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Abstract—The main goal of present paper is to 
construct an efficient reduced order model (ROM) for 
aerodynamic system modeling. Proper Orthogonal 
Decomposition (POD) is presented to address the 
problem. First, the snapshots are collected to form the 
POD kernel, and then Singular Values Decomposition 
(SVD) is used to obtain POD modes, finally POD-
ROM can be constructed by projecting full order 
aerodynamic system to POD modes subspace. Two 
problems are addressed: (1) aerodynamic data inverse 
design; (2) aeroelastic structure active control. For the 
second problem, POD method with balanced 
modification is introduced to improve the robustness 
of original POD method. Results in problem (1) 
suggest POD method works efficiently not only for 
interpolation inverse design but also for extrapolation 
problems. The results in problem (2) demonstrate 
POD method with balanced modification is efficient 
and accurate enough for aeroelastic system analysis.  
 
Index Terms—Proper Orthogonal Decomposition 
(POD), Inverse Design, Aeroelastic, Active Control  
 
 

I.  INTRODUCTION  

A Reduced order model is any low-order model that 
retains the characteristics and dynamics of the original 
system. It has been applied throughout many different 
disciplines, including controls, fluid dynamics, and 
structural dynamics. One of the most popular methods for 
model order reduction is proper orthogonal 
decomposition. The proper orthogonal decomposition 
(POD) is known as Karhunen Loéve expansion and 
principle components analysis. As an effective method 
for data analysis, the POD methodology has been widely 
used for a broad range of applications, including reduced 
order model (ROM) construction, data reconstruction, 
image processing and pattern recognition[1~7].  

For aerodynamic inverse design problems, Everson and 
Sirovich have developed a modification of the basic POD 
method that handles incomplete data sets. Given a set of 
POD modes, and incomplete data vector can be 
reconstructed by solving a small linear system. This 
method has been successfully applied for reconstruction 
of images, such as human faces, from partial data.  

For aeroelastic problems, with the recently well-
developed software and hardware, (CFD)-based, 
nonlinear aeroelastic simulation capabilities have shown 
that for low to moderate angles of attack, they can be a 
reliable alternative to linear theories, However, the high 
fidelity models generally result in very large 
computational domain easily involving at least 105 and 
usually greater than 106 degrees of freedom (DOFs). 
Because of this computational cost, the potential of CFD-
based nonlinear aeroelastic codes is currently limited to 
the analysis of a few, carefully chosen configuration 
rather than routine analyses. In response to this challenge, 
in recent years, substantial research has been conducted 
in developing reduced order models (ROMs) of high-
dimensional CFD models with the goal of reducing 
computational time by orders of magnitude[8~13]. For 
conventional POD method, only system inputs 
characteristic has been considered. Without consideration 
of the relationship between outputs and system states, 
inefficient models may be obtained, and the higher 
degrees of ROM could be achieved. A reduction 
procedure based only on system inputs may be highly 
dependent on the arbitrary scaling of the states variables, 
and it could lead to reduced models that are highly 
inaccurate. 

In this paper, the basic POD approach is firstly 
outlined, followed by the description of POD based 
inverse-design methodology. Airfoil flow field inverse 
design cases demonstrate the accuracy of POD method. 
Finally, balanced modification is introduced in POD 
method for reduced order model construction. Aeroelastic 
structure active control case indicates POD method with 
balanced truncation is efficient and accurate for real 
aeroelastic analysis.  

II. PROPER ORTHOGONAL DECOMPOSITION (POD) 

The basic idea of POD is to obtain the optimal 
subspace with order m by using sample data (snapshot) xk 
derived from n order data space (m<n). The n order space 
is projected onto the optimal subspace to extract POD 
modes. The error between ROM and full order system is 
defined as: 
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The constrained optimization is performed via 
standard optimization techniques where a Lagrangian 
function is constructed as shown below: 

( ) ( )( ) ( )2 2

1

, 1
m

k

j

J x λ
=

Φ = Φ − Φ −∑
                (3) 

The differentiation of equation with respect to Φ leads 
to the following: 

( ) 2 2Td J XX
d

λΦ = Φ − Φ
Φ                   (4) 

For large systems, the matrix R=XXT (POD kernel) 
will be of a very large dimension n×n, if the data 
ensemble consists of m<<n linearly independent data 
samples, the following equivalent, smaller, m×m eigen 
problem can be solved instead. 

TX XΨ = ΨΛ                            (5) 
The non-zero eigen spectrum of the two systems are 

the same, and the eigenvectors are related via the 
snapshot matrix X, so that 

1
2X

−
Φ = ΨΛ                            (6) 

Model reduction using the POD basis is accomplished 
by truncating the number of eigenvectors, also known as 
POD vectors. The singular values are often referred to as 
the “energy” contained in the system, and physical 
significance maybe attributable to these singular values. 
Generally, truncation of the POD vectors is done so that 
the ratio of total energy in the reduced subspace to the 
energy in the full order space is close to one or  
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The proper orthogonal decomposition can therefore be 
summarized as follows: 
(1) Collect snapshots of primary system to construct 

matrix X.  
(2) Obtain the eigenvectors of the correlation matrix 

XTX to determine POD kernel.  
(3) Retain only those eigenvectors in the reduced space 

basis that correspond to large Hankel singular values.  
 

