and A. Avizienis. Assuring Design Diversity

in N-Version Software: A Design Paradigm for N-Version

Programming. In Proceedings 2nd IEEE International Working

Conference on Dependable Computing for Critical

Applications, Tucson, Arizona, February 18-20 1991, pp. 89-

98.

[24] J. M.Adams, and A. Taha. An experiment in software

redundancy with diverse methodologies. In Proceedings of the

Twenty-Fifth Hawaii International Conference on System

Sciences. .Kauai, HI, USA pp. 83-90.

[25] A. Avizienis. Design diversity: an approach to fault

tolerance of design. AFIPS Press, 1984. In Proceedings if the

AFIPS National Computer Conference. Las Vegas, Nevada,

California pp. 163-171.

[26] A. Avizienis and J. P. L. Kelly. A specification-oriented

multi-version software experiment. In Proceedings of the

Thirteenth International Symposium on Fault Tolerant

Computing (FTCS 13) Milan , 1983.

[27] P. Bishop et al. PODS—A project on diverse software..

1986, IEEE Trans. Softw. Eng.12(9), pp. 929--940.

[28] M. R. Lyu, J.-H. Chen, and A. Avizienis. Software

Diversity Metrics and Measurements. In proceedings of the

Sixteenth Annual International Computer Software and

Applications Conference (COMPSAC '92), Chigaco,. IL USA.

1992. pp. 69-78.

Raphaël Khoury: Postdoctoral fellow at the Defence

Research and Development Canada-Valcartier Research Center,

Quebec, Canada.

Abdelwahab Hamou-Lhadj: Associate Professor in the

Department of Electrical and Computer Engineering (ECE) at

Concordia University, Montreal, QC, Canada.

Mario Couture: Defense Scientist at the Defence Research

and Development Canada-Valcartier Research Center, Quebec,

Canada.

Robert Charpentier: Defense Scientist at the Defence

Research and Development Canada-Valcartier Research Center,

Quebec, Canada.

