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Abstract — In this paper we have proved that the
solution of parabolic equation and its Fast Fourier
Transform generate continuous wavelet transforms.
Indeed, we have solved the parabolic equation using
PDETool, exported its solution and coefficients to
Matlab workspace. We have then imported the solution
from workspace to signal processing tool. We have
sampled the imported solution with the sampling
frequency of 8192Hz and applied the band pass filter
with that frequency. The convolution of the sampled
PDE solution with the impulse response of the band
pass filter has generated wavelet transform. This
algorithm computes the wavelet transform either
directly of via Faster Fourier Transform. The
computation of the FFT of the PDE solution has
produced complex wavelet.

Index Terms — Wavelet Transform, Morlet Wavelet,
PDE, FFT, Power Spectral Density, Matlab, Parabolic
Equation.

I. Introduction

Wavelet analysis is an exciting new method for
solving difficult problems in mathematics, physics and
engineering. They find applications in wave
propagation, data compression, signal processing,
image processing, smoothing and image denoising,
finger print verification, pattern recognition, computer
graphics and multifractal analysis, the detection of
aircraft and submarines. The wavelet transform is often
compared with the Fourier Transform [1]. Fourier
transform is a powerful tool for analyzing the
components of a stationary signal (a stationary signal is
where there is no change in the properties of signal).
The Fourier transform is less useful in analyzing non-
stationary signal (a non-stationary signal is a signal
where there is change in the properties of signal).
Wavelet transforms allow the components of a non-
stationary signal to be analyzed. Wavelets also allow
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filters to be constructed for stationary and non-
stationary signals [2], [3]. One of the main advantages
of wavelets is that they offer a simultaneous localization
in time and frequency domain whereas the standard
Fourier transform is only localized in Frequency
domain. Wavelets have the great advantage of being
able to separate the fine details in a signal. Very small
wavelets can be used to isolate very fine details in a
signal, while very large wavelets can identify coarse
details [1].

In general the any order derivative of the Gaussian
function can be employed as a mother wavelet. On the
other hand since the Gaussian function is a low
frequency signal, it is not suitable to be a mother
wavelet, and the mother is usually a high frequency
signal [4]. The hyperbolic secant/hyperbolic tangent
differential operator family can be useful when we need
to process highly non-band limited signals, but where
we do not need all of the power of the wavelets and/or
where we wish to retain the ability to process functions
locally (using a fundamentally local approximation).
Such operators can be used:

e To calculate rough, but wide-ranging, frequency
spectrumvalues of unknown signals.

e To represent high frequency signals approximately
using only (relatively) slow integrations to correct the
integration coefficients [5].

One of the fundamental questions of applied
harmonic analysis is to obtain density conditions on the
sequences required to discretize a continuous integral
transform in a way that the resulting discretization is a
frame in a certain Hilbert space. This question was
sharply solved for the frames in the Bergmann-Fock [6],
[71, [8] and in the Bergamann space [9]. However, in
the case of the Wavelet and Gabor transforms, very
little is known and only a few very special windows and
analyzing wavelets are understood [10]. The short time
Fourier (Gabor) transform with respect to a Gaussian
window can be written in terms of the Bargmann

o L*(R)
transform, mapping isometrically the space onto
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the Bargmann —Fock space of the entire functions.This
is the reason why everything is known about the
geometry of sequences that generate frames by
sampling the Gabor transform with Gaussian

_ —rt?
windows g(t)_ € . A part from this example, the
only cases where a description is known of the lattice
sequences that generate frames are the hyperbolic

-1
secant g(t)z (COSh at) [11] and the characteristics
function of an interval[12], which turned out to be the
nontrivial problem. There is also a necessary condition
for Gabor frames due to Ramanathan and Steger [13].
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dotted curve;

One of the reasons wavelets have found so many uses
and applications is that they are especially attractive
from the computational point of view. Computational
efficiency of wavelets lies in the fact that wavelet
coefficients in wavelet expansions for functions in

2 d
Vo (resolution subspace in L (R ) may be computed
using matrix iteration, rather than by a direct
computation of inner products: the latter would involve

integration over R¢ , and hence be computationally
inefficient, if feasible at all. The deeper reason for why
we can compute wavelet coefficients using matrix
iteration is an important connection to the subband
filtering method from signal/image processing
involving digital filters, down-sampling and up-
sampling. In this setting filters may be realized as

functions Mo on a d-torus, e.g., quadrature mirror filters
[14].

