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Abstract — In  this paper we have proved that the 

solution of parabolic equation and its Fast Fourier 

Transform generate continuous wavelet transforms. 

Indeed, we have solved the parabolic equation using 

PDETool, exported its solution and coefficients to 

Matlab workspace. We have then imported the solution 

from workspace to signal processing tool. We have 

sampled the imported solution with the sampling 

frequency of 8192Hz and applied the band pass filter 

with that frequency. The convolution of the sampled 

PDE solution with the impulse response of the band 

pass filter has generated wavelet transform. This 

algorithm computes the wavelet transform either 

directly of via Faster Fourier Transform. The 

computation of the FFT of the PDE solution has 

produced complex wavelet. 

 

Index Terms — Wavelet Transform, Morlet Wavelet, 

PDE, FFT, Power Spectral Density, Matlab, Parabolic 

Equation. 

 

I. Introduction 

Wavelet analysis is an excit ing new method for 

solving difficult problems in mathematics, physics and 

engineering. They find applications in wave 

propagation, data compression, signal processing, 

image processing, smoothing and image denoising, 

finger p rint verification, pattern recognition, computer 

graphics and multifractal analysis, the detection of 

aircraft and submarines. The wavelet transform is often 

compared with the Fourier Transform [1]. Fourier 

transform is a powerful tool for analyzing the 

components of a stationary signal (a stationary signal is 

where there is no change in the properties of signal). 

The Fourier transform is less useful in analyzing non-

stationary signal (a non-stationary signal is a signal 

where there is change in the properties of signal). 

Wavelet transforms allow the components of a non-

stationary signal to be analyzed. Wavelets also allow 

filters to be constructed for stationary and non-

stationary signals [2], [3]. One of the main advantages 

of wavelets is that they offer a simultaneous localization 

in time and frequency domain whereas the standard 

Fourier transform is only localized in Frequency 

domain. Wavelets have the great advantage of being 

able to separate the fine details in a signal. Very  s mall 

wavelets can be used to isolate very fine details in a 

signal, while very large wavelets can identify coarse 

details [1]. 

In general the any order derivative of the Gaussian 

function can be employed as a mother wavelet. On the 

other hand since the Gaussian function is a low 

frequency signal, it is not suitable to be a mother 

wavelet, and the mother is usually a high frequency 

signal [4]. The hyperbolic secant/hyperbolic tangent 

differential operator family  can be useful when we need 

to process highly non-band limited signals, but where 

we do not need all of the power of the wavelets and/or 

where we wish to retain the ability to process functions 

locally (using a fundamentally local approximation). 

Such operators can be used: 

 To calculate rough, but wide-ranging, frequency 

spectrum values of unknown signals. 

 To represent high frequency signals approximately  

using only (relatively) slow integrations to correct the 

integration coefficients [5]. 

One of the fundamental questions of applied  

harmonic analysis is to obtain density conditions on the 

sequences required to discretize a continuous integral 

transform in a way that the resulting discretization is a 

frame in a certain Hilbert space. This question was 

sharply solved for the frames in the Bergmann-Fock [6], 

[7], [8] and in the Bergamann space [9]. However, in 

the case of the Wavelet and Gabor transforms, very 

litt le is known and only a few very special windows and 

analyzing wavelets are understood [10]. The short time 

Fourier (Gabor) transform with respect to a Gaussian 

window can be written in terms of the Bargmann 

transform, mapping isometrically the space 
 RL2

onto 
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the Bargmann –Fock space of the entire functions.This 

is the reason why everything is known about the 

geometry of sequences that generate frames by 

sampling the Gabor transform with  Gaussian 

windows
 

2tetg 
. A part  from this example, the 

only cases where a description is known of the lattice 

sequences that generate frames are the hyperbolic 

secant
    1

cosh


 attg
[11] and the characteristics 

function of an interval[12], which turned out to be the 

nontrivial p roblem. There is also a necessary condition 

for Gabor frames due to Ramanathan and Steger [13]. 