III. POD FOR INVERSE DESIGN 

Inverse design vector in terms of p POD basis 
functions can be described as: 

1
i i

i

p

g b= Φ∑%
=                               (8) 

The error E between the original and inverse design 
vectors is defined as  

2

n
E g g= − %                               (9) 

The coefficients bi can be solved by differentiating Eq. 
(9) with respect to each of the bi. This leads to the linear 
system of equations 

Mb f=                                (10) 
Where Mij= (Φi, Φi)n and fi=(g, Φi)n 

Solving Eq. (10) for b and inverse design vector g can 
be obtained.  

 

A  Cases Validation  
The case considered is the RAE 2822 airfoil at a free-

stream Mach number of 0.5 with grid size 121×33. To 
create the POD basis, 26 snapshots are computed at 
uniformly spaced values of angle of attack in the interval 
α= [-1.25°, 1.25°] with a step of 0.1°. As shown in Fig.1, 
we see that magnitudes of eigenvalues drop off very 
quickly, indicating that the reduced order model will quite 
only a few states. In fact, the first 3 contains almost 
99.99% of the system “energy”.  

 
An incomplete flow-field was then generated by 

computing the flow solution at α=1.2° (which is not one 
of the snapshots), and then retaining only the pressure 
values on the surface of the airfoil. The total number of 
pressure values in the full flow-field is 3993 and the 
number of pressure values on the airfoil is 121, hence 
96.97% of the data is missing. The main goal, then, is to 
design the full pressure flow-field using POD method 
introduced in recent paper. Such a problem might occur, 
for example, when analyzing experimental data. Typically, 
experimental measurements will provide only the airfoil 
surface pressure distribution. The POD method provides 
a way to combine this experimental data with 
computational results in order to inverse design the entire 
flow field. Fig.2 (1) and (2) show the pressure contour of 
the first two POD modes. 

0 5 10 15 20 25 30
10-15

10-10

10-5

100

 

1

i
p

i
i

λ

λ
=
∑

POD modes  
Fig1. Distribution of singular values 

 
Fig.3 shows the inverse designed pressure contour with 

3 POD modes, compared with the original contours of the 
CFD solution. With just limited surface pressure data 
available, the complete pressure field can be determined 
very accurately with only 3 POD modes, showing that the 
POD methodology for data construction works 
effectively for aerodynamic application.  
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Fig2. Pressure distribution of the first 2 POD modes 
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Fig.3 Interpolation pressure comparison 

 

Another example is for α=1.5° and α=2.0°, which are 
not within [-1.25°, 1.25°]. As shown in Fig.4 (1) and (2), 
the POD method also predicted original pressure contour 
accurately. But for α=2.5°, the result is not reliable, even 
if more POD modes are used. The above results show that 
POD method allows models to be derived that accurately 
predict steady-state pressure fields either by interpolation 
or extrapolation. The approach can also be extended to 
other flow parameters such as temperature or density 
field.  

 
 

(1)    α=1.5° 
 

(2)    α=2.0° 
 

Fig.4 Extrapolation pressure comparison 
 

 
 

Cases shown above are subsonic flow around RAE 
2822 airfoil. The POD methodology also is used for 
transonic flow case. The case considered is the NACA 
0012 airfoil at a free-stream Mach number of 0.8 with 
grid size 121×33. The POD bases are created in the same 
way as RAE 2822 case. As shown in Fig.5, we see that 
magnitudes of eigenvalues drop off very quickly, 
indicating that the reduced order model will quite only a 
few states. In fact, the first 6 contains almost 99.87% of 
the system “energy”. Fig.6 shows the pressure contour of 
the first 6 POD modes. 

Fig.7 shows the reconstructed pressure contour with 6 
POD modes, compared with the original contours of the 
CFD solution. The complete pressure field can be 
determined very accurately with 6 POD modes, showing 
that the POD methodology for data construction works 
effectively for transonic flow, in which the shock wave 
presents. 
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Fig6. Pressure distribution of the first 6 POD modes
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Fig7. Inverse design by 6 POD modes at α＝1.2° 

IV. POD WITH BALANCED MODIFICATION  

For conventional POD method, only system inputs 
characteristic have been taken into account, without 
consideration of the relationship between outputs and 
system states. Therefore, the robustness of POD based 
ROM cannot be guaranteed.  POD method with balanced 
modification is introduced in this section. The outline 
idea of modified POD method is to construct POD kernel 
with snapshots of primary system and dual system.  
Consider an n order state-space system and its dual 
system defined in (11), (12) 

x Ax Bu= +&

y Cx=
T T

T

z A z C v= +&

                                 (11) 

  w B                                 (12) z=

Excite the original and dual system with dirac delta 
signal and collect states vector to construct snapshots 
matrix X and Z. Then the POD kernel is update to R=ZTX. 
Therefore, the kernel R takes both input and output 
characteristic of original system into account. The new 
POD method can therefore be summarized as follows: 
(1) Collect snapshots of primary system to construct 

matrix X.  
(2) Collect snapshots of dual system to construct matrix 

Z.  
(3) Obtain the eigenvectors of the correlation matrix 

ZTX to determine POD kernel.  
(4) Retain only those eigenvectors in the reduced space 

basis that correspond to large Hankel singular values.  
 