The wavelet transform of a signal g(t) is defined as
r [t—b)dt

w(a,b)= [g(t)y (—j— ®
c a j)a

(the asterisk means complex conjugation)

2
o 2

e 2 ) -
p(@="—eve

2z

and the magnitude norm is used

t—b
W —
a
Eqgn.(1) is a derivative of the diffusively smooth
initial function [15]

. 0" F t—b\dt
w(a,b)=a’— j g(t) wo[Tjg (2)

+00

J

—0

a

0

The wavelet transform is also a solution of the partial
differential equation [16]

”? o . o
a? % in, 2 Iwab)=0 3
( b? oa ab] (@) @

The initial value is W(0:P)=9(b)

In [17] the wavelet —image is written as a sum of the
real part and imaginary parts

w(a,b) =u(a,b) +v(a,b) (4)

In this representation Eqn.(3) will be converted to the
following system of partial differential equations:
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ou o v 2
a—:aW'FCOO%, _1(_t_aj
a 2
ha (t) = ——e b (7b)
(5) VJa
oV o%v ou and @and b represents the translation and scale of the
—=a——w,—.
oa ob? b windowed function o, (t) respectively. The term
1
The initial values for the real valued signals are T
a in Eqn.(7b) is given for energy normalization at
u(0,b) =g(b), v(a,b) =0 (6) different scales [18]. Fig.3 shows respectively the real
and imaginary parts represented by:
1 [ e ]
The complex Morlet wavelet is given by: r(t) - _Cos(zﬂt) (1—t2) g 2 (8a)
N2
t—a L i
cos a)o( 5 j and
Wa(t) = - [Pas ® (72) ] ]
+sin a)o( j ] 1 . ,\
i(t) =—=—sin(27t)| [1—t2) e 2 (8b)
N2
Where - -
Cornplex Morlet Wavelet
Irmaginary part
Fig. 3: Complex Morlet Wavelet
The present paper has the following sections: section ou
two provides the solution of parabolic Equation with d—-V(cVu)+au=f (©))
PDETool, section three deals with the analysis of the ot
PDE solution using Fast Fourier Transform (FFT), and f=0 ] )
we will wind with the conclusion. If then we say that the equation (9) is
homogeneous.

Il.  Solving Parabolic Equation with PDETool

Wavelets and their application for the solution of
partial differential equations in physics were discussed
in [19]. In this paper, we have solved the parabolic
equation using PDETool. We have considered the
parabolic equation
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In our study we have used the following PDE
coefficients;

aa)zﬁ;ca)=t;da)=e*;fa)=smt
where

c(t) is the time varying coefficient of conductivity
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c(t), a(t), f(t)and d(t)

d(t) is the time varying coefficient of diffusivity coefficients as well as the

PDE solution to Matlab workspace.

The solution U of the equation is represented in Fig.4
and Fig.5. We have then exported the time varying PDE
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Fig. 4: PDE Solution with Arrow Plot
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Fig. 5: PDE Solution with Height Plot
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The soluton U was imported from Matlab
workspace to signal processing tool with the sampling
frequency of 8192Hz. This tool has three main
components: signal section view, filter section view and
edit as well as spectra section. These are used to
visualize waveforms and spectra of several signals and
make a qualified filter design. Therefore, characteristic
properties and desired parameters of the solution have
been estimated. In order to use the PDE solution under
these processes the solution was imported as a real array
of consisting of 11 column index vectors each having
557 data points.

There are two ways from which one can generate
analogue wavelet transform from PDE solution:

1 Either one can directly use the PDE solution
and apply a properly designed band pass filter as per
Fig.8. and Fig.9. or

2. Alternatively one can compute the Fast Fourier

Transform of the PDE solution and apply the same filter.