 

Fig. 1: 

   
2

2

1

2

1 1
2

1 t

etty



 dotted curve; 

   
1

22

2
2

1
cosh1



















 ttty

 

 

 

Fig. 2:

   
2

2

1

24

1 36
2

1 t

ettty



 dotted curve; 

   
1

224

2
2

1
cosh36



















 tttty

 

One of the reasons wavelets have found so many uses 

and applications is that they are especially  attractive 

from the computational point of view. Computational 

efficiency of wavelets lies in the fact that wavelet 

coefficients in wavelet expansions for functions in 

0V
(resolution subspace in 

 dRL2

 may be computed 

using matrix iteration, rather than by a direct 

computation of inner products: the latter would involve 

integration over
dR , and hence be computationally 

inefficient, if feasible at all. The deeper reason for why 

we can compute wavelet coefficients using matrix 

iteration is an important connection to the subband 

filtering method from signal/ image processing 

involving digital filters, down-sampling and up-

sampling. In this setting filters may be realized as 

functions 0m
on a d-torus, e.g., quadrature mirror filters 

[14].   

The wavelet transform of a signal 
)(tg

is defined as  

)1()(),(
a

dt

a

bt
tgbaw 







 
 





 

 

(the asterisk means complex conjugation) 
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and the magnitude norm is used  

.2

0

 e
a

dt

a

bt
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Eqn.(1) is a derivative of the diffusively smooth 

initial function [15] 
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The wavelet  transform is also a solution of the partial 

differential equation [16] 

)3(0),(02
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The initial value is 
)(),0( bgbw 

 

In [17] the wavelet –image is written as a sum of the 

real part and imaginary parts  

)4(),(),(),( bavbaubaw 
 

In this representation Eqn.(3) will be converted to the 

following system of partial differential equations: 
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The initial values for the real valued signals are  

)6(0),(),(),0(  bavbgbu
 

 

The complex Morlet wavelet is given by: 
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Where 

  )7(
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e
a
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
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and a and b represents the translation and scale of the 

windowed function 
 ,, th ba respectively. The term 

a

1

in Eqn.(7b) is given for energy normalization at 

different scales [18].  Fig.3 shows respectively the real 

and imaginary parts  represented by: 
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Fig. 3: Complex Morlet Wavelet  

 

The present paper has the following sections: section 

two provides the solution of parabolic Equation with 

PDETool, section three deals with the analysis of the 

PDE solution using Fast Fourier Transform (FFT), and 

we will wind with the conclusion.  

 

II. Solving Parabolic Equation with PDETool 

Wavelets and their application for the solution of 

partial differential equations in physics were discussed 

in [19]. In this paper, we have solved the parabolic 

equation using PDETool. We have considered the 

parabolic equation 

)9()( fauuc
t

u
d 



 

If
0f

then we say that the equation (9) is 

homogeneous. 

In our study we have used the following PDE 

coefficients; 

3)( tta 
; 

ttc )(
; 

tetd )(
;

ttf sin)( 
 

where  

)(tc
is the time varying coefficient of conductivity 
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)(td
is the time varying  coefficient of diffusivity 

The solution u of the equation is represented in Fig.4 

and Fig.5. We have then exported the time varying PDE 

coefficients 
)()(),(),( tdandtftatc

as well as the 

PDE solution to Matlab workspace. 

 

 

Fig. 4: PDE Solution with Arrow Plot  

 

 

Fig. 5: PDE Solution with Height Plot  
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The solution u  was imported from Matlab  

workspace to signal processing tool with the sampling 

frequency of 8192Hz. This tool has three main 

components: signal section view, filter section view and 

edit as well as spectra section. These are used to 

visualize waveforms and spectra of several signals and 

make a qualified filter design. Therefore, characteristic 

properties and desired parameters of the solution have 

been estimated. In order to use the PDE solution under 

these processes the solution was imported as a real array 

of consisting of 11 column index vectors each having 

557 data points. 

There are two ways from which one can generate 

analogue wavelet transform from PDE solution: 

1. Either one can  direct ly use the PDE solution 

and apply a properly  designed band pass filter as per 

Fig.8. and Fig.9. or 

2. Alternatively one can compute the Fast Fourier 

Transform of the PDE solution and apply the same filter.  

Let 
 )(...)()()( 21 tstststs n

 

 be the sampling vector signal  

Let 
 )(...)()()( 21 txtxtxtx n

 

be the sampled vector signal  

Let 
 )(...)()()( 21 tytytyty n

 

be the response of the band pass filter  

 

Let
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 be the impulse response of the band pass 

filter  
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be nm PDE  

solution matrix where 11m and 557n  

This data matrix is a real matrix,
nmRu  , 

associated with nm points of the PDE solution. In  

this section we attempt to express the sampled vector 

signal 
)(tx

 in terms of sampling vector signal
)(ts

 as 

well as data matrix  u representing the PDE solution. 
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In vector form 
utstx  )()(

 can be written as: 
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Power of the sampled PDE solution 

From the definit ion of power the power associated to 

sampled PDE solution is given by: 
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Total power of the sampled PDE solution is: 
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Energy of the sampled PDE solution 
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Total energy of the sampled PDE solution is: 
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From Eqn. (11) we obtain: 
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By defin ition the response of the band pass filter is 

given by the convolution of the impulse response 

)(tf
of the band pass filter with the sampled vector  

signal
 )(...)()()( 21 txtxtxtx n

. 