A. Case Validation  
Consider a typical 2D aero-servo-elastic system, which 

is illustrated in Fig.8. Detail structural parameter is in Ref 
[16].  

 
Fig.8 Schematic of airfoil section with control surface 

 
The new POD method is used to construct ROM for 

Euler equation, which is repeated below.  
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The inviscid flux is calculated using the AUSM+~up 
scheme. The 2nd order accuracy is obtained with MUSCL 
interpolation and Van Albada limiter. Deforming mesh is 
achieved by using the TFI method. Euler code is 
validated through AGARD test CT5 [14]. The results 
shown in Figure 9 are in good agreement with experiment 
data. 
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Fig.9 Comparison between calculation and experiment 

 

B. Full Order state space model (FOM) 
Euler equation can be described as shown below: 

( ) ( ), , 0
t

Aw F w u v+ =                    (14) 
Here, A is the diagonal matrix of cell volumes, F is the 
nonlinear numerical flux function, and w is the 
conservative state vector, u is the structural displacement 
vector; v is the structural velocity vector; t represents a 
partial derivative with respect to time. Full order state 
space can be constructed though Taylor series expansion 
about given operation point W0. 
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The matrices H, G, E, and C are the 1st order terms in a 

Taylor series expansion of the numerical flux function 
evaluated at the operating point. The matrix H is the 
gradient of the numerical flux function with respect to the 
fluid states and thus will be very large sparse matrix. The 
full order system is derived as:  

w w
G w
= ⋅ + ⋅
= ⋅

A B
P

& y

                      (16) 
( ) [ ]1 -1, B=  ,  , , T

o o= − − =-A A A G E + C y u v  
Matrix P represents force partial derivative with 

respect to w, and G is output force vector.  
The O-type grid dimension is 121×31, shown in Fig.10, 

and the degree of the aerodynamic system is 
n=120×31×4=14400. Flow condition is described in Ref 
[16]. Results shown in Fig.11 indicate FOM reproduces 
faithfully the response predicted by CFD, and ready for 
POD-based ROM construction.  
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Fig.10 O-type grid for aero-elastic simulation 
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C. Reduced Order state space model (ROM) 
Apply a dirac delta signal individually to each 

structural mode and collect 200 snapshots using a time 
step ⊿t=5×10-4(s).Given that there are 2 displacement 
inputs and 2 velocity inputs, this resulted in a snapshot 
matrix X of primary system with 800 data samples. 
Collect snapshots of dual system and construct snapshot 
Z with 400 data samples. The snapshot matrix is used to 
form the correlation matrix R=ZTX of dimension 
400×800. The POD vectors are computed by computing 
the eigenvectors of R. Once the POD basis vectors are 
computed, the reduced order models are formed via 
projection resulting in the following reduced system. 
Given the reduced order m, then reduced system is of the 
dimension m×m (m<<n). 

T T
r r r r r

r r

= Φ Φ +Φ
= Φ

w A w By
F P w
&

                (17) 
Fig.12 shows the eigenvalues of the first 80 proper 

orthogonal decomposition vectors. The spectrum of 
eigenvalues decay quickly, and the first 80 POD vectors 
contain the vast majority energy. 55th order ROM is 
constructed by truncating low energy modes. Results 
shown in Fig.13 suggest 55th ROM is accurate enough. 
The order of ROM is just approximately 4% of FOM.  
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Fig.12 Hankel singular values 
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Fig.13 FOM and ROM comparison 
 

The LQR control method is employed for present 
aeroelastic structure active control. Coupled with 6th 
order structural model, 61th order aero-servo-elastic ROM 
was constructed for close loop analysis. The control plant 
is shown in Figure14. 
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Figure14 Control plant with LQR 
 

The control results shown in Figure15 indicate that the 
responses are suppressed quickly, with flap deflect angle 
-0.2° approximately. Additionally, the 61th order aero-
servo-elastic ROM can be used for control law 
optimization efficiently with high fidelity compared with 
CFD direct calculation.  
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Fig.15 Structural response with active control 
 

V.  CONCLUSION  

POD method is presented in this paper for flow field 
inverse design. A new POD method with balanced 
modification is also introduced to improve robustness of 
conventional POD method for unsteady aerodynamic 
force ROM construction. The major computational cost is 
the computation of the snapshots, from which the vectors 
are extracted. However, once the vectors are obtained, the 
cost of constructing and solving the reduced order model 
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is negligible, allowing quickly performing parametric 
studies.  

Airfoil flow field inverse design and 2D aero-servo-
elastic active control problems are chosen for method 
validation. All the results shown POD based ROM are 
much more efficient than CFD simulation without losing 
accuracy and the information of the nature full-order 
system. 
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