Lot st)=[s,(t) s,(t) . . . s, ()]
be the sampling vector signal

Lot x®) =[xt x@ . . . x 0]
be the sampled vector signal

et YO=[0 v.® . . . v,

be the response ofthe band pass filter

Let () be the impulse response of the band pass
filter

u11 ulZ uln
u21 l"|22 u2n
Letu=| =~ = 7 (10)
_uml um2 . umn_
be M*Nppg

solution matrix where M :11and n =557

mxn
This data matrix is a real matrix, UER"
associated with M>Npoints of the PDE solution. In
this section we attempt to express the sampled vector
signal X(t) in terms of sampling vector signals(t) as
well as datamatrix U representing the PDE solution.
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X, (1) =Up,8, () + Uy, (1) +...+U,s, (1)

= iuilsk ®)

okl
X5 (1) = Uy,S, (1) +UppS, (1) +...+ U8, (1)

= iuizxk ®

i=k=1

X (1) = U Sy (8) + Uz S, (8) oo Uy S, (1)

= iuimsk (t)

i=k=1

x(t) =s(t) xu

In vector form can be written as:

| X (t) | U Uy - o Uy _Sl (t)_
X, (t) U, Uy -+ v Upp Sy (t)
= X
_Xm (t)_ _uln u2n ot umn _ _Sn (t)_

Power of the sampled PDE solution

From the definition of power the power associated to
sampled PDE solution is given by:

2
le = |X1(t)|2 = Zuilsk ®
i=k=1
N 2
sz :|X2(t)|2 = Zuizsk (t)
i=k=1
; 2
me =|Xm (t)|2 = zuimsk (t)
i=k=1

Total power of the sampled PDE solution is:
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m n
2| U8 ® 1)
j=t| |i=k=1
Energy of the sampled PDE solution
+00 +00 n
o= [@Fdt= || Dugs @) |[dt
S S\ | i=k=1
E, = j|x2(t)|dt—j . '
—o0 —eo | 1=k=1
E, = [[x,®)]dt= j . "
—o0 —o | 1=k=1
Total energy of the sampled PDE solutionis:
E,=|(E,f+E,F+.+E.)
From Eqn. (11) we obtain:
m (% 9 2
X [P dt
AN
m [ +t®] n 2 2
Y] s dt (12)
=1\ S li=k=1

By definition the response of the band pass filter is
given by the convolution of the impulse response

F() of the band pass filter with the sampled vector

x0=[x® %O . . . x,0]

signal
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Hence we get:
y(t) = () * x(t) = Tx(t) f(t—7r)dzr

Apply the above definition to each column, we get:

VO =% @ FO = [ %01 E-0)dr

:f( zn:uilsk(t)Jf(t—r)dr

i=k=1

n

= ZuilTsk(t)f(t—r)dr

V(0 =%, 0% 10 = [ x,Of t-r)de

_ f(z U,S, (t)jf(t—r)dr

_ iuiszk(t)f(t—z’)dz’

Yo = %, O (O = | %, (O - 0)dr

:T(Zn:uimsk(t)jf(t—r)dr

i=k=1

=Zn:uim+fsk(t)f(t—r)dr

The filtered PDE solution y(®) is shown in Fig. 10.
The filtered PDE solution is a modulated signal. Hence
we have generated analog continuous wavelet transform
from PDE solution.

The Matlab signal processing tool shows that the
modulated signal generated out of the PDE solution is a
real signal. Its expression can be derived from the
equation of complex mother Morlet equation given in
Eqn. (7a) by equating the imaginary part to zero. Hence
we get

Yi(t) =W, (t)= hai,bi(t)coswo(t;aij (13)

We can therefore see that the filter effect has generated
a wavelet transform that is proportional to the
windowed function.
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Power of the filtered sampled PDE solution

2

SR AG _iuu [sc®ft-r)dr
P, =|y2(t)|2 = _Zn:uiz J.Sk Of(t-7)dr
P, =y OF =| Y [s,O1¢-)dr

Total Power of the filtered sampled PDE solution can

be computed considering it as a vector with components.

P={P,f+P,f+.+(,f

= \/,ZE‘ (‘yi (t)‘z)z

P, = Z
j=1

2\ 2

iuistk ) f(t—r)dr

i=k=l %

(14)

Energy of the filtered sampled PDE solution

+00

E, = j PAGIR:

—00

]

—00

Zn:uilTxk ) f(t—7)de| dt

i=k=1 o

E, = j|y2(t)|2dt

2

J:| _Zn:uizTXk t)f(t—7)dz| dt

+
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E, = j|ym ()| dt

+

fl Zn:uim Txk O f(t-7r)dz| dt

Sdizk=t S

Total energy of the filtered sampled PDE solution
can be computed considering that this energy is a vector.
Then the magnitude of that energy is given by the
following formula:

E, =E,F+E,f+.+E,f

From Eqgn. (14) we get:

E,= i(f y, (t)\zdt]

J=\ 0
+00 +o0 2 ?
= > [ 2us [x®ft-o)dr dt| (15)
j=1| Jeo | i=k=1 o

The sampled PDE solution is shown in Fig.6. It was
computed using music method of power computation.
The power spectral density (PSD) of the PDE solution
is shown in Fig. 7 with minimum frequency equal to
half of the sampling frequency.