 

Hence we get: 
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The filtered  PDE solution 
)(ty

 is shown in  Fig. 10. 

The filtered PDE solution is a modulated signal. Hence 

we have generated analog continuous wavelet transform 

from PDE solution. 

The Matlab signal processing tool shows that the 

modulated signal generated out of the PDE solution is a 

real signal. Its expression can be derived from the 

equation of complex mother Morlet equation given in 

Eqn. (7a) by equating the imaginary  part to zero. Hence 

we get 
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We can therefore see that the filter effect has generated 

a wavelet t ransform that is proportional to the 

windowed function. 
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Total Power o f the filtered sampled PDE solution can 

be computed considering it as a vector with components. 
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Energy of the filtered sampled PDE solution 






 dttyEy

2

1 )(
1

 

 








 dtdtftxu k

n

ki

i

2

1

1 )()( 

 

 



















dtdtftxu

dttyE

k

n

ki

i

y

2

1

2

2

2

)()(

)(
2



 

. 

. 

. 

 



















dtdtftxu

dttyE

k

n

ki

im

mym

2

1

2

)()(

)(



 

 

Total energy of the filtered sampled PDE solution 

can be computed considering that this  energy is a vector. 

Then the magnitude of that energy is given by the 

following formula: 
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From Eqn. (14) we get: 
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The sampled PDE solution is shown in Fig.6. It was 

computed using music method of power computation. 

The power spectral density (PSD) of the PDE solution 

is shown in Fig. 7 with minimum frequency equal to 

half of the sampling frequency. 

A stable band pass filter has been designed to analyze 

in this frequency range the PDE solution. Fig.8 

indicates the pole–zero p lot of the filter. Magnitude, 

phase response, step response, group phase delay and 

other properties of the same filter are shown in Fig.9. 

The filtering process has eliminated noise 

successfully as indicated by power spectral densities 

(PSDs) of pre-filtering and post-filtering. The filtered 

signal is a modulated signal shown in Fig.10. The PSD 

of the filtered PDE solution is shown in Fig.11.  
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Fig. 6: Sampled PDE Solution for Column Index Vector 2 

 

 

Fig. 7: PSD of Sampled PDE Solution 
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Fig. 8: Filter Pole-Zero Plot  

 

 

Fig. 9: Filter Characteristics 
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Fig. 10: Filtered PDE Solution for Column Index Vector 2 

 

 

Fig. 11: PSD of Filtered PDE Solution 

 

III. Spectrum Analysis with the FFT 

Let us now explore the frequency analysis of the PDE 

solution through the computation of the Fast Fourier 

Transform. Unlike PDE solution discussed in the 

previous section the computation of FFT generates 

points which are complex in nature. The p lot of fft(u) is 

shown in Fig.12. The complex points of the FFT of the 

PDE solution are imported from Mat lab workspace to 

Matlab signal processing tool with the same sampling 
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frequency. Fig.13, Fig.14, Fig.15 and Fig.16 show the 

real the part, imaginary part, magnitude and phase angle 

of the Fast Fourier Transform of the PDE solution 

respectively. 

 

 

Fig. 12: FFT of PDE Solution 

 

 

Fig. 13: Real Part of fft(u) for Column Index Vector 2 
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Fig. 14: Imaginary Part of fft(u) for Column Index Vector 2 

 

 

Fig. 15: Magnitude of fft(u) for Column Index Vector 2 
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Fig. 16: Phase Angle of fft(u) for Column Index Vector 2 

 

The FFT does not directly g ive you the spectrum of a 

signal. The FFT contains information between 0  

and sf
, however, we know that the sampling frequency 

must be at least twice the highest frequency component. 

Therefore, the signal‟s spectrum should be entirely 

below 2

sf

, the Nyquist frequency. Recall also that a real 

signal should have a transform magnitude that is 

symmetrical for positive and negative frequencies. So 

instead of having a spectrum that goes from 0  to sf
, it 

would be more appropriate to show the spectrum from 

2

sf


to 2

sf

 [20]. 