A stable band pass filter has been designed to analyze
in this frequency range the PDE solution. Fig.8
indicates the pole—zero plot of the filter. Magnitude,
phase response, step response, group phase delay and
other properties of the same filter are shown in Fig.9.

The filtering process has eliminated noise
successfully as indicated by power spectral densities
(PSDs) of pre-filtering and post-filtering. The filtered
signal is a modulated signal shown in Fig.10. The PSD
of the filtered PDE solution is shownin Fig.11.
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Fig. 7: PSD of Sampled PDE Solution
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previous section the computation of FFT generates
points which are complex in nature. The plot of fft(u) is

Let us now exp lore the frequency analysis of the PDE shown in Fig.12. The complex points of the FFT of the
solution through the computation of the Fast Fourier PDE solution are imported from Matlab workspace to
Transform. Unlike PDE solution discussed in the Matlab signal processing tool with the same sampling

Copyright © 2012 MECS
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frequency. Fig.13, Fig.14, Fig.15 and Fig.16 show the of the Fast Fourier Transform of the PDE solution
real the part, imaginary part, magnitude and phase angle respectively.
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Fig. 12: FFT of PDE Solution
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Fig. 13: Real Part of fft(u) for Column Index Vector 2
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The FFT does not directly give you the spectrumof a
signal. The FFT contains information between 0

and fs, however, we know that the sampling frequency
must be at least twice the highest frequency component.
Therefore, the signal’s spectrum should be entirely

fS

below 2 , the Nyquist frequency. Recall also that a real
signal should have a transform magnitude that is
symmetrical for positive and negative frequencies. So

instead of having a spectrum that goes from 0 1o fs, it

would be more appropriate to show the spectrum from
f f

2 10 2 .

The computation of the FFT allows the analysis of
the PDE solution in frequency domain. It therefore
provides additional information to the existing ones on
the PDE solution, especially on the power spectral
density. The filtered real part, imaginary part,
magnitude and phase angle of the Faster Fourier
Transform of the PDE solution are respectively shown
in Fig.18, Fig.19, Fig.20 and Fig.21, whereas the power
spectral density (PSD) of the filtered Fast Fourier
Transform of the PDE solution is shown in Fig.22.

Lt SO=[s:0) s,(®) $50] e e
sampling vector signal

Copyright © 2012 MECS

et CO=[c.® ¢,
sampled vectorsignal

Let w(t) = [Wl ®) W, ®
response of the band pass filter

C“(t)] be the
W (t)] be the

Let f() be the impulse response of the band pass
filter

le le o Z1n
221 222 o 22n

Let fituy=| =~~~ (16)
_Zml Zmz o Zmn_

be MXN ppE solution matrix where M =11 and
n=>557

The data matrix in Eqn.(16) is a complex

mxn
matrix, fit(u) e Z , associated with M>N points
of the FFT of PDE solution. The Matlab signal
processing tool shows that the sampled PDE solution is
a complex array consisting of 11 column index vectors
each of 557 complex data points. In this section we

1.J. Information Technology and Computer Science, 2012, 12, 1-20
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attempt to express the sampled vector signal c(t) in
terms of sampling vector signal X(t) as well as data
fft ()

matrix representing the FFT of PDE solution.

C,(t) = 24,8, (1) + 2,8, () +... + 2,8, (1)
= i Z;;S, (1)

i=k=1

C, (1) = 2,58, (t) + 25,8, (1) +...+ 2,8, (1)

= iuizsk ®

i=k=1

Co () = 23,8, () + 2,8, (1) + .+ 2,8, (1)

n

= Z Zimsk (t)

i=k=1

In vector form c(t) = s(t) > fft(u) can be written as:

I C, (t) ] iy, Ly, . I, 11 Sy (t) ]
c, (1) Zyp Ly - - o Iy s, (1)
. _ 8 .
_Cm (t)_ _Zml Zm2 oot Zmn_ _Sn (t)_ .

Power of the sampled FFT of PDE solution

3 2,5, (1)

i=k=1

F)c1 = |C1(t)|2 =

2

Pc2 = |C2 (t)|2 = Zzizsk (t)
i=k=1
\ 2
F)cm = |Cm (t)|2 = Z Zimsk (t)
i=k=1

Total Power of the sampled PDE solution

Po= R+ (P, oot (P f
= /jzr:‘cj(t)‘z

=t

2\ 2

3 2,5,()

i=k=1

7

Energy of the sampled FFT of PDE solution

E, = [le.f dt

n 2
Z z,8, (1) dt

i=k=1

y

—0

E., = [[c,()]dt

n 2
D 7,5 (t)] dt

i=k=1

-

—00
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E,. = [lca(®)dt

h 2
D 7S ()] dt

i=k=1

-

—00

Total energy of the sampled FFT of PDE solution is
given by:

E, =JE S +E, f+.+E, )

Using Eqn.(17) we obtain:

E, = /i [lea ([ dt

n

D 7,5, (1)

i=k=1

il

dt} (18)

By definition the response of the band pass
filter is given by the convolution of the impulse

response w(t) of the band pass filter with the sampled
vector signal.

ct)=[c.®) c, @) . . . c,®]

Hence we get
w(t) = f (t) *c(t) = Tc(t) f(t-r)dr

Apply the definition to each column, we get:

w, (t) = ¢, (1) * f (t)

- Tcl(t) f(t—7)dr

i=k=1

:To(izilxk (t)jf(t—‘[)dr

Copyright © 2012 MECS

=Yz, jsk t)f(t—7)dr
i=k=l

W, (t) = ¢, (1) * f ()

- Tcz(t)f(t—r)dr

+00

_ J(Zn:zizxk(t)jf(t—r)dr

1

n

=> (ziszk(t)f(t—r)dr]

i=k=1

Wi, (1) = ¢, (1) * F(1)

= Tcm O ft-—7)dr

+o0

- J'(Zn: ZinS, (t)jf(t—r)dr

1

n

= (Zistk(t)f(t—z’)er

i=k=1

Power of the filtered sampled FFT of PDE
solution

o 2
P, =M =| Xz, [s (O F (t-7)dr
i=k=1 _o
n +® 2
P, =, =| Xz, [ @O f(t-7)dr
i=k=1
n +o 2
P, =W ®) = 270 [ X O F (t-7)d7
i=k=1  _
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Total Power of the filtered sampled FFT of PDE +o0 ,
solution E., = _HW2 (t)| dt

JENCHRICI S

+00 n +00 2
. : =j Zwizjsk(t)f(t—f)dr dt
2 i=k= o0
= 2w 0] B
j=1
+0 )
N 2\? E,, = [Iw, ®)dt
= > Xz [x @ f-o)dr (19) =
=t |i=k=1 %
+o0 n +o0 2
=j ZZimIsk(t)f(t—r)dr dt
ol |izk=t o
Energy of the filtered sampled FFT of PDE
solution
. Using definition and Eqn.(19),the total energy of the
2 filtered sampled FFT of PDE solution is given by:
E,, = [ () dt P given by
- E,=(E, f+E, f+.t(Epn )

2

:T Zn:zilTsk(t)f(t—r)dr dt
_ Zm:(+f|wm(t)|2dt]

j=1

—00

2

m +00 n +00 2
=D j Zuujsk(t)f(t—f)df dt| (20)
j=1\| —o|i=k=1 —0
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Fig. 17: PSD of fft (u)
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Fig. 18: Real Part of Filtered fft (u)
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J Signal Browser

Analogue Wavelet Transform Based the Solution of the Parabolic Equation
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Fig .22: PSD of Filtered fft (u)

IV. Conclusion

In our research we have proved that the PDE solution
generates analogue wavelet transform. We have
imported the PDE solution from Matlab workspace to
signal processing tool. We have sampled the imported
PDE solution and applied the band pass filter to it. The
convolution of the sampled PDE solution with the
impulse response of the band pass filter has generated
analogue wavelet transform. This algorithm computes
the analogue wavelet transform either directly of via
Fast Fourier Transform. The computation of the FFT of
the PDE solution has produced complex wavelet
transform. The FFT provides analysis of the PDE
solution in frequency domain.
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