The computation of the FFT allows the analysis of 

the PDE solution in frequency domain. It therefore 

provides additional information to the existing ones on 

the PDE solution, especially on the power spectral 

density. The filtered real part, imaginary part, 

magnitude and phase angle of the Faster Fourier 

Transform of the PDE solution are respectively shown 

in Fig.18, Fig.19, Fig.20 and Fig.21, whereas the power 

spectral density (PSD) of the filtered Fast Fourier 

Transform of the PDE solution is shown in Fig.22. 

Let 
 )(...)()()( 21 tstststs n

  be the 

sampling vector signal  

Let  
 )(...)()()( 21 tctctctc n

  be the 

sampled vector signal  

Let 
 )(...)()()( 21 twtwtwtw n

 be the 

response of the band pass filter  

Let
)(tf

 be the impulse response of the band pass 

filter  
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be nm PDE solution matrix where 11m and 

557n . 

 

The data matrix in Eqn.(16) is a complex 

matrix,
nmZufft )(

, associated with nm points 

of the FFT of PDE solution. The Matlab  signal 

processing tool shows that the sampled PDE solution is 

a complex array consisting of 11 co lumn index vectors 

each of 557 complex data points. In this section we 
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attempt to express the sampled vector signal 
)(tc

 in  

terms of sampling vector signal
)(tx

 as well as data 

matrix  
)(ufft

representing the FFT of PDE solution.  
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In vector form 
)()()( uffttstc 

 can be written as: 

 



















































































)(

.

.

.

)(

)(

...

......

......

......

...

...

)(

.

.

.

)(

)(

2

1

21

22221

11211

2

1

ts

ts

ts

zzz

zzz

zzz

tc

tc

tc

nmnmm

n

n

m ; 

 

 

Power of the sampled FFT of PDE solution 

2

1

1

2

1 )()(
1

tsztcP k

n

ki

ic 




 

 

.

.

.

)()(

2

1

2

2

22
tsztcP k

n

ki

ic 




 

2

1

2
)()( tsztcP k

n

ki

immcm 




 

 

Total Power of the sampled PDE solution 

 

     

)17()(

)(

...

2

1

2

1

1

1

2

222

21

 



 






















m

j

k

n

ki

i

m

j

j

cccc

tsz

tc

PPPP
m

 

 

 

Energy of the sampled FFT of PDE solution 

dttsz

dttcE

k

n

ki

i

c

 





 









2

1

1

2

1

)(

)(
1

 

 

dttsz

dttcE

k

n

ki

i

c

 





 









2

1

2

2

)(

)(
2

 

. 

. 

. 



 Analogue Wavelet Transform Based the Solution of the Parabolic Equation  15 

Copyright © 2012 MECS                                            I.J. Information Technology and Computer Science, 2012, 12, 1-20 

dttsz

dttcE

k

n

ki

im

mcm

 





 









2

1

)(

)(

 

Total energy of the sampled FFT of PDE solution is 

given by: 
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Using Eqn.(17) we obtain: 
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            By defin ition the response of the band pass 

filter is given by the convolution of the impulse 

response 
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of the band pass filter with the sampled 

vector signal. 
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Total Power of the filtered sampled FFT of PDE 

solution 
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Energy of the filtered sampled FFT of PDE 

solution 
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Using definit ion and Eqn.(19),the total energy of the 

filtered sampled FFT of PDE solution is given by: 
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Fig. 17: PSD of fft  (u) 
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Fig. 18: Real Part of Filtered fft  (u) 

 

 

Fig. 19: Imaginary Part of Filtered fft  (u) 
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Fig. 20: Magnitude of Filtered fft  (u) 

 

 

Fig. 21: Phase Angle of Filtered fft  (u) 
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Fig .22: PSD of Filtered fft  (u) 

 

IV. Conclusion 

In our research we have proved that the PDE solution 

generates analogue wavelet transform. We have 

imported the PDE solution from Mat lab workspace to 

signal processing tool. We have sampled the imported 

PDE solution and applied the band pass filter to it . The 

convolution of the sampled PDE solution with the 

impulse response of the band pass filter has generated 

analogue wavelet transform. This algorithm computes 

the analogue wavelet transform either d irectly  of via 

Fast Fourier Transform. The computation of the FFT of 

the PDE solution has produced complex wavelet 

transform. The FFT provides analysis of the PDE 

solution in frequency domain. 
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